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Abstract

Biologging tags are a key enabling tool for investigating cetacean behavior and locomotion

in their natural habitat. Identifying and then parameterizing gait from movement sensor data

is critical for these investigations, but how best to characterize gait from tag data remains an

open question. Further, the location and orientation of a tag on an animal in the field are vari-

able and can change multiple times during a deployment. As a result, the relative orientation

of the tag with respect to (wrt) the animal must be determined for analysis. Currently, custom

scripts that involve species-specific heuristics tend to be used in the literature. These meth-

ods require a level of knowledge and experience that can affect the reliability and repeatabil-

ity of the analysis. Swimming gait is composed of a sequence of body poses that have a

specific spatial pattern, and tag-based measurements of this pattern can be utilized to deter-

mine the relative orientation of the tag. This work presents an automated data processing

pipeline (and software) that takes advantage of these patterns to 1) Identify relative motion

between the tag and animal; 2) Estimate the relative orientation of the tag wrt the animal

using a data-driven approach; and 3) Calculate gait parameters that are stable and invariant

to animal pose. Validation results from bottlenose dolphin tag data show that the average

relative orientation error (tag wrt the body) after processing was within 11 degrees in roll,

pitch, and yaw directions. The average precision and recall for detecting instances of relative

motion in the dolphin data were 0.87 and 0.89, respectively. Tag data from humpback and

beluga whales were then used to demonstrate how the gait analysis can be used to enhance

tag-based investigations of movement and behavior. The MATLAB source code and data

presented in the paper are publicly available (https://github.com/ding-z/cetacean-pose-gait-

analysis.git), along with suggested best practices.
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Introduction

Biologging tags use sensors (e.g., accelerometers, magnetometers, gyroscopes, pressure, and

hydrophones) to record data about animal movement, behavior, and the environment. Biolog-

ging tags are particularly important for the study of cetaceans because direct observation of

these animals is often not possible. Tags are commonly used to study animal bioacoustics, bio-

mechanics, and behavior [1–11]. Kinematic data from these tag systems have also been used to

estimate animal locations to investigate the connection between environmental features and

animal behaviors [12–22]. The key to many of these studies is the accurate estimation of ani-

mal pose (roll, pitch, and yaw, Fig 1).

Pose is essential for studies that require an estimated spatial trajectory of the animal or

investigate locomotion and gait [5, 6, 9, 12–16, 23]. In the literature, pose is typically estimated

using accelerometer and magnetometer data [1, 9]. When gyroscope data is available, filtering

methods like [24] can be used to improve estimated animal pose using measurements of angu-

lar velocity to capture higher frequency motion. Swimming gait is essentially composed of a

repetitive sequence of poses, but how to efficiently parameterize the gait of the animal from a

pose sequence remains an open question. Studies in the literature commonly use pitch to iden-

tify and quantify gait via parameters like frequency and amplitude [5, 6, 9]. But these pitch-

based gait descriptors are sensitive to the roll angle of the animal since pitch only measures the

angle between the animal body’s caudal-rostral axis and the world’s horizontal plane. For

example, the pitch of an animal derived from accelerometer data captured little information

about the gait when the animal is fluking sideways (a 90-degree roll angle) because the body’s

caudal-rostral axis remaining in the horizontal plane results in near-zero pitch measurements

during locomotion. To better characterize gait, a measure wrt the animal’s body rather than

the earth’s horizontal plane is needed. The measured angular rate from a gyroscope can be

integrated to estimate the rotation angle wrt the animal itself. However, this estimation is sub-

ject to accumulated sensor error, and gyroscopes are unavailable in many tags. As such, it is

essential to develop approaches that can address this in accelerometer-based estimates of

orientation.

Fig 1. Biologging tags attached to a bottlenose dolphin (MTag, left) and a humpback whale (DTAG, right) along with the associated coordinate

systems. Tag and body fixed coordinate systems may not be aligned when initially placed on an animal in the field (right). Further, tag orientation may

shift during a deployment. Animal pose estimation requires knowledge about the relative orientation between the tag and animal. Note that a positive

pitching angle corresponds to a negative rotation around the body fixed y-axis.

https://doi.org/10.1371/journal.pone.0261800.g001
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Because many cetacean tags use a suction cup-based attachment method, the location and

orientation of the tag wrt the animal are variable [1, 25]. As a result, the relative orientation of

the tag wrt the animal must be determined before the animal pose is calculated [1, 9, 26]. Fur-

ther, even with best practices for deploying tags [25], the relative orientation between the tag

and the animal can change during a deployment (e.g., the tag slides on the animal). We refer

to this type of event as a tag shift. Identifying these shifts is essential for determining the rela-

tive orientation of the tag. Currently, relative orientation is determined manually or heuristi-

cally in a species-dependent manner using portions of data where the animal’s orientation can

be inferred. For example, when an animal breathes at the surface (surfacing), it is assumed that

the pose does not exhibit a significant roll. A surfacing event can be inferred from pressure

data, and the roll estimate can then be corrected accordingly [1, 9, 26]. Tag orientation shifts

can be identified by human inspection using sensor streams [1, 26], like accelerometer data, to

identify features, such as an impact on the tag by another animal or object in the form of a

surge in the signal. However, hydrodynamic forces may also affect the tag, resulting in a more

gradual shift in the orientation. For these types of shifts, features in the sensor data can be

harder to identify. Simulation and experimental studies have been used to estimate hydrody-

namic forces that are acting on tags or imparted to the animals [27–29], but it is difficult to

predict when the combined hydrodynamic and inertial forces resulting from animal motion

will result in a shift. Currently, an automated approach to identify these relative changes in ori-

entation is lacking.

To address these gaps, this paper presents an automated data processing pipeline (and soft-

ware) to: (1) Identify time instances associated with occurrences of a relative orientation

change between the tag and animal (i.e., tag shift); (2) Derive the relative orientation of the tag

wrt the animal using a data-driven approach; and (3) Extract frequency and amplitude estima-

tions of the gait that are stable and invariant to the animal’s pose by representing the animal’s

high-frequency motion in its own low-frequency reference frame. The authors used biologging

tag data from bottlenose dolphins, humpback whales, and beluga whales to validate and dem-

onstrate the proposed methods. Specifically, data from bottlenose dolphins in a managed envi-

ronment was augmented with simulated tag shifts to quantitatively evaluate the proposed

method. Data from free-ranging humpback and beluga whales were used to demonstrate the

method qualitatively. The proposed analysis approach will facilitate the use of biologging tags

to study cetacean locomotion and behavior. Further, the proposed method can be used directly

with cetacean data from any tag platform equipped with an accelerometer, magnetometer, and

pressure sensor. Discussion and suggestions related to data processing best practices are also

provided. The MATLAB source code and presented data are publicly available (https://github.

com/ding-z/cetacean-pose-gait-analysis.git).

Biologging tag platforms: MTag and DTAG

Methods presented in this paper are applicable to cetacean tag platforms equipped with an

accelerometer, magnetometer, and pressure sensor. In this work, we assume that the sensors

share (or can be converted to) a right-handed coordinate system. Biologging tag data collected

with MTags and DTAGs were used in this work (Fig 1). Specifically, MTag data from bottle-

nose dolphins and DTAG data from humpback and beluga whales are used to demonstrate the

proposed approach. Both tag systems use suction cups to secure tag electronics to the animal.

MTag sensors include a 9 DOF (Degrees of Freedom) IMU (Inertial Measurement Unit) with

an accelerometer, gyroscope, magnetometer, and additional sensors to record temperature,

pressure, and speed [30]. The tags recorded IMU data at 50 Hz and all other sensors at 10 Hz.

The DTAG platform [1] (Fig 1-Right) contains accelerometers, magnetometers, a pressure
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sensor, and hydrophones, but no gyroscope. DTAG accelerometer and magnetometer data

were collected at 250 Hz.

Initial processing and assumptions

The proposed work estimates animal pose using biologging data (from a 3-axis accelerometer,

3-axis magnetometer, and pressure/depth sensor) and features in the kinematic data created

during cetacean swimming. Tag accelerometers measure the acceleration due to both gravity

and animal motion. As the animal changes pose, the gravitational force measured by each

Fig 2. An orientation sphere for a bottlenose dolphin with a biologging tag aligned with the animal’s body. Each data point represents an

acceleration measurement at one time instance during swimming (i.e., one tag data sample) and is clustered into groups labeled ‘flat,’ ‘ascend,’ or

‘descend’ based on measured vertical speed from pressure data. As the animal changes pose, the location of the gravitational acceleration on the sphere

also changes. The swimming motion of an animal is composed of a sequence of poses that correspond to areas on the orientation sphere. The top 3

poses illustrate a shallow diving cycle with a neutral roll.

https://doi.org/10.1371/journal.pone.0261800.g002
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component axis of the accelerometer changes in the tag coordinate frame, while the magnitude

of the total signal stays constant. To obtain the gravitational component of the signal in the tag

coordinate frame (A(tag)), we use a moving average window of 0.5 seconds to low-pass filter

the accelerometer data. The magnitude and direction of gravitational acceleration in the world

frame are known and will be used with the tag measurements to help estimate orientation.

Next, A(tag) is used together with the vertical speed of the animal calculated from the pressure

measurements to cluster data and visualize animal pose during swimming gait. We refer to

these plots as orientation spheres (Fig 2). These plots capture body pose in contrast with the

o-sphere presented in [31] that was used to visualize animal head movement.

The proposed automated shift detection and orientation correction approach requires three

key assumptions about the pose of the animals during swimming gait. First, and most impor-

tant, is that the mode of the roll angle distribution is neutral (0 degree angle) for cetacean

swimming. Second, the animals maintain a positive pitch when ascending and a negative pitch

when descending. Third, the same movement pattern is assigned before and after a shift event.

For example, if the tag shifts while the animal is fluking during an ascent, we assume the same

movement pattern before and after the tag shift. These assumptions are based on subject mat-

ter expertise and direct observations from experiments. The validity of the assumptions, the

sensitivity of the method, and the identification of cases where these assumptions do not hold

will be discussed.

Nonparametric tag shift detection

Forces acting on the tag can result in changes to the relative orientation between the tag and

animal, creating multiple temporal segments with different relative orientations during the

same deployment, Fig 3. In our approach, tag shifts are detected by identifying time instances

when the patterns in the sensor data created by animal movement change significantly. Abnor-
mal segments in the dataset are located by comparing distributions from different data seg-

ments from the same deployment. Comparisons are performed on individual data points

without prior/expert knowledge of the data distribution. While discrete changes in the move-

ment patterns measured by the tag are most often the result of hydrodynamic forces or contact

with other animals, changes in swimming gait can also create detectable chances in the data

streams.

We will first describe our approach to a constrained subproblem: identification of a tag

shift within a given section of data S that contains at most one shift. For this subproblem, we

divide S equally into temporally adjacent segments S1 and S2, each with duration Ds = 10 min-

utes. We assume that a shift occurs in either S1 or S2, but not both. Without loss of generality,

we will assume the shift lies in S2. When a shift lies in S2, the data in S1 are used to form a com-

parison template for identifying the time instance t2 when the shift occurs. Once t2 is identi-

fied, S2 can be further divided into subsegments Sðt<t2Þ
2 (i.e., before the shift) and Sðt�t2Þ2 (i.e.,

after the shift). We know that Sðt<t2Þ
2 will share the same distribution as S1 and Sðt�t2Þ2 will diverge

from S1.

To specifically identify the time stamp of t2 in S2, we use the orientation sphere data in S1 as

a template. For each data point in S2 (e.g., any point in Fig 2), we find its K nearest Euclidean

spatial neighbors in S1 and compute the average distance between this point and its Euclidean

spatial neighbors. In this work, K = 30 was determined based on a qualitative assessment of the

distribution of points. If the resulting distance is within a defined threshold (e.g., 0.1 g based

on a qualitative assessment of the distribution of points), the data point in S2 is considered an

inlier of S1; otherwise, it is classified as an outlier. After all of the points in S2 are assigned with

a value of 1 (inlier) or 0 (outlier), a temporal moving average filter is applied to obtain a local
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inlier percentage (InPct) value. As illustrated in Fig 4, the time instance t2 is found by identify-

ing the first time InPct drops below a pre-defined threshold. If InPct never drops below this

threshold, or t2 is too close to the boundary between S1 and S2, then the shift could be con-

tained within S1 instead of S2. The same procedure can then be applied to identify a shift t1 in

S1.

Fig 3. Orientation spheres for a bottlenose dolphin during three sections of a deployment. In this example, the tag shifted twice, Tb and Tc,

respectively. The proposed approach will 1) detect shift instances Tb and Tc, and 2) generate the orientation transformation for each segment to align

the tag and body reference frames (i.e., [Ta-Tb], [Tb-Tc], and [Tc-Td]).

https://doi.org/10.1371/journal.pone.0261800.g003
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With the strategy defined above to find a shifting instance within two segments, S1 and S2,

an algorithm for finding all tag shifts is presented in Fig 5. Based on the procedure described

above, the algorithm starts with adjacent data segments S1 and S2. The segments share a fixed

empirically defined duration Ds that reflects the expected minimum tag shift interval (e.g., Ds

= 10 minutes). If neither segment contains a shift, then S1 remains unchanged, and the proce-

dure continues by checking the next data segment, relabeled as S2, and so on. Once a shift is

detected, both segments will be redefined such that S1 starts from the identified shift and S2

adjacently follows (branches 6 to 9 in Fig 5).

If S2 contains a shift instance t2 (branch 2), and t2 does not lie within 3 minutes of the S1!

S2 segment transition, then t2 is recorded as a shift. However, if t2 lies near the S1 (branch 4),

the algorithm will check segment S1 to determine whether the shift initiates in S1. Depending

on the search results, either t1 or t2 will be recorded as the shift (branches 6 & 7). If S2 is rede-

fined (i.e., S1 and S2 are not adjacent), the algorithm only searches for a shift in S2 (branches

8 & 11). These steps are repeated until the entire dataset has been searched (branch 12).

Pattern-based orientation correction

For a given segment of data that does not contain a tag shift but has an unknown tag-animal

configuration, the tag data from the accelerometer and magnetometer (and gyroscope, if

equipped) can be rotated to transform the data from tag coordinates to the animal’s body coor-

dinates. In this work, such a rotation is found by matching the measured general motion pat-

tern, i.e., orientation sphere, to an assumed one. Depth measurements are used to group the

gravity measurements in the tag frame, A(tag), into three clusters: AðtagÞflat , AðtagÞascend and AðtagÞdescend, in

accordance with the animal swimming horizontally, ascending, and descending, respectively.

We further define the dominant direction as the gravity measurement direction associated

with the most common (mode) pose of the animal for each of the three swimming conditions:

Fig 4. Conceptual illustration of determining tag shift time t2 in data segment S2 using data segment S1 as a template. Segment duration time is Ds
= 10 minutes. Data points in S2 are checked against the template distribution (S1) to decide whether they are an inlier (1) or an outlier (0) of the

template. Inlier percentage (InPct) is then calculated over time, and the tag shift time is determined by finding when InPct drops below an empirically

defined threshold. If t2 does not exist or it is too close to the boundary between S1 and S2, this process is repeated to determine if there is a shift in S1.

https://doi.org/10.1371/journal.pone.0261800.g004
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dðtagÞflat , dðtagÞascend, and dðtagÞdescend. With the assumptions about the general motion of these animals pro-

vided in Section: Initial Processing and Assumptions, the most common pose of a cetacean

under each of the three swimming conditions is assumed to be known. In particular, dðtagÞflat cor-

responds to the gravity measurement when the animal has zero pitch and zero roll, while dðtagÞascend

corresponds to positive pitch and zero roll, and dðtagÞdescend corresponds to negative pitch and zero

roll. Specifically, dðbodyÞflat is aligned with the body’s z-axis (z(body)), and dðbodyÞascend lies in the first quad-

rant of the plane formed by the x(body) and z(body) axes, while dðbodyÞdescend lies in the second quadrant

(Fig 6-Top Row). With these labels, dflat is used to identify the z(body) direction of the animal,

while dascend and ddescend are used to identify the forward direction (x(body)) of the animal; mag-

nitude and relative angle of these three vectors are not considered in the orientation correction

process. If dðtagÞflat , dðtagÞascend and dðtagÞdescend can be found in the tag coordinates (Fig 6-Bottom Row), the

rotations that map them to dðbodyÞflat , dðbodyÞascend and dðbodyÞdescend can be determined and applied to map

additional data from the tag to animal body coordinate frame (Fig 6-Top Row).

To determine the dominant directions within uncorrected data, two perpendicular planes

are fitted to A(tag) using the RANSAC algorithm [32] (Fig 6-Bottom Row), which is particularly

robust to outliers and imbalanced data as compared to least square-based approaches. The two

planes correspond to two physical motions: rolling with zero pitch for the rolling plane and

pitching with zero roll for the pitching plane.

Firstly, plane-1 (through the origin) is fitted to the most significant distribution in the data,

which could be either AðtagÞflat (e.g., Fig 6-Bottom Left, plane-1 is a rolling plane) or AðtagÞascend and

AðtagÞdescend (e.g., Fig 6-Bottom Right, plane-1 is a pitching plane), depending on the animal and

Fig 5. Tag shift detection algorithm. Each branch is marked by a circled number (1 to 12) to aid discussion in the text.

https://doi.org/10.1371/journal.pone.0261800.g005
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environment. Secondly, plane-2 (through the origin) is fitted to the rest of the data under the

constraint that it is perpendicular to plane-1. The toolbox can assign the roles of rolling plane

and pitching plane to the two planes automatically.

The intersection line of the two planes is colinear with dðtagÞflat while both dðtagÞascend and dðtagÞdescend lie

in the pitching plane. If we further define aðtagÞflat , aðtagÞascend, and aðtagÞdescend to be the average values of

AðtagÞflat , AðtagÞascend, and AðtagÞdescend, then projecting aðtagÞflat onto the intersection line produces dðtagÞflat , while

projecting aðtagÞascend and aðtagÞdescend onto the pitching plane returns dðtagÞascend and dðtagÞdescend (Fig 6-Bottom

Row), respectively.

Fig 6. Orientation spheres for a data segment of a bottlenose dolphin (left column) and a humpback whale (right column). The plots provide a

visualization of the orientation correction method applied to an uncorrected data segment to find the dominant directions in the tag’s coordinates

(bottom row). The prevailing directions can then be mapped to their assumed directions in the body coordinate frame (top row).

https://doi.org/10.1371/journal.pone.0261800.g006
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With dðtagÞflat , dðtagÞascend, and dðtagÞdescend identified in the tag coordinates, the data can be put into the

animal’s body coordinates (i.e., A(tag)! A(body)) with two rotations: first, a rotation (R1) to

align dðtagÞflat with the body’s z-axis (z(body)) and second, a rotation (R2) around the z-axis so das-
cend and ddescend are on the x-z plane with dascend on the positive x-axis side and ddescend on the

negative x-axis side (Fig 6-Top Row). Other data are mapped from tag coordinates to body

coordinates using R1 and R2:

AðbodyÞ ¼ AðtagÞR1R2; ð1Þ

MðbodyÞ ¼ MðtagÞR1R2; ð2Þ

with A(body) and M(body) being the transformed (animal’s body coordinates) data from the

accelerometer and magnetometer.

Animal pose calculation and gait characterization

Roll, pitch, and yaw are widely used to describe the pose of animals [1, 9]. In this work we are

computing them in a conventional [1] way using the transformed (animal’s body coordinates)

data from accelerometer A(body) and magnetometer M(body). Define Rx(α) to be the rotation

matrix for rotating the data about the x-axis with angle α. And similarly Ry(β) about the y-axis

with angle β and Rz(γ) about the z-axis with angle γ. For time instance t, the 3-axes body coor-

dinate accelerometer and magnetometer data are represented as AðbodyÞt ¼ ½AðbÞxt ;A
ðbÞ
yt ;A

ðbÞ
zt � and

MðbodyÞ
t ¼ ½MðbÞ

xt ;M
ðbÞ
yt ;M

ðbÞ
zt �. Roll, pitch, and yaw are calculated as:

rollt ¼ arctanðAðbÞzt =A
ðbÞ
yt Þ; ð3Þ

pitcht ¼ arcsinðAðbÞxt =normð½A
ðbÞ
xt ;A

ðbÞ
yt ;A

ðbÞ
zt �Þ; ð4Þ

½Mð2Þ
xt ;M

ð2Þ
yt ;M

ð2Þ
zt � ¼ ½M

ðbÞ
xt ;M

ðbÞ
yt ;M

ðbÞ
zt �RxðrolltÞRyð� pitchtÞ; ð5Þ

yawt ¼ � arctanðM
ð2Þ
yt =M

ð2Þ
xt Þ; ð6Þ

where we note that the body coordinate axes, x(body), y(body), and z(body), are defined to be point-

ing forward, leftward, and upward wrt the animal’s body, respectively (Fig 1).

Let a set of moving coordinates {x(move), y(move), z(move)} be initially aligned with the earth’s

inertial coordinates {x(inertial), y(inertial), z(inertial)}. For the inertial coordinates, we define x(inertial)

pointing to magnetic north, z(inertial) pointing vertically upwards, and y(inertial) following the

right hand rule to point to magnetic west. Yaw, pitch, and roll rotate the moving coordinates

from the inertial coordinates to the animal’s body coordinates in 3 steps:

1. Yaw corresponds to a positive rotation around the moving coordinates initial z(move) axis

where x(move) is aligned with the projection of the animal’s x(body) axis on the earth’s hori-

zontal plane.

2. Pitch measures the angle between the body coordinates x(body) axis and the horizontal earth

plane, rotates around the moving coordinate y(move) axis, and ensures that x(move) is aligned

with the animal’s x(body) axis. Note that a positive pitch (i.e., animal head up) corresponds to

a negative rotation around y(move), with y(body) defined pointing to the left of the animal.
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3. Roll represents a positive rotation around the moving coordinate x(move) axis (which is now

aligned with the animal’s x(body) axis). This brings the moving coordinate y(move) axis from a

horizontal to the animal’s y(body) axis. After this step, x(move), y(move), and z(move) should be

aligned with x(body), y(body), and z(body), respectively.

An estimated pitch is commonly used to describe the fluking gait of the animal [5, 6, 9].

However, because pitch only measures the angle between the animal’s x(body) axis and the hori-

zontal earth plane, it does not capture gait characteristics well when the animal is rolling. This

is particularly egregious when the animal is fluking with a roll angle of ±90˚, where the fluking

motion does not show up in the pitch measurement. Similarly, the characterization of fluking

using a high-frequency component present in acceleration measurements can be affected by

the orientation of the animal [33]. The amplitude of the oscillations measured by the acceler-

ometer decreases during periods of fluking when the animal is rolled on its side. The pitching

angle wrt the animal’s y(body) axis can be estimated by integrating angular velocity measure-

ments from gyroscopes. While these angular estimates are subject to sensor drift, the gait

parameters calculated using this approach are not affected by the orientation of the animal.

Despite this potential advantage, accelerometer-based approaches are more common because

most tag platforms do not include gyroscopes. In this work, our approach calculates frequency

and amplitude estimates of gait that are stable and invariant to animal pose. This is achieved

by representing the animal’s high-frequency motion in its own low-frequency reference frame,

with details presented below.

In the original axes, {x(body), y(body), z(body)} move wrt the earth’s inertial coordinate frame

following the animal’s motion (e.g., high frequency fluking and low frequency transitions

from ascending to descending). We now define a new set of coordinates f�xðbodyÞ; �yðbodyÞ; �z ðbodyÞg
that follow the low frequency motion of the animal, which represents the neutral pose of the

animal during high frequency periodic motion. Then, f�xðbodyÞ; �yðbodyÞ; �z ðbodyÞg can be used to

characterize the animal’s high frequency motion wrt the animal itself, rather than the earth’s

inertial coordinates.

Specifically, representing x(body) in f�xðbodyÞ; �yðbodyÞ; �z ðbodyÞg returns the dynamic heading of the

animal wrt its own neutral body pose. For example, an animal’s head tilting up and down wrt

its neutral body pose would result in the vector x(body) swinging in the �xðbodyÞ-�z ðbodyÞ plane. We

now refer to the vector x(body), represented in f�xðbodyÞ; �yðbodyÞ; �z ðbodyÞg, as the vector of dynamic

pose (Vdp):

VdpðtÞ ¼ ½1; 0; 0�Ryð� pitchtÞRzðyawtÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

3D heading

R� 1

z ðyawtÞR
� 1

y ð� pitchtÞR
� 1

x ðroll
�

tÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

low frequency body map

;
ð7Þ

where [1, 0, 0] is an unit vector pointing forward while rollt, pitcht and yawt are the low-pass

filtered roll, pitch and yaw values at time t. We note that a positive animal pitch is a negative

rotation around the y-axis under the current axes definition. In (7), the first section determines

the animal’s current 3D heading (x(body)) in the inertial coordinates and the second section

maps x(body) from the inertial coordinates to the low-frequency body coordinates

f�xðbodyÞ; �yðbodyÞ; �z ðbodyÞg.
The resulting Vdp gives the dynamic 3D heading of the animal wrt the animal’s low-fre-

quency body pose. With this transition, the fluking motion of cetaceans will be observed in the

�xðbodyÞ-�z ðbodyÞ plane (i.e., pitching plane). We further define dynamic pitch (pitchdp) and
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dynamic yaw (yawdp) to be the angles between Vdp and the x-y and x-z planes, respectively:

pitchdpðtÞ ¼ arcsinðVdpzðtÞ=normðVdpðtÞÞÞ; ð8Þ

yawdpðtÞ ¼ arcsinðVdpyðtÞ=normðVdpðtÞÞÞ; ð9Þ

with Vdp(t) = [Vdpx(t), Vdpy(t), Vdpz(t)] at time t. Dynamic pitch and dynamic yaw approximate

the animal’s dynamic angle changes around its �yðbodyÞ and �z ðbodyÞ axes, respectively. In this work,

pitchdp is of particular importance as it provides a measure of gait for a cetacean.

An animal’s per-stroke fluking period and amplitude are calculated by automatically locat-

ing and processing the positive and negative peaks in pitchdp (findpeaks function in Matlab

and parse_gait function in the proposed toolbox with default settings included), which

enables a wide variety of further analyses (e.g., investigating the animal’s fluking frequency

and amplitude during fast diving in contrast to slow diving). Meanwhile, data segments that

do not contain any peaks are marked as passive gait behaviors (e.g., gliding).

Validation

Validation objectives in this work included: (1) With what precision can the proposed method

identify tag shifts? (2) Can the proposed method identify a data correction map to compensate

for misalignments between the tag and animal? (3) How accurate is the calculated animal pose

compared to the ground truth? (4) Is the proposed method sensitive enough to detect a small

shift in the tag? (5) What is the impact of the defined segment duration Ds on the shift detec-

tion performance? (6) Can the proposed technique be applied to different cetaceans?

Biologging tag (MTag) data collected from bottlenose dolphins (Tursiops truncatus) under

human care in Dolphin Quest Oahu, Hawaii, were used to validate the proposed approach.

The biologging tag was aligned with the animal and attached 20 cm behind the blowhole non-

invasively via four silicone suction cups (Fig 1-Left). A total of 18 datasets, with an average

duration of 87 (±23) minutes, were included for the validation. These datasets were selected

for analysis because the orientation of the tags remained constant during the�26 hours of

data collection.

As a correctly aligned tag measurement differs from a misaligned tag primarily by a rotation

to the data (i.e., a change of coordinates), we injected artificial rotations to the initially aligned

data to simulate the effects of tag shifts. For validation purposes, randomly designed rotations

were applied to randomly defined data segments to simulate the effects of a tag shift. Approxi-

mately 100 random simulations were conducted for each of the 18 datasets. The dataset was

randomly broken into k+ 1 segments for each simulation run, with the random integer k rang-

ing between 1 and 6, representing the number of injected tag shifts. A random rotation, with

both random direction and magnitude (in degrees), was then applied to each data segment.

The method used an empirically specified segment duration setting Ds = 10 minutes for shift

detection. As a point of comparison and verification, shift detection was also performed over

the original datasets to investigate the detector’s performance when no shifts existed in the

datasets.

For tag shift detection (Objective 1), we define the precision error of the detection as the

absolute time difference between the detected shift instance and the nearest injected shift

instance. Further, the detection is identified as a positive detection if the precision error is

within 300 seconds (5 minutes). Otherwise, the detection is considered as a negative
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detection. Precision and recall values are calculated as:

precision ¼
positive detections

all detections
; ð10Þ

recall ¼
positive detections
injected shifts

: ð11Þ

To evaluate whether the rotations have been corrected using a correction map (Objective

2), poses (roll, pitch, and yaw) calculated from corrected simulated data segments (condition

A) were compared with poses calculated from the original data segments (no injected rotation

shifts—condition B).

As a further means of evaluating the corrections, we also investigated the performance of

the baseline pose calculation method described in this manuscript (Objective 3), poses calcu-

lated using accelerometer and magnetometer data—condition B, compared to poses calculated

using a gradient descent based filtering approach [24] (referred to as Madgwick’s approach),

which used accelerometer, magnetometer, and gyroscope data (condition C). Results from the

more established Madgwick’s approach are considered to provide a ground truth comparison.

To assess the sensitivity of the proposed shift detection method (Objective 4), we per-

formed repeated computational experiments by injecting simulated tag shifts, with the simu-

lated tag rotations exhibiting random directions with fixed degrees for each run. Specifically,

50 runs were applied to each dataset for a given fixed degree. For each run, k+ 1 rotations were

injected into the dataset, with each rotation given a random direction. Average precision and

recall in detecting the shifting instances were calculated for each fixed degree over all datasets

and runs. Additionally, the absolute angle differences between poses calculated from corrected

simulated data segments (condition A) and poses calculated from the original data segments

(condition B) were calculated for each fixed angle.

All computation experiments were repeated to assess the impact of segment duration Ds on

the shift detection performance (Objective 5). Different Ds choices were evaluated against a

varying number of injected tag shifts (i.e., k) to explore the relationship between user-specified

segment duration Ds and the expected tag shift interval (determined by k). For each {Ds, k}

combination, 50 random runs were conducted on the datasets to calculate the average preci-

sion and recall of shift detection.

In addition to the bottlenose dolphin datasets, DTAG [1] data from a humpback whale

(22.03 hours) and a beluga whale (2.25 hours) collected in the wild were included to evaluate

the effectiveness of the shift detection and correction methods applied to different cetaceans

and demonstrate gait analysis capability across datasets (Objective 6). Evaluation of the meth-

od’s performance on the datasets from free-ranging animals, where ground truth was unavail-

able, was examined qualitatively by inspecting the depth, roll, pitch, and orientation sphere

plots after data correction.

The study protocols were approved by the University of Michigan Animal Welfare Com-

mittee (IACUC, #PRO00008825), the US National Marine Fisheries Service (NMFS, #18059),

and the Canadian Council on Animal Care (#17-4, 18-3, 18-3B).

Results

Across all 100 runs over the 18 datasets (Objective 1), the average precision for shift instance

detection was 0.87, the average recall was 0.89, and the average precision error was 37.5

(±18.4) seconds. A total of three false positives (i.e., detections that did not correspond to a tag

shift) were generated by the shift detection algorithm, corresponding to a false detection rate
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of one occurrence per 8.7 hours. Poses (roll, pitch, and yaw) calculated from corrected data

segments (condition A) were compared with poses calculated from the original data segments

(condition B, Objective 2), with results shown in Table 1-Left. The average pose angle errors

and standard deviations were within 11 degrees for all poses. Meanwhile, poses calculated in

condition B were further compared with poses calculated using Madgwick’s approach [24]

(condition C, Objective 3, Table 1-Right). The average errors were within 3 degrees, and the

standard deviations were within 6 degrees.

To assess the sensitivity of the proposed shift method (Objective 4), the computation exper-

iments were repeated with virtually injected tag rotations that had random directions and

fixed degrees. The average precision and recall for the detection of these injected tag shift

instances are shown in Fig 7-Left. With a 10 degrees rotation offset, less than 30% of the

injected shifts were detected, while with a 20 degrees offset,�54% of the shifts were detected

with a detection precision of�79%. When the offset reached 30�40 deg, the method’s perfor-

mance became more reliable, with a recall of 70%�80% and precision of�85%. Offsets of 50

degrees and above resulted in the performance converging to�90% precision and recall,

respectively. Fig 7-Right presents the average absolute errors of the calculated poses after rota-

tion correction for each of the data segments transformed by a rotation. The errors demon-

strate similar values across all rotation offsets, with the average error for the roll of�6.5

degrees, the pitch of�8.0 degrees, and yaw of�5.7 degrees. The average standard deviation

was�5.8 degrees.

Fig 8 demonstrates the average precision and recall of tag shift detections using different

segment duration settings Ds in response to a varying number of injected shifts k (or equiva-

lently, the average shift interval, Objective 5). The average precision across all Ds choices was

between 0.83 and 0.97, except when Ds = 5 minutes, where the average precision increased

from 0.47 to 0.72 as the number of injected shifts increased. The average recall of the different

Ds values demonstrated a decreasing trend as the number of injected shifts increased, where

the drop was more significant with larger Ds choices. However, the average recall values

remained above�0.8 when the specified Ds was smaller than the average shift interval.

The shift method’s performance on free-ranging animal data was examined qualitatively by

examining the data after a shift correction was applied (Objective 6). As an example, consider

a few signal features from the corrected humpback whale data that can be identified in Fig 9-

Left Column. First, corrected animal data showed a positive pitch during ascending and a neg-

ative pitch during descending. Second, corrected animal data showed a neutral roll angle (zero

degrees) when the animal was at the surface. Third, the corrected pitch angle was zero-cen-

tered when at the surface. These are signal features commonly used in the literature [1] to

inspect humpback whale data correctness. The orientation spheres (Fig 9-Bottom Two Rows),

which visualize the animal’s orientation distribution (introduced with more detail in Fig 2),

were examined visually for correctness. Plots from uncorrected data (Fig 9-Right Column) are

Table 1. Pose angle differences across different conditions. Condition A represents the pose calculated from simulated data after the simulated tag shifts have been cor-

rected using the proposed method. Condition B presents the pose calculated from the original data (without tag shift). Condition C represents pose calculated from the

original data (without tag shift) using Madgwick’s filter [24], which involves the additional use of a gyroscope. Direct difference (e.g., A − B) is used to detect a bias in the

difference, while the absolute difference (e.g., |A − B|) returns the magnitude of the difference. Pose angle differences are in degree. Each cell gives a mean ± standard

deviation.

Pose A vs. B B vs. C

A − B |A − B| B − C |B − C|

Roll 2.4 ± 10.5 6.6 ± 9.2 0.2 ± 3.0 1.3 ± 2.7

Pitch 6.8 ± 4.9 8.1 ± 3.1 -0.4 ± 2.3 1.3 ± 1.9

Yaw 0.8 ± 7.6 5.8 ± 5.8 -0.3 ± 5.7 2.1 ± 5.3

https://doi.org/10.1371/journal.pone.0261800.t001
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shown for comparison. Similarly, Fig 10 presents the corrected and uncorrected example data

from the beluga whale.

Fig 11 presents the orientation spheres for an example bottlenose dolphin dataset (left col-

umn), a humpback whale dataset (center column), and a beluga whale dataset (right column,

Objective 6). The top row shows the orientation spheres after applying the shift corrections.

The bottom row provides the raw data before tag shift detection and orientation corrections.

The raw dataset of the bottlenose dolphin (bottom left) contains four simulated tag shifts,

while six tag shifts were detected from the humpback whale dataset (bottom center). The raw

tag data from the beluga whale (bottom right) indicates that the tag was not aligned with the

animal but contains no detected tag shift (i.e., no relative motion between tag and animal was

detected).

Fig 12 presents example sections of data from one of the bottlenose dolphin (left) and the

beluga whale (right) datasets, where the pose of the animal was calculated from the corrected

body coordinates’ data, and the gait of the animal was characterized using the pitchdp
(dynamic pitch) of the animal. The mean fluking period of the bottlenose dolphin was 1.0 s

with an average amplitude of 14.1 degrees. The mean fluking period of the beluga whale was

1.6 s, with an average amplitude of 16.8 degrees. For the humpback whale dataset, the mean

fluking period was 6.7 s with an amplitude of 12.2 degrees.

Discussion

The automatic shift detection algorithm is the first of its kind and is an important step in the

development of algorithms that will streamline the analysis of biologging data. Simulated data-

sets were derived from bottlenose dolphins tag data to provide an extensive validation dataset

that covered a wide variety of tag shifts. An additional benefit of the simulated datasets is that

Fig 7. Average precision and recall of tag shift detection (left) and the average absolute error of the calculated animal pose after tag orientation

correction (right) over simulated tag shifts with random direction and fixed degrees (x-axis). SD denotes the average of the standard deviation

values for roll, pitch, and yaw at each offset increment.

https://doi.org/10.1371/journal.pone.0261800.g007
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ground truth measurements were immediately available for analysis. This method demon-

strated a detection precision of 0.87 and a recall of 0.89 with an average precision error of 37.5

seconds with the simulated data. When the algorithms were applied to the original data that

contained no tag shift, a false detection only occurred every 8.7 hours on average. One reason

for the missed detections in the simulated data was the close temporal proximity of the simu-

lated tag shifts.

While the method may not detect multiple shifts within a segment, in practice tags tend to

shift occasionally during a deployment. During parameter selection, duration Ds was chosen to

reduce false positives yet maintain recall. We heuristically determined the duration of a signal

segment (Ds) to be 10 minutes for bottlenose dolphins and 15 minutes for beluga whales and

humpback whales. As demonstrated in Fig 8, if the duration of a data segment is too short,

there is not enough data to form a meaningful orientation sphere for shift detection. While if

the duration of a data segment is too long, the method may not detect temporally close shifts.

In practice, a larger value (e.g., 30 minutes) may be selected and incrementally reduced if two

or more shifts are detected within two segments.

Missed detections also occurred when the tag shift was too small to be detected. Sensitivity

to the magnitude of the shift is presented in Fig 7 and indicates that the method may not per-

form well for changes in orientation of fewer than 40 degrees. One way to improve perfor-

mance would be to use a lower detection threshold for inlier percentages, but this would

introduce more false positives. However, these false positives may be preferred to missed

detections for this application. The recall could also be improved by taking events associated

with high acceleration impact on the tag, such as an impact from a conspecific animal in the

group, into account [1].

Fig 8. Average precision (left) and recall (right) of tag shift detection performance during simulation plotted against a varying number of

injected shifts (or equivalently, the average shift interval). Shift detection performance at specific segment durations (Ds) is demonstrated by the

individual curves in the plot.

https://doi.org/10.1371/journal.pone.0261800.g008
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Fig 9. Representative data from a humpback whale, with the tag’s orientation corrected (left column) and uncorrected (right column).

The first row shows the depth measurement from the pressure sensor; the second row presents the roll and pitch estimation made by the

corrected (left) and uncorrected (right) tag data; the third and fourth rows illustrate the associated orientation spheres in a 3D view

(third row) and a top-down view (fourth row).

https://doi.org/10.1371/journal.pone.0261800.g009
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Fig 10. Representative data from a beluga whale, with the tag’s orientation corrected (left column) and uncorrected (right column). The

first row shows the depth measurement from the pressure sensor; the second row presents the roll and pitch estimation made by the

corrected (left) and uncorrected (right) tag data; the third and fourth rows illustrate the associated orientation spheres in a 3D view

(third row) and a top-down view (fourth row).

https://doi.org/10.1371/journal.pone.0261800.g010
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False positives were generated when the animals switched from one gait to another (very

different) gait. For example, the detector could be falsely triggered when the animal changed

from a gait without any roll to a swimming gait with rolling. Significant gait changes effectively

violate our third assumption: continuity of gait patterns between segments. This situation

occurred once per 8.7 hours in the validation datasets and did not pose a major problem for

the overall correction method. Individually correcting two segments separated by a false posi-

tive is less optimal than correcting them jointly as one segment, given that the amount of data

for each correction decision is reduced. But this would not necessarily reduce the final data

correction performance since the two data segments would still be processed and corrected.

To decouple the evaluation of tag shift detection and tag orientation correction, the tag ori-

entation correction method was applied to each data segment to determine the rotational

transformation. Animal pose (roll, pitch, and yaw) was calculated after orientation correction

and then compared with the poses computed using the original (un-rotated) data. The average

of the differences between the two were within 11 degrees in all cases (Table 1A vs. 1B and Fig

7-Right). This result indicates that the tag orientation correction method is robust to tag loca-

tion as long as the data segment does not contain a tag shift. One thing to note is that the error

associated with pitch are higher than roll and yaw by a few degrees (Table 1A vs. 1B and Fig 7-

Fig 11. Orientation spheres for a bottlenose dolphin (left column), a humpback whale (center column), and a beluga whale (right column). The plot of

accelerometer data clustered by depth speed is referred to as an orientation sphere. After detecting tag shifts and correcting tag orientation

misalignment, the top row of subplots presents the orientation spheres in the animal’s body coordinates. The bottom row shows the data in the tag

coordinates before any correction. The dolphin dataset (left column) contains four simulated tag shifts. The humpback whale dataset (center column)

has five detected tag shifts. The beluga dataset (right column) is not aligned with the animal but contains no detected tag shifts (i.e., no relative motion

between tag and animal was detected).

https://doi.org/10.1371/journal.pone.0261800.g011
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Right). This difference is likely due to an initial bias in the data. The pose calculated from the

original ‘aligned’ data resulted in pitching angles centered around negative 6�7 degrees

instead of 0 degrees. Tags were ‘aligned’ with the animal’s body when placed between the dor-

sal fin and blowhole (Fig 1-Left). But tapering of the animal’s body may have resulted in a

small initial negative pitch of the tag, creating a negative bias in the ‘ground truth’ data. As

such, the pitching angle estimated by the tag orientation correction could be a better estimate

than what was originally calculated from the ‘aligned’ tag data.

Fig 12. Example sections of data from a bottlenose dolphin (left) and a beluga whale (right) with the animal’s gait parameterized via dynamic pitch

(pitchdp). When the animal has a big roll angle (e.g., during the time around 240 seconds in the bottlenose dolphin dataset), the fluking ‘signature’ (i.e.,

the sinusoidal fluctuations in each signal channel) transfers from pitch to yaw in the pose estimations. Pitchdp is used to have a pose invariant descriptor

of the gait of the animal, that is, with respect to the animal rather than the environment. Inactive swimming periods (e.g., gliding) are automatically

identified in pitchdp while fluking frequency and amplitude are calculated from pitchdp, which can be used for further gait analysis.

https://doi.org/10.1371/journal.pone.0261800.g012
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The animal poses calculated using the proposed method (accelerometer and magnetometer

only) in this work were compared with an established filtering approach using the full set of

IMU measurements (accelerometer, magnetometer, and gyroscope [24], Table 1B vs. 1C). The

resulting average differences between these two methods were within 3 degrees. The error in

the pose calculated using the proposed estimation method is likely due to errors in the estimate

of gravitational acceleration. In this work, low-pass filtered 3-axis accelerometer data were

used to estimate the gravitational acceleration (A(tag)) for the pose calculation. However, this is

an inaccurate estimation in practice since the accelerometers measure both gravity and the ani-

mal’s specific acceleration (i.e., the animal’s physical acceleration). This motion affects acceler-

ometer measurements in 3 ways:

(a1) Measurements associated with an animal’s specific acceleration. Since normally, the ani-

mal would not maintain a constant acceleration for more than a few seconds, all specific

accelerations are considered high frequency.

(a2) Measurements associated with gravity, driven by high frequency body orientation

changes.

(a3) Measurements associated with gravity, driven by low frequency body orientation changes.

Because measurements associated with gravity (a2 & a3) are needed for estimating animal

pose, a1 needs to be decoupled from a2 and a3. An accurate decoupling is not possible using

an accelerometer alone. But because these specific accelerations created by animal motion are

generally much smaller than gravity, a low-pass filter can be applied to attenuate a1 and a2 to

approximately filter out specific acceleration measurement (a1) from gravity (a2 & a3).

To better decouple measurements of specific acceleration (a1) from gravity (a2 & a3),

López et al. [34, 35] presented an approach that uses magnetometer data to directly estimate

the high-frequency ‘pitching’ motion of the animal. This approach uses magnetometer data to

assist in finding a2, with a3 obtained via low-pass filtering. Then, a1 is calculated by subtract-

ing a2 and a3 from the accelerometer measurement. The method works well in decoupling

specific acceleration and orientation for most cases. However, because the method assumes

high-frequency changes in body orientation occur only in the pitching plane, the calculations

can be unstable when the animal turns or rolls. We recommend using the method presented

by López et al. for animals with low turning or rolling rates and have included the correspond-

ing code in the toolbox proposed in this work. For tags with gyroscopes, accelerometers, and

magnetometers, we recommend using a gradient descent-based filtering approach by Madg-

wick et al. [24] to estimate the tag’s orientation wrt the world. The method uses the gyroscope

to directly estimate a2, thus reducing uncertainty in the final orientation estimate. A wrapper

for the Madgwick’s approach is also included in the proposed toolbox. The gait characteriza-

tion method presented in this work complements the above approaches and provides both fre-

quency and amplitude estimations that are stable and invariant to the pose of the animal.

While the proposed approach corrects the relative orientation of the tag with respect to the

animal, the actual location of the tag (e.g., back vs. peduncle) could still affect tag measure-

ments and estimates of gait parameters like fluking amplitude. For example, a tag located

closer to the fluke will have a higher estimated fluking amplitude than a tag located near the

dorsal fin for the same gait. So, estimates of fluking amplitude may be a good parameter to

characterize the behavior of an individual animal (e.g., comparing fluking amplitude between

descent and ascent) but not for global comparisons (e.g., comparing one animal to another,

with different tag locations). In contrast, fluking frequency and period are not affected by the

tag’s location.
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The orientation spheres (e.g., Figs 2 and 11) can also serve as a visualization tool for animal

behavior studies. For example, a clear sign of lateralized behavior [36] appears in the orienta-

tion sphere of the humpback whale (Fig 9-Left Column and Fig 11-Center Column), with an

unbalanced right ‘wing’ corresponding to a left roll (i.e., negative roll) during foraging at the

ocean bottom. While the humpback whale did not roll much during ascent/descent in this

example, the bottlenose dolphin (Fig 11-Left Column) and beluga whale (Fig 10-Left Column

and Fig 11-Right Column) rolled more frequently during similar portions of a dive. Even

though the beluga rolled frequently, it hardly ever rolled completely upside down, which can

be observed from the empty bottom of the orientation sphere. Unlike the beluga, the dolphin

data shown in Fig 11 indicates that the animal rolled all the way around during the studied

period. In this regard, the presented orientation sphere, to a degree, resembles the m-sphere
generated using magnetometer data in the work by Williams et al. [37] as well as the o-sphere
for visualizing an animal’s head orientation in the work by Wilson et al. [31].

It is important to note that the method leverages patterns in swimming movement data,

and does not directly apply to situations when the animal is still (e.g., resting) for long periods

of time. Additional software modules should be implemented to handle such special situations.

Resting could be automatically detected using the accelerometer measurements, and tag orien-

tation correction that was identified before the resting could be applied to the resting periods.

Another aspect for future investigation is the detection and management of discrete consecu-

tive shifts that can not be treated as one time instance, and deployments where the tag is con-

stantly shifting. Nevertheless, if a sequence of consecutive shifts happened within a minute or

two in a multiple-hour-long dataset, the sequence of shifts could be treated as one shift, per the

resolution requirement of the application.

The presented method demonstrated good performance across the validation datasets with

manually tuned lower-level parameters. These parameters could be systematically investigated

further in future work. Future work could also include a formal comparison between the pose

estimates generated using the proposed approach and conventional methods [1]. Results and

insights from these assessments could then be used to further develop and improve the auto-

mated method. In practice, the method could be used alongside the conventional methods to

help the human expert find the dives when a tag shift might happen and suggest shift times

that could be confirmed by the user.

Conclusion

This paper presents an automated data processing framework (and software) that takes advan-

tage of the common characteristics of cetacean pose and gait during swimming to estimate the

pose of the animal and analyze gait from biologging tag data. The proposed approach: (1)

Automatically identifies tag shifts (a change in tag orientation with respect to the animal) dur-

ing a deployment; (2) Calculates the relative orientation of the tag wrt the animal’s body for a

given data segment during the deployment; (3) Provides metrics for gait analysis that are stable

and invariant to pose and tag orientation. Biologging tag data from bottlenose dolphins, a

humpback whale, and a beluga whale were used to validate and demonstrate the proposed

approach. Results show that the average relative orientation error of the tag wrt the dolphin’s

body after processing was within 11 degrees in roll, pitch and yaw directions. In addition, the

average precision and recall when identifying a tag shift were 0.87 and 0.89, respectively.

Examples of the resulting pose and gait analysis demonstrate the potential of this approach to

enhance movement analysis and animal behavioral studies. The proposed analysis approach

and software will facilitate the use of biologging tags to study cetacean locomotion and
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behavior. The method and software are applicable to cetacean data from any tag platform that

uses an accelerometer, magnetometer, and pressure sensor.
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