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Little is known about how chronic inflammation contributes to the progression of hepatocellular carcinoma (HCC), especially the

initiation of cancer. To uncover the critical transition from chronic inflammation to HCC and the molecular mechanisms at a network

level, we analyzed the time-series proteomic data of woodchuck hepatitis virus/c-myc mice and age-matched wt-C57BL/6 mice

using our dynamical network biomarker (DNB) model. DNB analysis indicated that the 5th month after birth of transgenic mice was

the critical period of cancer initiation, just before the critical transition, which is consistent with clinical symptoms. Meanwhile, the

DNB-associated network showed a drastic inversion of protein expression and coexpression levels before and after the critical

transition. Two members of DNB, PLA2G6 and CYP2C44, along with their associated differentially expressed proteins, were found

to induce dysfunction of arachidonic acid metabolism, further activate inflammatory responses through inflammatory mediator

regulation of transient receptor potential channels, and finally lead to impairments of liver detoxification and malignant transition

to cancer. As a c-Myc target, PLA2G6 positively correlated with c-Myc in expression, showing a trend from decreasing to increasing

during carcinogenesis, with the minimal point at the critical transition or tipping point. Such trend of homologous PLA2G6 and

c-Myc was also observed during human hepatocarcinogenesis, with the minimal point at high-grade dysplastic nodules (a stage

just before the carcinogenesis). Our study implies that PLA2G6 might function as an oncogene like famous c-Myc during hepatocar-

cinogenesis, while downregulation of PLA2G6 and c-Myc could be a warning signal indicating imminent carcinogenesis.

Keywords: dynamical network biomarker, inflammation-induced HCC, critical transition, early diagnosis, high-grade dysplastic

nodules, tipping point

Introduction

Recent studies have demonstrated that chronic inflammation

contributes to development and progression of many cancers,

including hepatocellular carcinoma (HCC) (Hussain and Harris,

2007; Mantovani et al., 2008; Diakos et al., 2014). On one

hand, inflammation involves a well-coordinated response of an

innate and adaptive immune system following infection or injury

by endogenous or exogenous means (Hussain and Harris,

2007). On the other hand, a number of oncogenes, such as myc

and ras, have been known to build up an inflammatory pro-

tumorigenic microenvironment (Borrello et al., 2008). In particu-

lar, myc oncogene activation is observed most often in the

pathogenesis of HCC (Beer et al., 2004). Meanwhile, HCC has
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been reported strongly associated with viral infections, e.g.

hepatitis B especially in China (Farazi and DePinho, 2006; Jiang

et al., 2012; Jhunjhunwala et al., 2014). Therefore, the interplay

of both intrinsic (such as oncogene activation) and extrinsic

(such as viral infection) factors is considered necessary for

inflammation-associated HCC tumorigenesis.

One challenging goal is to reveal the underlying molecular

mechanisms mediating initiation and progression of inflammation-

associated carcinogenesis, which can be viewed as a nonlinear

dynamical process with critical transition phenomena. We aim

to elucidate the malignant transition and key mediating factors

during the progression from chronic hepatitis to HCC at a sys-

tem or network level, by using the dynamical network biomarker

(DNB) theory and critical transition model. For this purpose,

c-myc tumor-prone transgenic mice were infected with wood-

chuck hepatitis virus (WHV) to induce similar disease progres-

sion as hepatitis virus-associated HCC in humans (Etiemble

et al., 1994; Liu et al., 2010), which combines both intrinsic

(c-myc oncogene) and extrinsic (WHV infection) factors that cause

inflammation-associated hepatocarcinorigenesis in a mouse

model.

Statistical analyses based on big biological data or ‘Omics’

data have led to a number of important discoveries on patho-

logical mechanisms, diagnoses, and treatments. However, most

of current studies focus on static or molecular biomarkers,

which mainly contribute to distinguishing different disease

stages based on static characteristics, e.g. by using differentially

expressed molecules (He et al., 2012; Huang et al., 2013;

Hwang et al., 2013; Mitra et al., 2013; Wen et al., 2014; Zhang

et al., 2015a; Liu et al., 2016; Zeng et al., 2016). In other words,

it is hard to catch unstable and dynamical signals happening at

the critical period/stage, which are key information of the crit-

ical transition from inflammation to HCC. Here, we introduce our

critical transition model with DNB method (Chen et al., 2012) to

address this challenge. Compared with traditional biomarkers,

DNB is able to identify the critical state or pre-disease state

(just before the drastic transition to the disease state) during

disease progression, based on ‘differential associations

between molecules (differential networks)’ in a dynamical man-

ner, and further to determine the corresponding functional net-

work of the DNB. Another advantage of the DNB method is its

model-free feature, which means a data-driven approach with-

out requirements for parameters or even models.

In this study, we analyzed the time-series proteomic data of

WHV/c-myc mice and age-matched wt-C57BL/6 mice, by using

our phase transition model with DNB method, to identify the crit-

ical transition period from chronic inflammation to HCC and

uncover the underlying molecular mechanisms at a network level.

Results

Dynamic proteomic data of WHV/c-myc transgenic mice and

wt-C57BL/6 mice from inflammation to hepatocarcinogenesis

The WHV/c-myc transgenic mouse model shows a similar pro-

gression as hepatitis virus-associated HCC in humans, sequen-

tially and simultaneously undergoing dysplasia, paraneoplastic

nodule, adenomas, well differentiated HCC, poorly differentiated

HCC, and finally high penetrance HCC (Figure 1A; Etiemble

et al.,1994). Accordingly, we selected five different time points

(i.e. 2, 3, 5, 7, and 11 months after birth) that basically match

different stages of cancer initiation and development. Five

WHV/c-myc mice (cases) and five wt-C57BL/6 mice (controls)

were sacrificed at each time point, and liver tissues from a total

of 25 cases and 25 controls were collected to analyze liver

proteome at different states.

Label-free quantified strategy combined with offline peptide

fractionation and liquid chromatography–tandem mass spec-

trometry (LC–MS/MS) was applied on 50 mouse liver tissue

samples (Supplementary Figure S1). We identified a total of

42689 distinct peptides among the 570 LC–MS/MS runs, corre-

sponding to 2381085 spectra in an assembly of 8713 protein

groups with a peptide-level false discovery rate (FDR) of 0.4%.

Numbers of spectral counts, protein groups, and unique pep-

tides at each time point for WHV/c-myc mice and wt-C57BL/6

mice were summarized in Supplementary Table S1. For the

quantitative data, 3372 proteins with effective spectral counts

and detected from >25 mice were considered (Supplementary

Table S2). Then, we identified 1465 significantly differentially

expressed proteins (DEPs) (Supplementary Table S2) and 3338

differentially co-expressed protein-pairs (DCEs) (Supplementary

Table S3) by traditional biomarker analyses (Supplementary

Figure S2A and B), which characterize disease-associated dys-

functions by evaluating the differences between case and con-

trol samples during hepatocellular carcinogenesis.

Then, we performed principle component analysis (PCA)

(Figure 1B) and unsupervised hierarchical clustering (Figure 1C)

based on the DEPs. The PCA result revealed that all mice were

clustered into three relatively independent groups, i.e. (i) the

cancer state group including all 11-month-old transgenic mice

with cancer, (ii) the inflammation state group including trans-

genic mice (mainly 2−3 months) with inflammation but without

cancer and all control (normal) mice, and (iii) the mixed state

group including transgenic mice (5−7 months) at advanced

inflammation or early HCC stage (Figure 1B). Clearly, 5-month-

old transgenic mice (T5) were scattered in both inflammation

state and mixed state groups, implying that they might be at

the critical state before the malignant transition to HCC.

Similarly, the hierarchical clustering result showed that 11-

month-old transgenic mice (T11) became an independent group,

while transgenic mice at 5−7 months (T5 and T7, in particular

T5) were mixed with transgenic mice at 2−3 months and control

mice with inflammation (Figure 1C). We also performed time

course analysis to characterize different disease stages in WHV/

c-myc transgenic mice (Supplementary Figure S3). All DEPs and

DCEs were grouped for 16 different patterns according to their

expression changing trends between two consecutive time

points. These dynamic trends indicated differences between dis-

ease and normal mice, and also between different disease

states. Notably, transgenic mice drastically deteriorated to a

serious disease state at later time points, which might result

from significant changes in most of DEPs and DCEs from 7 to 11
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months. Hence, we supposed the existence of a critical period

just before cancer initiation in transgenic mice at the age of 5−7
months; however, more details of this period cannot be charac-

terized by the traditional analysis of differential expressions.

DNB analysis identifies the critical period or phase transition

from chronic inflammation to HCC

To accurately determine the critical period of cancer initiation,

we used our phase transition model with DNB method. Based on

the nonlinear dynamic theory, a group of strongly correlated and

fluctuated molecules called DNB appear if the state of a system

approaches the critical period or tipping point from inflammation

to cancer (Chen et al., 2012; Liu et al., 2014, 2015). In other

words, the appearance of DNB implies the emergence of the crit-

ical transition. As shown in Figure 2 (Chen et al., 2012; Sa et al.,

2016), when the system gradually approaches the critical state,

DNB as a dominant group among all observed molecules can be

detected by the following three criteria: (1) Pearson correlation

coefficients (PCC) of molecules (expressions) in this dominant

group (PCCi) significantly increase (Figure 2B); (2) PCC between

molecules in this group and others (PCCo) significantly decrease

(Figure 2B); (3) standard deviations (SD) of molecules in this

dominant group drastically increase (Figure 2C). An index (CI)

considering all three criteria can be used as the numerical signal

of DNB method (Li et al., 2014). When CI reaches the peak or

increases drastically during the measured periods, we consider

that the corresponding period is the critical period of the bio-

logical system (Figure 2A).

Generally, at the critical state, DNB is a group of molecules

with strong correlations and fluctuations, which are different

from the molecules with differential expressions that are widely

used in the traditional methods. As shown in Figure 2A and C,

the inflammation and cancer states show significant differences,

and thus can be distinguished by traditional (static) biomarkers

based on differential expressions. However, there are no signifi-

cant differences between the inflammation and pre-cancer

states in terms of expressions. Thus, it is difficult to identify the

pre-cancer state or critical state using traditional biomarkers. By

detecting dynamic association (correlation) or fluctuation

changes, DNB method can accurately identify the pre-cancer

state based on the omics data from both theoretical and compu-

tational viewpoints (Chen et al., 2012; Liu et al., 2015).

Figure 1 The progression of hepatocellular carcinogenesis in WHV/c-myc transgenic mice and protein expression analyses. (A) A schematic

diagram illustrates different pathophysiological symptoms of the liver during the progression of hepatocellular carcinogenesis in the WHV/

c-myc transgenic mouse model. Liver tissue samples from 25 WHV/c-myc mice (cases) and 25 wt-C57BL/6 mice (controls), five mice per

group at 2, 3, 5, 7, and 11 months after birth, respectively, were collected to measure protein expressions (Supplementary Figure S1). (B)

PCA result shows sample clustering along disease progression based on 1465 DEPs. Each small spheroid represents the PC score along the

top three principle components for each sample. Clearly, 25 case samples were clustered in three groups representing inflammation state,

mixed state, and cancer state, respectively. Notably, T5 samples were not clustered together but scattered in two groups. One of T7 samples

was also scattered in the inflammation state group. In contrast, 25 control samples were all clustered in the inflammation state group. (C)

Unsupervised hierarchical clustering with PCC distance was performed to distinguish different stages based on 1465 DEPs. Similarly, T5

samples were not grouped together but scattered, implying that the 5th month after birth is different from other periods and is a key period

from inflammation to HCC. C indicates a control sample (e.g. C2.3 is the 2-month-old control sample No.3) and T indicates a case sample

(e.g. T7.4 is the 7-month-old case sample No.4).
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All three main parameters (PCCid, PCCod, and SDd) were calcu-

lated by comparing with the age-matched controls, and the

algorithm for detecting the critical period and DNB

(Supplementary Figure S4) was performed. We identified a

strong signal of the critical period shown by CI at the 5th month

during chronic inflammation to HCC (Figure 2D), which is

Figure 2 DNB analysis in the critical transition model identifies the critical period from inflammation to HCC based on proteomic data. (A−C)
Schematic illustrations of DNB method. (A) DNB method can identify the pre-cancer state at the critical period, by observing dynamic signals

of the corresponding molecules in the dominant group. (B) DNB as a network signals the emergence of the critical transition. When the sys-

tem approaches the pre-cancer state, PCC of molecule-pairs in DNB or dominant group (PCCi) increase, while PCC between molecules in this

group and others (PCCo) decrease. (C) When the system approaches the pre-cancer state, DNB members strongly fluctuate or have high SD

near the critical transition, compared with other disease-associated molecules. (D and E) Results of DNB analysis based on label-free prote-

omic data of 50 samples. (D) This series of diagrams visually show the three key criteria of DNB over five different periods during disease

progression. PCCid, PCCod, and SDd are similarly calculated as the definitions of PCCi, PCCo, and SD, after comparing with the corresponding

controls. (E) This series of networks graphically demonstrate the dynamic changes in the network structure and concentration variations of

the identified DNB and DNB-coexpressed proteins. Clearly, DNB members are strongly correlated and fluctuated at the 5th month, which are

recognized as the signals of the critical state. SDd is the differential deviation defined as the ratio of SD between transgenic mice and control

mice at the same time point. PCCd is the differential correlation defined as the difference in absolute PCCs between transgenic mice and con-

trol mice at the same time point.
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consistent with the liver morphological alterations in WHV/

c-myc transgenic mouse model and our assumption from

Figure 1. The DNB was composed of 48 proteins (Supplementary

Table S2), and all indices based on the corresponding DNB were

simultaneously satisfied (Figure 2D). We then constructed series

of networks with PCC of protein-pairs to illustrate the correspond-

ing dynamics in the network structure and expression variations

of the identified DNB and DNB-coexpressed proteins (Figure 2E).

Clearly shown in Figure 2E, at the 5th month, the DNB members

have strong correlations and fluctuations almost forming a clique

in the inner ring, and the links between DNB members in the

inner ring and other proteins in the outer ring are significantly

increased, which represents drastic changes in coexpression rela-

tions or associations within DNB members or between DNB mem-

bers and other molecules when a biological system approaches

the critical state. These data are well in agreement with that pre-

sented in Figure 2D.

Validation of critical transition by hematoxylin and

eosin-stained histological sections

To validate the above results derived from DNB analysis, we

performed hematoxylin and eosin (H&E) staining on liver tissue

sections and compared histological images of tissue sections from

WHV/c-myc transgenic mice and age-matched control mice at

each well-designed time point (Supplementary Figure S5). H&E-

stained specimens from WHV/c-myc transgenic mice at 2 months

of age were similar to those from wt-C57BL/6 mice. The speci-

mens of normal liver clearly demonstrated the structure of classic

lobule. Hepatocytes around a central vein were radially arranged

close in single-cell-thick plates separated by vascular sinusoids.

The specimens from WHV/c-myc transgenic mice around 3−5
months of age showed disruption of the terminal plate, portal-

based inflammation, and local piecemeal necrosis (Ferrell, 2000),

which represents that the disease has progressed into hepatitis.

Especially, a chaotic microvessel distribution pattern with thin-

walled vascular staining could be observed (Cong et al., 2011).

Around 7 months of age, hepatocytes were arranged in a thin tra-

becular pattern and the specimens showed a greater proportion

of lesion area with major sinusoidal dilatation (Cong et al., 2011),

which represents primary liver tumors. Furthermore, H&E-stained

specimens from 11-month-old WHV/c-myc transgenic mice dis-

played HCC phenotypes (Theise et al., 2002), such as massive and

dense arrangement of hepatocytes and increased ratio of nucleus

to cytoplasm. Therefore, this histological examination confirmed

that 5-month-old transgenic mice stay at the extremely limiting

state of inflammation and the 5th month is the critical point of

cancer initiation.

The DNB-associated network is rewired before and after the

critical transition

Complex diseases generally result from abnormalities in the

systematic interplay of multiple molecules and even biological

processes (Chuang et al., 2007; Wang et al., 2011; Rolland et al.,

2014). Thus, it is necessary to integrate relatively complete inter-

actome of the corresponding organism for a comprehensive

understanding of HCC pathological mechanisms at a molecular

level. DNB is a group of proteins with strong correlations and fluc-

tuations at the pre-cancer state (or critical state), which are differ-

ent from DEPs (or DCEs) between the inflammation and cancer

states. DNB members are considered to induce the critical trans-

ition from the inflammation to cancer states, while DEPs (or DCEs)

may actually facilitate biological functions in the cancer state. To

study the coordination between DNB members and DEPs (or

DCEs), we constructed the DNB-associated network (164 proteins

with 183 links) by integrating DNB members and their first-order

neighbors (Supplementary Figure S6A) according to whole

molecular network of mouse. Then, we counted nodes (Figure 3A

and Supplementary Figure S6B) or links (Figure 3B and

Supplementary Figure S6C) that belong to DEPs or DCEs, respect-

ively, and measured their overlapping significance with the DNB-

associated network by the hypergeometric test, which implied the

coordination between DNB and DEPs or DCEs. Furthermore, the

dynamic changes of the DNB-associated network in expressions

(Figure 3C) and coregulations (or coexpressions) (Figure 3D) for

transgenic mice and control mice (Supplementary Figure S7) were

graphically illustrated. In total, 75 (out of 164) DNB-associated

DEPs showed inversed expression levels (Figure 3C and

Supplementary Table S2) and 86 (out of 183) DNB-associated

DECs showed inversed coregulation links (Figure 3D and

Supplementary Table S3) before and after the critical period in

transgenic mice. These results suggest that DNB members, espe-

cially PLA2G6 and CYP2C44 as hubs of the largest inversing sub-

network, coordinate with DEPs and DCEs to induce the critical

transition from inflammation to HCC. It should be noted that the

correlation-based network with both direct and indirect associa-

tions was used in this study, and analyses based on the network

with only direct associations can further improve the accuracy

(Zhang et al., 2013, 2015b; Zhao et al., 2016).

Dynamics of functional phenotypes influenced by the

DNB-associated network before and after the critical transition

To understand DNB-involved dysfunctions in inflammation-

induced carcinogenesis, functional analyses on dynamic pat-

terns of DNB-associated DEPs and DCEs before and after the

critical transition were performed. First, DNB-associated DEPs

(75 proteins) and DCEs (86 links) were classified by Mfuzz

(Futschik, 2015) into four clusters (Supplementary Figure S8),

according to their expression or coexpression profiles during

two consecutive periods (e.g. 3−5 months and 5−7 months).

Members of Clusters 1 and 2 were upregulated and downregu-

lated, respectively, before the critical point (5 months after

birth), while members of Clusters 3 and 4 were upregulated and

downregulated, respectively, after the critical point. Thus, DEPs

or DCEs within Clusters 1 and 2 may be influenced by their asso-

ciated DNB members earlier than those within Clusters 3 and 4.

Next, functional analyses were performed with members of

each cluster. A total of 97 KEGG pathways (Supplementary

Table S4, adjusted P < 0.05) were clustered according to the

z-transformed P-values by measuring their enrichments in the 4

clusters (Pan et al., 2009), among which 37 pathways were
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chosen and listed in Figure 4. Unexpectedly, 8 DNB members

(e.g. PLA2G6, CYP2C44, LTA4H) were directly involved in 22

out of these 37 pathways. Meanwhile, in these 22 pathways,

lipid metabolism (n = 5) was most enriched with nodes in the

rewired DNB-associated network (Supplementary Table S4),

indicating that lipid metabolism may play a key role during the

critical period. Moreover, PLA2G6 and CYP2C44 were the only

two DNB members that participate in these lipid metabolic

pathways.

Before the critical period, glycerophospholipid metabolism

(one of lipid metabolic pathways) is mainly affected by the

members of Cluster 1. Fifteen pathways involving metabolism,

signal transduction, and inflammatory are mainly affected by

the members of Cluster 2, including fatty acid degradation (lipid

metabolic pathway), Ras, Rap1, cAMP, and MAPK signaling

pathways (signal transduction), and inflammatory mediator

regulation of transient receptor potential (TRP) channels (sen-

sory system). Ether lipid metabolism (another lipid metabolic

Figure 3 Rewiring of the DNB-associated network with dynamic changes of DEPs or DCEs before and after the critical period. (A and B)

Significant overlapping between nodes in the DNB-associated network and DEPs (A) or between links of the DNB-associated network and

DCEs (B) during the whole period (2−11 months) and during 3−7 months (including 3 vs. 5, 5 vs. 7, and 3 vs. 7 months) implies functional

relations between DNB members and DEPs or DCEs, especially during the critical period. (C and D) Dynamic changes of the DNB-associated

network in expressions (C) and coregulations (D) before and after the critical period. The expressions of 75 DNB-associated DEPs

(Supplementary Table S2) and correlations or regulations of 86 DNB-associated DCEs (Supplementary Table S3) significantly changed (or

inversed) before and after the critical period in transgenic mice, implying key roles of DNB members in coordinating the critical transition

from inflammation to HCC across the 5th month.
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pathway), RNA transport (translation pathway), and Fc gamma

R-mediated phagocytosis (immune pathway) are affected by the

members of both Clusters 1 and 2, suggesting more complicated

regulations in these processes.

After the critical period, dysfunctions of carbohydrate, lipid,

and xenobiotics metabolisms are significantly affected by the

members of Cluster 3, while dysfunctions of cell–cell and cell–
matrix interactions (e.g. tight junction and adherens junction)

and immune surveillance and inflammation (e.g. leukocyte

transendothelial migration and platelet activation) are signifi-

cantly affected by the members of Cluster 4.

These results agree with previous reports that, in addition to

signal transduction and cell communication, Warburg effect

(both carbohydrate and lipid metabolisms), inflammation, and

immunity-involved pathways also play key roles in the transition

from inflammation to cancer initiation (Vander Heiden et al.,

2009; Vander Heiden, 2011; Flaveny et al., 2015). Similar results

were obtained by conducting functional analyses separately

with DNB-associated DEPs or DCEs (Supplementary Figure S9),

which showed that DEPs and DCEs played different roles during

the disease progression. Moreover, we hypothesize that the

sub-network involving PLA2G6 and CYP2C44 as two hubs plays

a key role during the critical period to drive the disease progres-

sion from inflammation to cancer, i.e. strongly collective fluctua-

tions of PLA2G6 and CYP2C44 affect their associated DEPs or

DCEs and sequentially destabilize their involved lipid metabolic

Figure 4 Functional phenotyping of DNB, DEPs, and DCEs in the DNB-associated network. Four clusters were classified by Mfuzz clustering

in R to represent the dynamic expression or coregulation patterns. The heatmap shows related KEGG pathways, which were clustered

according to the enrichments of corresponding proteins in different dynamic patterns.
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pathways at the inflammation state, which eventually makes the

system transit to the cancer state.

Validation of label-free profiles for the dynamics of the

DNB-associated network by tandem mass tag labeling

To validate previous results derived from label-free quantified

data, we re-quantified the proteomic data using an in vitro

chemically stable isotope labeling technique, tandem mass tag

(TMT) labeling (the overlapping part with label-free data is

shown in Supplementary Table S2). On one hand, dynamic pro-

tein profiles could be monitored on a large scale by TMT

reporter ion intensities. On the other hand, relative protein

quantification in multiple samples can be determined in a single

experiment through tagging peptides with TMT isobaric tags

(Thompson et al., 2003). To minimize the individual variation

and to achieve more stable protein profiles in TMT proteomic

tests, liver lysates were pooled for transgenic or control mice of

each time point during the progression from inflammation to

cancer. Then, we separated each mixture sample into fractions

using a widely applied fractionation strategy, which resulted in

4188 TMT-quantified proteome with a protein FDR 0.01. Each

TMT experiment has three technical repeats. As a result, the

average relative standard deviation (RSD) was 10.4% (WHV/c-

myc transgenic mice) or 9.4% (wt-C57BL/6 mice), reflecting

good reproducibility of the TMT experiments.

As shown in Figure 5A, most DNB, DEPs, and DCEs previously

found in label-free tests were confirmed by TMT tests, which

means that TMT proteomic dataset can be used to validate label-

free proteomic dataset as a whole. Correlation analysis revealed

that the density curve of PCC between label-free profile and TMT

profile in transgenic mice was much closer to 1.0 (Figure 5B).

Nevertheless, the label-free profile was considered being con-

firmed by TMT experiments when PCC between label-free profile

and TMT profile is >0.8, fold change between two optional time

points is >1.5, and P-value by Student’s t-test is <0.05. The DNB-

associated DCE links were considered being confirmed only if

PCC between label-free profile and TMT profile is >0.8 for both

DNB nodes and its neighbor nodes. According to these criteria,

we were able to reproduce the dynamic profiles of considerable

DNB-associated DEPs (Figure 5C) and DCE links (Supplementary

Figure S10) mentioned in Figure 3 and validate the involved bio-

logical pathways (Figure 5A), indicating a good reliability of the

DNB-associated network. The PCC between label-free profile and

TMT profile was equal to 0.98 and 0.96 for PLA2G6 and CYP2C44,

respectively (Figure 5C and Supplementary Table S5A). Moreover,

20 CYP2C44-involved, 2 PLA2G6-involved, and 1 DKC1-involved

DCE links (Supplementary Figure S10 and Table S5B) had high

PCC (>0.8) between label-free and TMT quantification strategies.

Downregulation of PLA2G6 in clinical high-grade dysplastic

nodules as an early-warning biomarker for liver cancer initiation

DNB is expected to be used for early diagnosis of imminent

cancer initiation. We focused on the two hubs inversing the

DNB-associated network, PLA2G6 and CYP2C44, to exploit their

potential in clinical application. To investigate the roles of these

Figure 5 Validation of DNB, DEPs, and DCEs by TMT proteomic

data. (A) Comparison between label-free and TMT profiles. For xcxx

and xxcx, c means ‘must be changed’ during 3−5 months or 5−7
months, and x means ‘not required to be changed’. (B) Density

curves of PCC between label-free profile and TMT profile in WHV/c-

myc transgenic mice (red), C57BL/6 control mice (blue), and both

mice (black). (C) A heatmap shows the reproduced dynamic profiles

with validated DNB, DEPs, and linked (second) nodes of DCE links

(PCC > 0.8) in WHV/c-myc transgenic mice. More information of 136

nodes is listed in Supplementary Table S5, and second nodes of the

DCEs in Supplementary Figure S10.
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two hubs in liver cancer initiation of WHV/c-myc transgenic mice,

we traced dynamic expression levels of CYP2C44 (Figure 6A) and

PLA2G6 (Figure 6B) in both individual mouse (label-free profile) and

pooled samples (TMT profile). Interestingly, CYP2C44 and PLA2G6

expression changes were not detected during 3−7 months includ-

ing the critical transition of carcinogenesis but only observed after

the critical transition (11 months). Since PLA2G6 is directly bound

to and regulated by the oncogenic transcription factor c-Myc (Zeller

et al., 2003), one of the driving factors to induce hepatocellular car-

cinogenesis in the WHV/c-myc transgenic mouse model, we then

examined dynamic protein expression level of c-Myc by western

blot analysis. The results demonstrated that the expression levels

of PLA2G6 and its driver c-Myc showed a positive correlation in the

trend from decreasing to increasing during carcinogenesis, with the

minimal point at the critical period (5 months) before the disease

state (Figure 6B and C). This implies that PLA2G6 may function as

an oncogene like c-Myc in hepatocarcinogenesis.

Furthermore, by using mouse PLA2G6 and CYP2C44 protein

sequences as the query sequences in the homologous sequence

analysis, we found the homologous PLA2G6 in humans. Then,

we checked the mRNA expression levels of PLA2G6 and c-Myc in

the gene expression profile from Gene Expression Omnibus

(GEO, GSE12443) on patients with low-grade dysplastic nodules

(LGDN), high-grade dysplastic nodules (HGDN), or early HCC

(Kaposi-Novak et al., 2009). We found similar changing trends

in expression levels of homologous PLA2G6 and c-Myc in

humans as observed in WHV/c-myc transgenic mice, with the

minimal point at HGDN, a critical inflammation stage just before

the cancer initiation (Figure 6D). Because HGDN is considered

as the critical period of hepatocellular carcinogenesis due to its

high risk of tumorigenesis within 5 years (Borzio et al., 2003;

Kobayashi et al., 2006), downregulation of PLA2G6 and c-Myc

can be considered as an early-warning signal for liver cancer ini-

tiation from chronic inflammation.

Discussion

In this study, by analyzing time-series proteomic data based

on DNB method, we identified that the critical period from

inflammation to cancer is the 5th month after birth of WHV/

c-myc transgenic mice, which was consistent with the disease

progression shown in Figure 1A and histological grade of

H&E-stained liver specimens. By integrating DNB members and

their first-order DEPs and DCEs into the DNB-associated network

based on whole molecular network of mouse, we found that

many DEPs and DCEs showed inversed expressions from high

(low) to low (high) or regulations from positive (negative) to

negative (positive) in transgenic mice before and after the crit-

ical period, especially in the sub-network made of two DNB

Figure 6 PLA2G6 downregulation at the tipping point or during the critical period of liver cancer initiation. Relative protein expression levels

of CYP2C44 (A), PLA2G6 (B), and c-Myc (C) in WHV/c-myc transgenic mice. Similar profiles were obtained from individual mouse (shadow-

bar) and pooled samples (gray-bar). (D) Relative gene expression levels of PLA2G6 and c-Myc of patients with LGDN, HGDN, or early HCC.
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members PLA2G6 and CYP2C44. Functional analysis for the DNB-

associated network implied that dysfunction of PLA2G6 and

CYP2C44-associated arachidonic acid (AA) metabolism disturbs

inflammatory responses through inflammatory mediator regula-

tion of TRP channels and xenobiotics metabolism involving typical

CYP family, leading to impairments of liver detoxification and

malignant transition to cancer. Furthermore, PLA2G6 was found

to be a direct target of c-Myc and may function as an oncogene

like c-Myc during hepatocarcinogenesis. The expression levels of

PLA2G6 and c-Myc showed a trend from decreasing to increasing

during carcinogenesis, with the minimal point at the critical trans-

ition period or tipping point in the mouse model or at HGDN (a

critical inflammation stage just before the cancer initiation) in

humans. These results suggest that downregulation of PLA2G6

and c-Myc can be considered as an early-warning signal for liver

cancer initiation from chronic inflammation.

A schematic diagram in Figure 7 demonstrates potential

molecular mechanisms underlying the sequential dysfunctions

of AA metabolism, inflammatory mediator regulation of TRP

channels, and xenobiotics metabolism, which are mainly

mediated by PLA2G6 and CYP2C44, with two other DNB mem-

bers, LTA4H and EPS8L2, and some key proteins belonging to

DEPs or DCEs. All proteins of the involved signaling cascades

were specifically colored based on the results from our real

label-free and TMT datasets. The DNB-associated DEPs or DCEs

in Figure 7A mainly take part in typical cancer-associated func-

tions or pathways, such as production and transportation of

active metabolites (e.g. pro-inflammatory eicosanoids)

(Woutersen et al., 1999; Panigrahy et al., 2010; Wang and

Dubois, 2010; Park et al., 2012), autocrine and paracrine man-

ners of the transformed cells (Wang and Dubois, 2010), precise

controls of TRP channels (Chen et al., 2014), phospholipid (PL)

remodeling (Park et al., 2012), liver xenobiotics (Nie et al.,

2012; Osterreicher and Trauner, 2012), and c-Myc-driven gene

expressions (Lin et al., 2012; Nie et al., 2012). Thus, we sup-

pose a circulation between AA metabolism and inflammation,

which worsens liver impairments and triggers carcinogenesis.

As shown in Figure 7B, AA that may have opposing functions

in different tumor microenvironments (Panigrahy et al., 2010)

occupies a central position in this schematic diagram. AA is a

bioactive lipid mediator and comes from PL remodeling mainly

mediated by phospholipase A2 (PLA2) (Park et al., 2012). PLA2

was reported to have both growth-inhibiting and growth-

promoting effects. The 85 kDa calcium-independent PLA2, i.e.

PLA2G6 (Group VIA PLA2, iPLA2ß), is one of the key DNB mem-

bers identified in our study, which is an enzyme encoded by the

Pla2g6 gene in humans. PLA2G6 belongs to a subclass of

enzyme that catalyzes the release of fatty acids from phospholi-

pids and is involved in stimulus-induced AA release (Akiba and

Sato, 2004). It has been reported that PLA2G6 may play import-

ant roles in PL remodeling, AA release, leukotriene (LT) and

prostaglandin (PG) synthesis, Fas receptor-mediated apoptosis,

and transmembrane ion flux in glucose-stimulated B-cells

(Kienesberger et al., 2009). PLA2G6, as one of c-Myc targets, is

significantly upregulated at 11 months after birth of transgenic

mice in both label-free and TMT datasets, while PLA2G6-

associated downstream pathways distinctly change during 3−7
months including the critical period (Figure 4 and Supplementary

Table S5B). For instance, PLA2G6-associated DEPs are scattered in

both Clusters 1 and 2 (up- or downregulated before the critical

period) and Cluster 3 (upregulated after the critical period)

(Supplementary Table S5A), while PLA2G6-involved DCEs are scat-

tered in all four types of clusters or patterns (Supplementary

Table S5B and Figures S9, S10). Specifically, PLA2G6-associated

DEPs mainly take part in four lipid metabolic pathways (AA, lino-

leic acid, glycerophospholipid, and ether lipid metabolism) and

three organismal systems pathways (Inflammatory mediator regu-

lation of TRP channels, Fc gamma R-mediated phagocytosis, and

vascular smooth muscle contraction) (Figure 4 and Supplementary

Figure S9). PLA2G6 also mediates the generation of lyso-platelet

activating factor (Lyso-PAF), lysophospholipids (LysoPL), and free

fatty acid (FFA) and the re-utilization of acyl-CoA for PL remodeling

(Akiba and Sato, 2004). Interestingly, FFA in PL remodeling can be

metabolized to other active lipids, including AA mediated by

ACOTs and BAAT (Supplementary Table S5A).

Bioactive eicosanoids can act as small molecule mediators to

impact on inflammation and cancer (Woutersen et al., 1999;

Panigrahy et al., 2010; Wang and Dubois, 2010). For instance,

the pro-inflammatory PGs and LTs can directly induce epithelial

tumor cell proliferation, survival, migration, and invasion in

autocrine and paracrine manners (Wang and Dubois, 2010);

hydroxyeicosatetraenoic acids (HETEs) play pro-inflammatory

roles in cancer biology (Moreno, 2009); and epoxyeicosatrienoic

acids (EETs) demonstrate anti-inflammatory activity (Zeldin,

2001). These eicosanoids can be produced downstream of AA

release via cyclooxygenase (COX), lipoxygenase (LOX), and cyto-

chrome P450 (CYP) pathways (Figure 7B; Wang and Dubois,

2010).

Cytochrome P450-derived AA metabolism has recently come

into sight, notably involving syntheses of 20-HETE and EETs

(Panigrahy et al., 2010). It has been subdivided into two

distinctive pathways, i.e. epoxygenases mainly for EETs, dihy-

droxyeicosatrienoic acids (DHETs), and dihydrodiols (Diols) and

ω-hydroxylases for HETEs (Greene et al., 2011). Another key

DNB member identified in our work, CYP2C44, is placed

upstream to regulate this pathway. Unexpectedly, many pro-

teins involved, especially those downstream of CYP2C44, belong

to the identified DEPs or DCEs, suggesting that the homeostasis

of EETs is damaged, which may affect inflammation and lead to

cancer initiation. Meanwhile, CYP2C44 has been identified as

one of endothelial epoxygenases that also take part in angio-

genesis (Pozzi et al., 2007) Its coding gene is considered a host

pro-angiogenic and pro-tumorigenic epoxygenase gene regu-

lated by anti-angiogenic and anti-tumorigenic effects of PPARα
ligand activation (Pozzi et al., 2010). These phenomena suggest

that keeping homeostasis of bioactive eicosanoids may be a

potential and effective anti-inflammatory strategy.

Another DNB member, LTA4H, participates in LOX pathway-

mediated AA metabolism to synthesize LTs. LTA4H is a pro-

inflammatory enzyme to generate LTB4 (Snelgrove et al., 2010),
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Figure 7 DNB-associated aberrant AA and xenobiotics metabolisms and abnormal inflammatory mediator regulation of TRP channels. (A) A

schematic diagram shows that dysfunction of PLA2G6 and CYP2C44-associated AA metabolism activates inflammatory responses through

inflammatory mediator regulation of TRP channels, which can lead to impairments of liver detoxification and further malignant transition to

cancer. The dynamic expression profile of 136 proteins in this diagram derived from the comparison between label-free and TMT profiles

was summarized in Supplementary Table S5. (B) A simplified diagram for A.
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one of important inflammatory mediators that can stimulate

growth of human pancreatic cancer cells via MAPK and PI-3

kinase pathways (Tong et al., 2005). Interestingly, LTA4H shows

significantly inversed patterns of both expression and regulation

during 3−7 months in transgenic mice (Figure 3C, D and

Supplementary Table S4). However, LTA4H is downregulated at

11 months in transgenic mice, which makes the role of LTA4H

puzzled. Recent studies elucidated the bifunctional roles of

LTA4H, i.e. proinflammatory via LTB4 generation and anti-

inflammation via Pro-Gly-Pro (PGP) degradation (Snelgrove

et al., 2010). Our results gave a clue to the anti-inflammatory

role of LTA4H, because prolyl endopeptidase (PREP), which spe-

cifically cleaves collagen within the lung to generate the neutro-

phil chemoattractant peptide PGP (Snelgrove et al., 2010), is

significantly upregulated in 11-month-old transgenic mice

(Figure 7A and Supplementary Table S5). Thus, uncovering the

bifunctions of LTA4H could contribute to novel strategies for

preventing the inflammation-to-cancer transition and cancer

therapy.

The xenobiotic detoxification system is critical to deal with

unexpected exogenous and endogenous metabolites in three

phases (Nie et al., 2012). In Phase I, CYPs can convert target

compounds into more soluble derivatives that are suitable for

excreting from the body by hydroxylation or oxidation reactions

(Guengerich, 2001; Nie et al., 2012). Phase II conjugation reac-

tions are catalyzed by a large group of transferases, which con-

jugate polar functional groups onto xenobiotics and endobiotics

to produce water-soluble, inactive metabolites suitable for bil-

iary and urinary excretion (Ayrton and Morgan, 2008). In Phase

III, hepatic transporter proteins play a crucial role in both influx

and efflux of xenobiotics and endogenous compounds into and

out of the cell (Corsini and Bortolini, 2013). Many proteins par-

ticipating in a certain phase of liver detoxification (Figure 7A)

were identified to have significantly differential changes in

either expression or regulation (Figure 4 and Supplementary

Table S3), indicating that dysfunction of liver detoxification may

impact on hepatic impairments to worsen the microenvironment

and promote carcinogenesis.

Recent studies have indicated that TRP channels are asso-

ciated with tumors and might represent potential targets for

cancer treatment (Chen et al., 2014). Mammalian TRP channels

show low sequence homology and a wide variety of modes of

activation, regulation, ion selectivity, broad tissue distribution,

and physiological functions (Levine and Alessandri-Haber,

2007). There are many kinds of G protein-coupled receptors

(GPCRs) upstream of this pathway, responding specifically to

the corresponding small metabolites (e.g. LTs, PTs, EETs, HETEs,

and DHETs). Therefore, we hypothesize that this pathway may

be downstream of the bioactive eicosanoids and trigger

inflammation-induced carcinogenesis.

Interestingly, another DNB, EPS8L2, takes part in regulating

the transcription factor effects of both c-Myc and PLA2G6 on

growth factor-stimulated EGFR signaling pathway, which plays

an important role in membrane ruffling and remodeling of the

actin cytoskeleton. Some c-Myc targets, like DKC1 and MAPK3,

are also involved (Figure 4). Activated PLA2 can induce the

release of AA metabolites and pro-inflammatory eicosanoids

(Figure 7), such as AA itself, HPETE, or 5,6-EET that, in turn, act

as agonists of certain TRP channels (Levine and Alessandri-

Haber, 2007). We notice that the catalytic activity of PLA2G6 is

regulated by protein kinase C, calmodulin, and others such as

reactive oxygen species (Akiba and Sato, 2004). Although the

activity of iPLA2 does not require Ca2+, it is reported to be regu-

lated by the amount of Ca2+ in intracellular Ca2+ stores or by

the calcium-dependent protein calmodulin, which was also

observed in our data. The CALM1-PYGB link was found to be

regulated from negative correlation to positive correlation dur-

ing the critical process in transgenic mice, and the positive cor-

relation lasted until 11 months.

Here, we showed that PLA2G6 and CYP2C44-associated DNB

network plays crucial roles in mediating the critical transition

from inflammation to HCC, signaling the imminent cancer initi-

ation as an early-warning biomarker during the chronic disease

progression. This work not only opens a new way to identify the

critical transition for HCC from dynamic and network perspec-

tives, but also helps us to understand the pathogeneses of

c-myc-induced hepatocarcinogenesis or human-suffered hepa-

titis virus-associated HCC, which may provide new insights into

intervention strategies to prevent from malignancy of chronic

hepatitis.

Materials and methods

Animal experiments and liver tissue sample preparation

Twenty-five male WHV/c-myc transgenic mice from C.A.

Renard (Institute Pasteur, France) and 25 male wt-C57BL/6 mice

from Shanghai Laboratory Animal Center were housed in a satel-

lite vivarium at constant temperature and humidity with stand-

ard 12-h light/dark cycles and allowed ad libitum water and

food under the specific pathogen-free condition. All animal

experiments were performed under strict governmental and

international guidelines. At each well-designed time point (2, 3,

5, 7, or 11 months after birth), 5 transgenic mice and 5 age-

matched controls were sacrificed (Supplementary Figure S1).The

liver tissue samples were collected for proteome analysis.

Details of sample preparation for proteome analysis are

described in the legend of Supplementary Figure S1.

Proteomic data by label-free LC–MS/MS

We applied the pCOG method with strong cation exchanger

and reversed phase separation to perform proteome analysis on

a LTQ MS (Thermo Finnigan), as described in Zhou et al. (2007).

The LC system was interfaced to a LTQ linear ion trap mass

spectrometer (Thermo Finnigan) with electrospray ionization

operated in positive mode. Precursors (m/z: 400–2000) were

subjected to data-dependent and collision-induced dissociation

with 35.0% normalized collision energy. We set the mass spec-

trometer as that one survey scan was followed by 10 MS/MS on

the top 10 most intense precursors from the MS spectrum, with

the following dynamic exclusion: repeat count 2, repeat dur-

ation 30 sec, exclusion duration 90 sec.
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Using SEQUEST (University of Washington, licensed to Thermo

Finnigan), all MS/MS spectra from each raw file obtained from

previous steps were searched against a concatenated target-

decoy database derived from the Mouse International Protein

Index protein sequence database (IPI mouse database, version

3.82) (Kersey et al., 2004). Searching parameters included the

precursor mass tolerance that was set to 3 Da, fully trypsin

digestion, 1 maximum mis-cleavage site, and a static modifica-

tion of cysteine (Carbamidomethylation, +57 Da). We used

Buildsummary (Tang et al., 2007), a home-made software, to

integrate the previously searched results. All peptides were

assigned corresponding ΔCn scores > 0.1 (regardless of charge

state), with peptide length >6 amino acids, filtered by peptide

FDR according to hits coming from reverse database (Elias and

Gygi, 2007).

Proteomic data by TMT quantification

In order to confirm the dynamic profiles of the DNB-

associated network from label-free quantified proteomic data,

liver lysates from three WHV/c-myc transgenic mice and three

C57BL/6 mice, respectively, at each time point were pooled and

re-measured by TMT proteomic experiments. Both forward label-

ing and reversed labeling were adopted to eliminate errors

among different channels. In other words, each mixture sample

was labeled by two different stable isotope tags in two TMT

tests, which showed good correlation. The peptides were

labeled by TMT kits following the standard protocol.

Then OFFGEL fractionation was performed on the Angilent

3100 OFFGEL fractionator along 3–10 NL pH range. Each TMT-

labeled mixture was fractionated into 6 fractions, and then each

fraction was desalted and analyzed for 3 times on nanoHPLC-

LTQ-Orbitrap-Velos (Thermo Electron Finnigan). TMT-labeled

mixtures were separated through a nano-emitter column (15-cm

length, 75-μM inner diameter) packed in-house with 3-μM C18

ReproSil particles (Dr. Maisch GmbH) and introduced into MS

via a nanoelectrospray ion source (source voltage, 2 kV). A lin-

ear gradient from 4% to 30% buffer B (buffer A, 0.1% formic

acid in ddH2O; buffer B, 0.1% formic acid in acetonitrile) over

150 min was used for peptide separation at a flow rate of 250

nl/min. Higher energy collisional dissociation (HCD) was per-

formed, with a resolution of 30000 at m/z 400 for full scan and

7500 for MS/MS scans. Top 10 ions were selected at an isola-

tion window of 2.0 m/z units and accumulated to an AGC target

value of 3e4 for MS/MS sequencing. Dynamic exclusion was

enabled for 90 sec to avoid choosing former target ions, and lock-

mass was enabled using 445.120025.

Raw MS data were processed using the MaxQuant software

(Cox and Mann, 2008) version 1.3.0.5 using the default settings

with minor changes: oxidation (Methionine) and acetylation

(Protein N-term) were selected as variable modifications and

carbamidomethyl (C) as fixed modification. TMT-labeled amino

acid filtering was selected. Database searching was performed

using the Andromeda search engine (Cox et al., 2011) against

UniProt mouse sequence database (released June 2012, 59375

protein entries), concatenated with known contaminants and

reversed sequences of all entries. A FDR < 0.01 for proteins and

peptides and a minimum peptide length of 6 amino acids were

required.

DNB analysis

Based on the nonlinear dynamical theory, a system is near

the critical state if there is a dominant group of molecules, i.e.

DNB, among all observed molecules satisfying three criteria

(Chen et al., 2012). The following quantification index (CI) con-

sidering all three criteria can be used as the numerical signal of

DNB method:

CI ¼
ffiffiffiffiffiffiffiffi

size
p PCCi

PCCo
SDi;

where size is the number of molecules in the dominant group

among all observed molecules, PCCi is the average PCC of the

dominant group in absolute value, PCCo is the average PCC

between the dominant group and others in absolute value, and

SDi is the average standard deviation of the dominant group.

When CI reaches the peak or increases drastically during the

measured periods, we consider this period as the critical period

of the biological system. The DNB does not distinguish disease

samples but pre-disease samples from normal samples by using

molecular fluctuation information (i.e. dynamical information) and

also network information (i.e. correlation information among mole-

cules). The detailed algorithm is shown in Supplementary Figure S4.

After obtaining the dominant group of molecules, we added the tran-

scription factors with direct interactions or regulations together as

DNB members.

Functional analysis

To uncover potential HCC-associated biological functions

affected by the identified proteins, we mapped these proteins

into known molecular sets with functional annotations. KEGG

(Kanehisa and Goto, 2000) was used for canonical pathway

detection. Enrichment significance of specific proteins in each

biological process or pathway was estimated by the hypergeo-

metric test. Significantly enriched functions were chosen by the

corresponding P-value < 0.05 after FDR correction.

Western blotting

Western blotting was performed to confirm the change of c-

Myc expression. Briefly, ~20 μg proteins from individual or

pooled samples were loaded. Antibody for c-Myc (Sigma) was

used according to the manufacturer’s instructions. Background

was subtracted from all signals determined with the Science Lab

software (Fuji). Relative protein expression levels were deter-

mined by the mean optical density minus background per area

units (Q–B/pixel2). The protein expression profile accorded well

with the gene expression profile as previously described

(Etiemble et al., 1994; Farazi and DePinho, 2006), which clearly

demonstrated an overall upregulation of c-Myc in WHV/c-myc

transgenic mice.
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Supplementary material

Supplementary material is available at Journal of Molecular

Cell Biology online.
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