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ABSTRACT

Background and Purpose: Diffusion MRI of the brain enables to quantify white matter

fiber orientationsnoninvasively. Several approacheshavebeenproposed toestimate such

characteristics from diffusion MRI data with spherical deconvolution being one of the

most widely used methods. Spherical deconvolution requires to define––or derive from

the data––a response function, which is used to compute the fiber orientation distribu-

tion (FOD). Different characteristics of the response function are expected to affect the

FOD computation and the subsequent fiber tracking.

Methods: In this work, we explored the effects of inaccuracies in the shape factors of the

response function on the FOD characteristics.

Results:With simulations, we show that the apparent fiber density could be doubled in

the presence of underestimated shape factors in the response functions, whereas the

overestimation of the shape factor will cause more spurious peaks in the FOD, especially

when the signal-to-noise ratio is below 15. Moreover, crossing fiber populations with a

separation angle smaller than 60◦ were more sensitive to inaccuracies in the response

function than fiber populations with more orthogonal separation angles. Results with in

vivo data demonstrate angular deviations in the FODs and spurious peaks as a result of

modified shape factors of the response function, while the reconstruction of the main

parts of fiber bundles is well preserved.

Conclusions: This work sheds light on how specific aspects of the response function

shape can affect the estimated FODs, and highlights the importance of a proper calibra-

tion/definition of the response function.

KEYWORDS

apparent fiber density (AFD), constrained spherical deconvolution (CSD), diffusion MRI, fiber orien-
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INTRODUCTION

Diffusion MRI allows to characterize tissue microstructure in vivo

and noninvasively by measuring the anisotropic diffusion of water

molecules.1,2 Diffusion tensor imaging (DTI)3 is the most widely used

model in clinical studies to relate the diffusion MRI signals to the
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diffusion characteristics of the underlying tissue. However, DTI is

inadequate to estimate the directional information in voxels contain-

ing crossing fibers4,5 and several methods have been proposed to

tackle the crossing fibers problem.6–8 A commonly used approach to

resolve more complex fiber configurations in the brain is spherical

deconvolution (SD).9–11 SD also allows for the extraction of fiber
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population-specific microstructural measures derived from the mag-

nitudes of the fiber orientation distribution (FOD) functions, such as

apparent fiber density (AFD)12 andhindrance-modulatedorientational

anisotropy (HMOA).13

SD requires an appropriate response function as an input to esti-

mate the FOD.10 The response function, representing the diffusion

signal for a single-fiber population (SFP), is ideally calibrated from the

acquired diffusionMRI data.14,15 With a properly chosen or estimated

response function, the corresponding FOD should (1) accurately

represent the underlying fiber distribution for individual studies, with

minimal occurrences of spurious peaks; and (2) provide consistent

intersubject comparisonmetrics for group studies. In individual subject

studies, the voxels containing only SFPs are localized, and an average

of the diffusivity characteristics within those voxels is used to repre-

sent the subject-specific response function. An inadequately chosen

response function can affect the quantification of FOD characteristics

like AFD andHMOA.

In order to compare intersubject AFD, Raffelt and colleagues12

chose a response function common to all subjects to minimize the dif-

ferences between subjects for voxel-wise AFD comparison. Although a

common response function provides consistent scaling in theFODesti-

mation, which is perhaps suitable in group studies for the comparison

of FOD-derived metrics (e.g., AFD and HOMA),12 it is unclear whether

this is also optimal to estimate the peak orientation for tractography.

Specifically, the use of such a common response function for group-

wise analysis may cause biases in the FOD characteristic estimations

for individual subjects. Intuitively, the difference in response function

characteristics across healthy subjects is not expected to be large, as

response functions are generally averaged from more than hundreds

of voxels that are supposed to contain SFPs.9,10,15 This was partly

demonstrated by Jeurissen and colleagues,16 who studied the inter-

subject response functions of 100 healthy subjects from the Human

Connectome Project (HCP)17 and observed only subtle differences.

Accordingly, it seems justified not to be too concerned about intersub-

ject response function variability in healthy subjects, since either using

averaged response functions or individual response functions is not

likely to affect the FODprofiles in theHCPdataset. However, although

the differences in the response functions of healthy subjects may be

small,16 this is likely not the case for subjectswith some formof pathol-

ogy. The intersubject signal deviations do raise concern for aging and

diseased groups. White matter degeneration as an example may cause

the response function not to be optimal for the whole brain, intro-

ducing spatially varying discrepancies in the FOD. Besides intersubject

differences, there are likely intrasubject interregion differences in the

response function estimation.18

Previous studies have partially investigated the effect of improp-

erly calibrated response functions on the FODcharacteristics and fiber

tracking. Tournier10 and Dell’Acqua11 demonstrated that the choice of

the response function could directly affect the FOD peak magnitudes,

and thus also derived metrics, such as AFD and HMOA, but would

leave their orientations unaffected. Dell’Acqua and colleagues11,13

investigated with simulations and in vivo data the effects of various

response function changes on the FOD profiles, including variations

in the response function, in axonal radius, and in the angle of crossing

pathways for the damped Richardson–Lucy (dRL) method. Their paper

focused on the effect of the response function on FOD amplitudes

and the sensitivity of HMOA to diffusivity changes per fiber popula-

tion. Parker et al.19 studied the FOD peak orientations and the occur-

rences of spurious peaks in simulations as a function of the response

function miscalibration for constrained (C) SD and dRL. The results of

that study19 demonstrate that sharper response functions resulted in

more spurious peaks in the FOD profiles, and that the mismatch of the

calibrated-targeted response functions introduced uncertainty on the

main FOD peak orientations. However, the authors used the fractional

anisotropy (FA) value as a metric to characterize the response func-

tions, a strategy which is unable to describe the true axial and radial

diffusivities in crossing fibers.20,21 Changes in FA entangle changes in

the axial and radial diffusivities, so that the effects of these two diffu-

sivities could not be studied separately.

In this manuscript, we seek to disentangle the effect of the axial and

radial component of the response function on the FOD characteris-

tics and, complementing earlier studies,19,22 also aim to quantify their

effect on AFD. Changes in pathology are likely reflected in changes in

either the axial or the radial diffusivity, which in our study, are repre-

sented by the shape and scale factor of the response function. Sim-

ulations were designed to explore the effects of the response func-

tion shape factor on the FOD properties, including the number of FOD

peaks, the FOD peak orientation, the FOD peak magnitude, and the

AFD. Additionally, to shed light on the effect on the FOD estimation

step of mismatches between the employed response function and the

underlying tissue properties, in vivo data from the HCP dataset were

used. Pathology was simulated by the changes in the shape and the

scale factors to illustrate how the choice of the response function can

affect the FOD-derivedmetrics and fiber tracking.

METHODS

In the following sections, we give a brief background on (constrained)

SD methods to reconstruct the FOD, outline the simulation experi-

ments, and introduce the shape and scaling factor that characterize the

response function, and present the parameter settings used in these

simulations. Finally, the in vivo data experiments are described.

Constrained spherical deconvolution

Recent studies showed that crossing fibers account for over 90% of

white matter voxels.4 The DTI representation cannot resolve crossing

fibers by design and thus provides nonspecific metrics in such voxels.

SD approaches9–11,23,24 overcome this limitation and allow for esti-

mating the FOD for more complex fiber configurations, while retain-

ing reasonable computation and acquisition time compared with other

methods.25–28

Constrained spherical deconvolution (CSD) assumes that the diffu-

sion MRI signals can be expressed as the spherical convolution of a

fiber response functionwith the FODs in the spherical harmonics basis,

thus also assuming the validity of the response function in all voxels.
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The response function represents the diffusion-weighted signal of an

SFP. Spherical harmonics form a complete basis on the sphere. The dif-

fusion MRI signal is smooth and can be adequately represented using

truncated SH series.29,30 In clinical studies, signals with up to 60 gradi-

ent directions are generally acquired, limiting the order of the spherical

harmonics to 8, which we also adopted in this work.

The FODs are used to infer information on the orientation of the

fiber pathways under the assumption that the FOD peak orientations

coincide with the underlying fiber directions. In addition to directional

information, the magnitudes of the FOD are used to compute addi-

tional metrics, such as AFD12 and HMOA.13 The accurate estimation

of FODpeak directions andmagnitudes is, therefore, essential for sub-

sequent analysis. In order to suppress the negative values caused by

the ringing effect and the sensitivity to noise, the regularization of FOD

was proposed10,24,31 to improve the conditioning of the deconvolution

problem, which is further referred to as constrained SD (i.e., CSD). The

regularization step may introduce deviation from linearity into the lin-

ear problem of SD, which makes the relation between the response

function and the FOD estimation not entirely inversely linear.

Shape and scaling of response functions

The response function used in theCSDprocess can be either simulated

or derived directly from the data. Following the latter approach, which

is more common, voxels that have a high chance of containing SFPs are

used to calibrate the response function. A straightforward approach

to numerically implement the concept of an SFP is to threshold, for

instance FA, above a predefined value. However, the choice of FA

threshold is not trivial and can cause inaccuracies in the response func-

tion estimation.15 A data-driven method using a recursive calibration

framework was proposed to estimate the response function from the

subject data in an unbiasedway.15 This method estimates which voxels

contain SFPs by iteratively excluding voxels which do not have a single

dominant orientation and updating the estimated response function.

The choice of the fiber response function has potential impacts on

the peak directions and magnitudes of the FOD.13,19,24 Theoretically,

changes in the response function are directly reflected in the FOD

estimation, but should affect only peak magnitudes while leaving their

orientations untouched.9,13 However, in practice, due to the low sig-

nal to noise ratio (SNR) level in diffusion-weighted MRI data, the ill-

posednessof inverseproblemsand the consequentneed for regulariza-

tion, theeffects of the choiceof response functionon theFODsbecome

less trivial.

Parker et al.19 investigated alterations of response function by

changing its FA value. Here, we acknowledge that changing the FA

affects both the scale and shape of the response function. It is thus

not straightforward to disentangle an FODchange into scale and shape

effects. The shape component is expected to primarily affect the angu-

lar resolution, orientation, and the number of resolved peaks, while the

scale component changes the scaling of the FOD, which is important

when performing fiber tracking to determine the FOD threshold of the

peak detection procedure. To this end, we decompose general changes

in the response function into specific changes in shape and scale11 and

analyze the individual effect of these parameters on the FOD char-

acteristics (i.e., magnitude, AFD, the number of peaks, and peak ori-

entations). The following sections describe how we can achieve such

changes in shape and scale of the response functions in the simulated

and in vivo diffusionMRI data experiments.

Simulation experiments

Modeling of SFPs and response functions

If the diffusivity D associated with the underlying fiber population is

expressed by an axially symmetric diffusion tensor, whose first eigen-

vector is in parallel with the z-axis in the reference coordinate frame,

thenD(θ,φ) can bewritten as:23

D(𝜃,𝜑) =
[
sin 𝜃 cos𝜑 sin 𝜃 sin𝜑 cos 𝜃

] ⎡⎢⎢⎢⎣
𝛽 0 0

0 𝛽 0

0 0 𝜆

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣
sin 𝜃 cos𝜑

sin 𝜃 sin𝜑

cos 𝜃

⎤⎥⎥⎥⎦
, (1)

where α and β are the axial and radial diffusivity of the SFP, (θ,φ) is
the polar angle set between the fiber orientation and applied gradient.

Given the axial symmetry property of the diffusion tensor, Equation (1)

can be simplified as:

D(𝜃) = 𝜆 cos2𝜃 + 𝛽 sin2𝜃 = 𝛼 cos2𝜃 + 𝛽, (2)

where α = λ – β is the absolute difference between the axial and radial
diffusivity. For simplicity, if we assume that the signal S(θ,φ) from each

fiber population is a function ofD(θ,φ), then the diffusion-weighted sig-
nal S can be rewritten as:3

S(𝜃,𝜑) = S0 e
−bD(𝜃, 𝜑) , (3)

where S0 is the nondiffusion-weighted signal and b is the b-value that

represents the strength of diffusion weighting. Combining Equations

(1)–(3), the diffusion-weighted signals can be expressed as:23

S (𝜃) = S0e
−b

(
𝛼cos2𝜃+𝛽

)
= S0Ke

−b𝛼cos2𝜃 , (4)

where K = e–bβ. Equation (4) highlights the dependency of S on the

shape factor α and the scaling factor K, following the definition in pre-
vious studies.11 In this equation, the scaling factor K depends on the

radial diffusivity of the fiber response and the applied b-value, rep-

resenting the isotropic diffusion within the fiber population, whereas

the shape factor 𝛼 depends on the difference between the axial and

radial diffusivities, representing the anisotropic diffusion within the

fiber population.

Modifying the shape and scaling factor of the
response functions

Since the response function R is intrinsically based on the shape and

scaling of the fiber population diffusivities,R can bewritten in the same



EFFECTS OF RF CALIBRATION ON FOD CHARACTERISTICS 1085

form as the signal of a fiber population imposed by the gradient at an

elevation angle θwith the fiber orientation, which is identical to Equa-
tion (4), that is:

R (𝜃) = S0Ke
−b𝛼cos2𝜃 . (5)

According to Equation (5), for a given b-value, we canmodify (1) the

shape factor α of the response function, by varying only the axial diffu-
sivity with a fixed radial diffusivity, to keep K constant; and (2) the scal-

ing factor K of the response function, by changing simultaneously the

axial and radial diffusivity, to not alter the shape factor α. We can then

study the effects of R on FOD characteristics, by selectively introduc-

ing a discrepancy into the shape or the scale of a simulated single-fiber

signal with respect to the response function.

Modeling of multifiber populations

We model the diffusion-weighted signal within a voxel as the sum of

multiple compartments measured from each fiber population. Each

compartment is assumed to share an identical response function, so the

diffusion-weighted signals are dependent only on the orientations of

the fiber populations in the voxel and on data noise.We further assume

that there is no exchange of water molecules between fiber popula-

tions, and that each SFP can be represented by a signal Si(θ), where i

denotes the ith fiber population. The signal SDW generated by a cross-

ing fiber configuration can then be described by:

SDW =

n∑
i=1

fiSi(𝜃), (6)

where fi is the signal fraction of each fiber population, n is the total

number of fiber populations intercrossing the voxel, and i(θ) is the

angle between the applied gradient and the ith fiber population. In our

work, we focus on configurations of two crossing fiber populations, but

the equations of generating the diffusion-weighted signals can also be

extended to analyze the FOD characteristics for more than two fiber

populations.

Data analysis

Among the SD frameworks, the CSD approach is implemented in sev-

eral software packages, including MRtrix,32 Dipy,33 and ExploreDTI.34

In this work, the FOD was estimated with CSD as implemented in

ExploreDTI. The FOD peak orientations, which are assumed to reflect

the underlying fiber orientations,9 and the magnitudes of the FOD

peaks, were extracted using a Newton–Raphson gradient descent

method.35 All FODpeaks that were smaller than an absolute threshold

of 0.1were regarded as contributions fromnoise and thus discarded to

reduce false positives.36 All peaks were clustered to the nearest simu-

lated peak directions, by using an angular threshold of 45˚ to determine

whether or not two peaks were belonging to the same fiber popula-

tion. In caseof simulatingmultiple fiber populations, only the estimated

FODpeaks closest to the simulated fiber populationswere considered.

For each simulation, the mean and standard deviation of the following

FODmetrics were evaluated:

1. the average difference between the estimated and simulated num-

ber of FOD peaks;

2. the angular deviations between the estimated FOD peak orienta-

tion and the simulated fiber orientation;

3. the estimated separation angles in case of multiple fiber popula-

tions;

4. the FOD peakmagnitudes in case of SFPs;

5. the percentage difference of the estimatedAFDwith respect to the

AFDwith the reference response function.

The AFD computation was performed as the integral of the FOD

magnitudes assigned to each peak, which in the literature is commonly

referred to as “lobe.” The calculation of the AFD is similar to what was

used in a previous study,37 except that we use the gradients gener-

ated by the electromagnetic model38 to segment the FOD for each

fiber population instead of using gradients generated by an icosahe-

dronmodel.

Parameter settings

We simulated different fiber configurations with a predefined b-value

equal to 3000 s∕mm2, a set of 60 gradient directions,38 and S0 =

1. Rician noise (1000 noise instances) was added to the diffusion-

weighted signals to simulate SNR (with respect to S0) levels of [50 40

30 20 15 10]. In the first simulation, a single-fiber configuration was

generated with the main diffusion direction along the z-axis, setting

𝛼 = 1.2 × 10−3 mm2∕s and K = 0.5 (i.e., β ∼ (0.3 × 10−3 mm2∕s)). In

the second simulation, a second fiber population was rotated around

the y-axis and combined with the SFP generated in the first simula-

tion to achieve a separation angle ω. Here, we simulated crossing fiber

populations with separation angles ω = [90◦, 75◦, 60◦, 55◦, 50◦, 45◦,

40◦]. To further explore the impact of inaccurate response functions

with respect to the diffusion weighting, a set of multishell diffusion

MRI signals was also simulated based on the same HCP dataset gradi-

ents, including three diffusion weightings of b= 1000 s/mm2, b= 2000

s/mm2 and b= 3000 s/mm2.

The 2D projection of two sets of response functions was simu-

lated to achieve (1) different shape but the same scaling factors, by

increasing 𝛼 from 0.6 × 10−3 mm2∕s to 1.8 × 10−3 mm2∕s with steps

of 0.1 × 10−3 mm2∕s, while keeping K constant (Figure 1A); and (2)

the same shape but different scaling factors, by decreasing K from

0.7 to 0.3 with steps of 0.05, while keeping 𝛼 constant (Figure 1B).

In this study, we focus on the shape factor. For multishell simula-

tions, additional data with varying β from 0.1 ×10−3 mm2∕s to 0.5

×10−3 mm2∕s (step size 0.05 ×10−3 mm2∕s) while keeping 𝛼 fixed as

1.2×10−3 mm2∕s were tested.
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F IGURE 1 The 2D projection of response functions obtained by changing (A) the shape factor 𝛼 and (B) the scaling factor K. The shape factors
are defined from 0.6 × 10−3 to 1.8 × 10−3 mm2∕s in steps of 0.1 × 10−3 mm2∕s. The scaling factors are varied from 0.7 to 0.3 in steps of 0.05

Peak clustering and angular threshold

Weclustered the peak directions tomake sure thatwe are always com-

paring the angular deviations between the simulated fiber orientation

and theFODpeakmost closely aligned to that orientation. Like in other

studies20,39,40 that compared axial and radial diffusion characteristics,

we also included an angular threshold (e.g., cos (θ) > 0.7, which means

approximately θ < 45◦) to make sure the correct peaks were being

extracted for further evaluations.

In vivo data experiments

Diffusion-weightedMRI data of a singleHCPsubjectwere further used

to illustrate the effects of ill-defined response functions on voxel-wise

FOD characteristics and brain tractography. In summary, diffusion-

weighted images were acquired along 90 diffusion gradient directions

with a b-value of 3000 s∕mm2 in addition to 18 nondiffusion-weighted

images, and with an isotropic spatial resolution of 1.25×1.25×1.25

mm3. We performed CSD-based tractography in ExploreDTI with a

step size of 1mm, an FOD threshold of 0.1, an angular threshold of 30◦,

and seeding points per 2mm x 2mmx 2mmacross thewhole brain. All

the tracts were constructed with deterministic fiber tracking to facili-

tate data interpretation.

Modeling the response function

The reference response function for the in vivo dataset was repre-

sented by the diffusion tensor fit to the response function, as esti-

mated with the recursive calibration approach.15 The diffusion ten-

sor was used to model the changes in the shape and scaling factor of

the response functions. The shape factor 𝛼 of the response function

was modified by +/– [0.1 − 0.3 × 10−3 mm2∕s], while the scaling fac-

tor K was modified by +/– [0.1 − 0.2] to simulate the response func-

tion in the case of pathology. The FOD characteristics estimated from

the reference response function were set as the baseline values for

comparison.

Evaluation of in-vivo data

In analogy with the simulations, we computed the voxel-wise differ-

ence in number of estimated FOD peaks, the angular deviations of the

main orientation, and the percentage difference in AFD of the domi-

nant fiber orientation, for all the estimated FODs. The comparisons of

number of FOD peaks were computed for the whole brain, whereas

the comparisons of angular deviation andAFDwere only computed for

voxels with FA> 0.2.

Individual white matter fiber bundles were extracted by using the

regions of interest as suggested by Wakana.41 The segmented fiber

pathways include parts of the splenium of corpus callosum (sCC), the

genu of corpus callosum (gCC), the cingulum (Cg), the uncinate fasci-

culus (UF), the corticospinal tract (CST), and the temporal part of the

superior longitudinal fasciculus (tSLF). The average FOD characteris-

tics for each fiber bundle were calculated. In addition, FOD character-

istics were also derived from CSD using the response functions that

were computed from (1) the region with an SFP as identified during

the recursive calibration step (referred to as “SFP-mask”); and (2) the

regionwith voxels for which FA> 0.2 (referred to as “FA-mask”).White

matter templates in ExploreDTI were used in combination with the

extracted SFPs to explore the interbundle response functions.

Results

Simulations

FOD characteristics of SFPs

Figure 2 shows the effect of changing the shape factor and the scaling

factor of the response function on the FODcharacteristics in an SFP. At
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F IGURE 2 Effect of simulating changes in the response function on fiber orientation distribution (FOD) characteristics for a single-fiber
configuration at different SNR levels. Shape factor α and the scaling factor K of the response function are varied at different SNR levels to
investigate (A) the introduction of spurious peaks, that is, the average difference between the estimated and predefined number of FOD peaks; (B)
the confidence interval (average± standard error) of the angular deviation of the primary FOD peak; (C) the percentage difference between the
amplitudes of the estimated FOD peak and the ground-truth FOD peak; and (D) the percentage difference between the estimated apparent fiber
density (AFD) of the primary fiber population and the ground-truth AFD. The dashed vertical lines represent the ground-truth values.
Abbreviation: RF, response function
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F IGURE 3 Effect of simulating changes in
the response function on fiber orientation
distribution (FOD) characteristics for
multishell signals. The shape factor α and the
radial diffusivity β of the response function are
varied at different SNR levels to investigate the
confidence interval (average± standard error)
of the angular deviation of the primary FOD
peak. The colors of the lines represent
different SNR levels. Abbreviation: RF,
response function

SNR < 20, the average number of spurious peaks increases when the

shape factor increases, but only slightly increaseswhen the scaling fac-

tor decreases (Figure 2A). The angular deviation dependsmainly on the

SNR and to a lesser extent on the shape or scale factor of the response

function (Figure 2B). The changes in peak magnitude (Figure 2C) as

a function of shape and scaling factor of the response function were

not affected by the SNR level. The shape factor has an SNR-dependent

effect, as AFD estimated at low SNR deviate from those estimated at

high SNR in the presence of shape factor changes (Figure 2D). Chang-

ing the scaling factor from0.5 to 0.3 or from0.5 to 0.7 results in around

77% increase or 29% decrease of the peak magnitude, in line with the

inverse linear relation between K and FOD. The relation between the

scaling factor K and the FOD characteristics alignswith the theoretical

expectations, thus for the rest of the study, we only show shape factor-

related results.

FOD characteristics of multishell simulations

Figure 3 shows the effect of changing the shape factor α and the radial
diffusivity β of the response function on the FOD characteristics for

multishell simulations. The SNR level clearly affects the estimatedFOD

characteristics, leading to higher angular uncertainty in correspon-

dence of lower SNR. The angular deviations increase slightly at low

SNR when the shape factor of the response functions is bigger than

1.5×10−3 mm2/s, but does not affected by the radial diffusivity β. Over-

all, the deviations are smaller than those from single-shell estimation.

The effect of the shape factor on angular deviations

Figure 4 shows the effect of the shape factor of the response func-

tion on the angular characteristics of FOD peaks at SNR = 50, 30, and

10 for crossing fiber configurations with different separation angles.

At higher SNR levels (SNR = 30 and 50), lower values of the shape

factor generally cause an underestimation of the separation angles,

except when the two simulated fiber populations cross orthogonally

(i.e., 90◦) (Figure 4A). At the lower SNR level (i.e., SNR = 10), the bias

in the estimated separation angle due to changes in the shape factor

is overruled by the noise itself, especially for lower separation angles.

From the observed angular deviations in Figure 4B (the first peak) and

Figure 4C (the second peak), in general, the adverse effects of changing

the shape factor of the response function on the estimated FOD angu-

lar characteristics are more pronounced in smaller separation angles.

The underestimation of the shape factor can cause failures in CSD esti-

mation, as shown in Figure 4C,where the secondpeak ismissing at sim-

ulated separation angles of 50˚, 45˚, and 40˚.

The effect of the shape factor on AFD

Figure 5 shows the percentage difference of the AFD of the first and

second fiber population in relation to the response function shape fac-

tor. In Figure 5A, at SNR50 and 30, theAFD is highwhen the shape fac-

tor is smaller than0.8, 1.0, and1.4×10−3 mm2/s for the simulated sepa-

ration angles of 55˚, 50˚, and45˚, respectively. TheAFDvalues converge

to theAFDof the other separation angles as the shape factor increases.

As shown in the angular characteristic results (Figure 4), when the

response function becomes sharper, the drop points of AFD for small

separation angles indicate the boundaries at which CSD is able to sep-

arate the two fiber populations. The large difference in AFD for small

separation angles (45˚−55˚) with decreased shape factors can be a con-

founding factor in intersubject comparisons of AFD studies, which will

be discussed further. At SNR 10, the AFD differences are more related

to noise than to the shape of the response function for smaller separa-

tion angles (below60˚). As for the secondpeak (Figure 5B), theAFDcan

change from −30% to 20% when the shape factor was modified from

−50% to 50%, respectively.

In vivo HCP dataset

FOD characteristics of white matter

In this section, we present the effect of changing the shape factors

of the response function on FOD characteristics for an axial slice of

the HCP dataset. The difference in number of FOD peaks per voxel is

shown in Figure 6. Differences are typically seen in areas with partial

volume effects andwithmostly a peak number difference value of one.

When the difference in shape factor, denoted by Δ𝛼, increases by 0.1
×10−3 to 0.3 ×10−3 mm2/s, one can see the increase in occurrence

of peak number deviations, such as, for instance, in the mid-sagittal
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F IGURE 4 Results of exploring the impact of response functions with different shape factor 𝛼 on the FOD peaks for crossing fiber
configurations simulated with separation angles ranging from 90˚ to 40˚. (A) shows the estimated separation angles between the two primary
peaks. Dashed horizontal lines indicate the simulated separation angles. (B) and (C) show the angular deviations between the estimated first (p1)
and second (p2) FOD peaks and their corresponding simulated fiber orientations. Solid line interruptions occurredwhen one of the two peaks was
not detected. Themeans of the estimated values are plotted with the standard error as the shaded areas. The dashed vertical lines represent the
ground-truth response function values. The colors of the lines represent different simulated separation angles. Abbreviation: RF, response function

regions of the corpus callosum.With the increase of difference in scal-

ing factor, denoted by ΔK, regions containing cerebrospinal fluid (CSF)
showed higher peak number differences than regions with white and

graymatter.

The left panel of Figure7 shows theangular differencesbetween the

primary FOD peak computed with the recursive calibrated response

function and the FOD peak obtained with the tensor-fit to the recur-

sive calibrated response function. Although the angular deviation is

close to zero in most areas, there are some voxels in the crossing fiber

regions that show 1˚–3˚ angular deviations of the main FOD peak.

Figure 7 right shows the angular difference between the primary FOD

peak, computedwith the tensor-fit to the recursive calibrated response

function, and the FOD peak obtained with the modified shape factors

of the response function. In general, regions containing crossing fibers

are affected most when modifying the shape of response functions,

with angular deviations of themain FODpeak ofmore than 3˚. Increas-

ing themagnitude ofΔ𝛼 resulted in larger angular deviations.
The left column of Figure 8 shows the voxel-wise AFD difference

for the dominant fiber direction between the FOD estimated with the

recursive calibrated response function and the FOD peak obtained

with the tensor-fit to the recursive calibrated response function for

the HCP dataset. The percentage difference of AFD is around 36% in

most brain areas, with some extent of heterogeneity within 5% across

the brain that relates to the variations in the shape factor α of the

response function. Figure 8 right shows the voxel-wise AFD difference

for the dominant fiber direction between the FOD estimated using the

tensor-fit to the recursive calibrated response function and the FOD

obtained with the modified shape factors of the response function for

the HCP dataset. When changing the shape factor with −0.3 ×10−3

to 0.3 ×10−3 mm2/s, the highest AFD differences (around 6–8%) were

observed in areas with an SFP, such as the corpus callosum. Larger

changes of the magnitude of the shape factor α make the AFD differ-

encemore heterogeneous across the brain.

Effect on fiber tractography

Figure 9 shows the effect of changing the scale and shape factors of the

response function on the reconstruction of the pathways of the tSLF.

The reference trajectories (shown in yellow) are computed with the

recursive calibration method. Only small differences can be observed

for the main part of the reconstructed tracts. Changing the response

function (Figure 9) causes subtle changes in the majority of the tracts,

with the ends of the trajectories where the tSLF enters the frontal

and temporal lobes varied slightly (see enlarged regions in Figure 9).

Figure 10 shows the effect of changing the scale and shape factors of

the response function on the reconstruction of the pathways of the

CST.

Figure 11 shows the FOD characteristics for the FA-mask, SFP-

mask, and the extracted fiber bundles (gCC, sCC,CST,UF,Cg, and tSLF).
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F IGURE 5 The percentage difference of the estimated apparent
fiber density (AFD) of the first peak (p1) and the second peak (p2) in
relation to the response function shape factor 𝛼 at different SNR
levels. The quick drop of the AFD difference while increasing the
shape factor indicates when constrained spherical deconvolution was
able to separate the two fiber populations. The dashed vertical lines
represent the ground-truth response function values. Abbreviation:
RF, response function

From all three FOD characteristics (i.e., spurious peaks, angular devia-

tions, and AFD percentage differences), we can spot a similar trend for

all the bundles andmasks with respect to the changes in the shape and

scaling factors of the response function.Overall, theUFhas the highest

average number of spurious peaks. The lowest average angular devia-

tions of the first FODpeak can be seen for the SFP-mask. Furthermore,

the alterations of the shape factor of the response function can cause

angular deviations up to 6˚, while the alterations of the scaling factor

hardly cause any angular differences in the masks or the selected fiber

bundles, as expected (see the enlarged plot). Finally, the differences in

AFD are relatively homogenous across the extracted fiber bundles and

masks as a function of changing the shape or scaling factors.

Table 1 shows the shape (α) factors, scale (K) factors, and the FA of

the response functions estimated from single-fiber voxels of several

fiber bundles and SFPs of an HCP subject, along with the percentage

differences (Δα, ΔK, and ΔFA) compared to those calculated from the

recursive calibrated response functions from the single fibers across

the brain. The forceps show higher shape, scale factors, and FA, while

the inferior fronto-occipital fasciculus, inferior longitudinal fasciculus,

and the superior longitudinal fasciculus show lower shape, scale fac-

tors, and FA as compared to SFPs. Other fiber bundles also show dif-

ferences in the shape and scale factors when comparing to the values

of SFPs.

DISCUSSION

In this work, we investigated the effect of changing response func-

tion properties on the FOD characteristics using numerical simula-

tions and data from the human connectome project. We have shown

how miscalibration of the response function, as defined by adjusting

the shape factors, can introduce a bias in the orientation and mag-

nitude of fiber population peaks. Our findings demonstrate that CSD

is prone to produce spurious FOD peaks in the presence of miscal-

ibrated response functions, especially in combination with data with

insufficient SNR levels. The occurrence of such spurious peaks, how-

ever, mainly happens in CSF and cortical areas, thus the fiber path-

way reconstruction was only subtly affected. Overall, in agreement

with former studies, spurious peaks are introduced due to overesti-

mating the shape factor of the response function, while underestimat-

ing the shape factor will result in lower angular resolution of the FOD

lobes.13,19 Proper tuning of the response function is, therefore, ben-

eficial to achieve an optimal balance between increasing the angular

resolution and minimizing the number of spurious peaks, especially

for smaller separation angles (i.e., below 60˚) and at low SNR levels.

Further, AFD estimation can be influenced by the choice of response

function.

In Figure 2, we see the FOD magnitudes and RF scaling factors are

inversely related to each other. As this was indicated in the formula in

CSD estimation,10 from the simulations we see that this relation was

maintained in the presence of noise and regularization. In Figure 11 of

in vivo data study, varying the scaling factors did not affect the angular

deviations along the fiber bundles. At SNR levels of 30 and 50, the FOD

characteristics are consistently affected by the choice of the response

functions,while at SNRof10, noise is thedominating factor that affects

the FOD properties. In particular, using a sharper response function

for separation angles below 50˚ can potentially increase the angular

resolution of CSD and can, therefore, improve the estimation of the

number of peaks in crossing fibers. The shape of the response function

was reported to vary with axonal injury and brain maturation, whereas

the scaling factor was observed to change as a result of demyelination,

axonal diameters, and axonal density changes.13,42 This implies that in

brain regions affected by disease, applying CSD with a response func-

tion determined by healthy white matter data can result in unreliable

estimates of FOD characteristics.

The interpretations of the response function

The response function represents the expected signal profile in voxels

containing a single white matter fiber orientation, which is supposed

to be comparable among healthy subjects. In CSD implementations,
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F IGURE 6 The difference between the number of fiber orientation distribution (FOD) peaks estimated with the tensor-based response
function and the number of FOD peaks computedwith the response functionmodified according to certain changes in scaling (ΔK) and shape (Δ𝛼)
factors. The background is an axial view of the fractional anisotropymap. The peak number differencemostly occurs in graymatter and
cerebrospinal fluid areas, and crossing fiber regions for white matter, as indicated by the colormap. In regions with single-fiber populations (e.g.,
middle parts of the corpus callosum), spurious peaks are hardly present

F IGURE 7 The angular deviations between the FOD peaks estimated with the recursive calibrated response function, the tensor-fit of the
response function, and the FOD peaks estimatedwith the response functionmodified according to certain changes in shape (Δ𝛼) factors. The
background is an axial view of the fractional anisotropy (FA) map and, for clarity, the angular deviations are shown only in regions where FA> 0.2.
Most angular differences are in the range of 0–3˚. Similar to the results of spurious peaks shown in Figure 6, angular deviations are larger in regions
with crossing fiber populations than regions with single-fiber populations, such as themiddle part of the corpus callosum. Abbreviation: RF,
response function

such asMRtrix and ExploreDTI, the response function is estimated per

subject to capture individual-specific properties of the white matter

structure in single subject studies, in particular for the purpose of

fiber tractography. In group studies on voxel-wise diffusion metrics,

however, how to define or choose the response function requires

further thought. Specifically, when measuring the response function

from pathology regions or brains, whether a response function should

be estimated from healthy tissues or pathological tissues need to

be considered. In pathological structures, the response function

may have lower scaling and shape factors due to, for example, loss
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F IGURE 8 The percentage difference of the apparent fiber density (AFD) between the FOD peaks estimated with the recursive calibrated
response function, the tensor-fit of the response function, and the FOD peaks estimated with the response functionmodified according to certain
changes in the shape (Δ𝛼) factors. The background is an axial view of the fractional anisotropy (FA) map and, for clarity, the AFD percentage
differences are shown only in regions where FA> 0.2. AFD differences aremainly located in the corpus collosum area. Abbreviation: RF, response
function

F IGURE 9 The temporal part of the superior longitudinal fasciculus (tSLF) reconstructed with the FODs estimated using the tensor-fit to the
recursively calibrated response function (yellow), and the tSLF from the same regions of interest reconstructed with FODs estimated using the
modified response functions. The other fiber bundles (shown in red, blue, cyan, magenta, and green) indicate the effect of changing the scaling (ΔK)
and shape (Δ𝛼) factors of the response function on the trajectory of the tSLF. Subtle differences in how the fiber trajectories terminate in the
temporal lobe are shown in the enlarged area (zoomed areas; the “+” and “–” indicate increase and decrease in the scaling and shape factors,
respectively), while main parts of the tracts are reserved. Abbreviation: RF, response function
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F IGURE 10 The corticospinal tract (CST) reconstructed with the FODs estimated using the tensor-fit to the recursively calibrated response
function (yellow), and the CST from the same regions of interest reconstructed with FODs estimated using themodified response functions. The
other fiber bundles (shown in red, blue, cyan, magenta, and green) indicate the effect of changing the scaling (ΔK) and shape (Δ𝛼) factors of the
response function on the trajectory of the CST. The “+” and “–” indicate increase and decrease in the scaling and shape factors, respectively.
Abbreviation: RF, response function

of axons. When a healthy tissue response is used, the AFD will be

proportionally smaller and reflects the lower axon density. In this case,

the response function measured from healthy tissues can be used as

the measuring unit for the deconvolution approaches to identify FOD

characteristics.

The intersubject response function deviations can have several

reasons, including but not limited to axon density, axial diameter, mem-

brane permeability, and myelination.43 Considering the achievable

time and resolution of diffusion MRI, the response function relates

closely to the intra-axonal volume and the intrinsic axonal signal.

Intrinsic signal changes can be caused by, for example, changes in axon

diameter distribution, or additional constituents with non-negligible

diffusion signals, such as pathology. However, when performing com-

parisons of FOD metrics, differences observed in AFD will normally

be interpreted as differences in intra-axonal signal fraction. On a

macroscopic level, changes in intra-axonal signal fraction will be

indistinguishable from changes in partial volume of white matter.

Therefore, regional pathology and partial volume are the main fac-

tors related to response function changes when exploring the FOD

characteristics.

In case of regional pathology, the response function should be

derived from global estimation or healthy tissues, instead of from the

region itself. The response function then does not vary spatially to

reflect local tissue properties, but serves as the measure unit for com-

paring, for example, AFD. The degraded AFD in presence of a global

response function reflects the axon degeneration caused by pathology.

As we mentioned in the introduction, this raised concern on whether

it is optimal as well for tractography and whether it affects the accu-

racy of local FOD estimation. Since pathology may cause a reduction

in the shape factor in the measured diffusion signal, it could be argued

that the healthy tissue response function would have a shape factor

that is too high for the estimation of the FOD in this region. A response

function with a larger shape factor could result in more spurious peaks

on the one hand, but also preserve or increase angular resolution on

the other hand. This means the tractography performance would be

preserved, as also shown in the in vivo tractography illustrations in

Figures 9 and 10.

For clinical applications which aim at detecting regional pathology

within every single subject, a global response function can be used

in the FOD estimation. As such, the same measuring unit, that is, the

response function is used, and the regional tissue characteristic differ-

ences of the shape and scaling factors would be reflected in the corre-

sponding deviations in the FODmetrics.

Effect of the separation angle between crossing fiber
populations

The extent to which the FODs will be affected by the response func-

tion depends largely on the separation angle between crossing fiber

populations (Figure 4). More orthogonally crossing fiber orientations

are less sensitive to response function changes, as originally suggested

in the SD paper.9 In voxels containing crossing fiber configurations

with smaller separation angles (e.g., below 60˚), the average angular
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F IGURE 11 The average number of spurious peaks, the average angular deviations, and the average percentage differences in AFD of the first
fiber population for the fractional anisotropy (FA)-mask, single-fiber population (SFP)-mask, and the selected fiber bundles (shown on the right)
when amodified response function was used in comparison to the original tensor-fit to the recursive calibrated response function. The effect of
the changes in the scaling (ΔK) and shape (Δ𝛼) factors of the response function on the selected fiber bundles is reflected in the different color
encoding. Abbreviations: Cg, cingulum; CST, corticospinal tract; gCC, genu of corpus callosum; sCC, splenium of corpus callosum; tSLF, temporal
part of superior longitudinal fasciculus; UF, uncinate fasciculus

TABLE 1 Response functions across fiber bundles

Shape/scale factors of fiber bundles

SFP Cingulum CST Forceps IFOF+ILF SLF ATR Uncinate

K/ΔK 0.27 0.277/+2.44% 0.266/−1.41% 0.314/+16.2% 0.24/−11.45% 0.23/−14.87% 0.265/−2% 0.262/−3.04%

α (x10 −3 mm2/s)/Δα 1.043 1.054/+1.08% 0.996/−4.51% 1.136/+8.94% 0.948/−9.12% 0.91/−12.71% 1.057/+1.32% 0.983/−5.7%

FA/ΔFA 0.65 0.66/+1.06% 0.64/−2.17% 0.71/+7.73% 0.61/−7.24% 0.59/−9.95% 0.65/−0.16% 0.63/−3.12%

Note: The shape (α) factors, scale (K) factors, and fractional anisotropy (FA) of the response functions estimated from different brain structures and the per-

centage differences (Δα,ΔK, andΔFA).
Abbreviations: ATR, anterior thalamic radiation; CST, corticospinal tract; IFOF ILF, inferior fronto-occipital fasciculus and inferior longitudinal fasciculus; SFP,

single-fiber populations; SLF, superior longitudinal fasciculus; Uncinate, uncinate fasciculus.

deviations and their variance increase rapidly with lower shape fac-

tors of the response function. Higher shape factors of the response

function result in smaller bias in the computation of the FOD peak

orientations than the underestimation of the shape factor (Figures 4

and 5).

Adverse effect of the shape factor on CSD angular
resolution

For fiber populations with separation angles below 55˚, CSD fails to

estimate the correct number of peaks when response functions with
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a lower shape factor are employed, leading to artificially higher AFD

values (Figure 5). As FOD peaks merge together when the shape fac-

tor is further decreased, the AFD becomes close to the integral of the

total FOD amplitudes within the voxel. This is shown in Figure 5 for

simulated separation angles between 45˚ and 55˚. For these relatively
small separation angles, the large AFD difference is caused by the lim-

ited angular resolution of CSD with the simulated settings. Previous

studies44 report AFD as amore sensitive diffusionmarker in traumatic

brain injury than the traditionalmetrics. However, one should be aware

that these changes in AFD in the presence of pathology could result

from the limits of CSD angular resolution that was affected by the

shape of the response functions. The bias resulting from using a group

averaged response function instead of a per-subject response function

can cause differences in the number of fiber populations, thus local dif-

fusivities alteration within voxels.

Effect of FOD angular deviations on fiber tracking

Because of the stepwise nature of fiber tractography, the recon-

structed fiber pathways accumulate angular errors during their

propagation. If a systematic angular deviation is introduced in the FOD

estimation step, the whole fiber bundle will accumulate geometrical

distortion. Conversely, if the angular deviations are not stepwise sys-

tematic along the reconstructed fiber pathway, the FOD estimation

deviations will affect voxel-wise characteristics, such as AFD and the

number of fibers. In our results, we did not observe relevant errors in

the main part of the fiber bundles, but subtle differences at the edges

(Figure 9). With the in vivo HCP data, only minor changes in the tSLF

trajectories are detected when using the modified response functions

withdifferent shape factors, suggesting good robustnessof the stream-

lines reconstruction to response fibermiscalibrations. The termination

of fiber pathways passing through crossing regions can be affected;15

however, for the two fiber bundles of tSLF and CST estimated from

HCP dataset, the influence is more pronounced on the ending parts of

the trajectories.

Interbundle response functions

Previous studies45 reported interbundle differences in the response

function along with other DTI metrics, with a conclusion that inter-

bundle fiber response shows larger differences than intersubject fiber

response. The results were partially validated in a recent histology

study,46 that when response functions derived from different regions

are applied, the reconstructed FODs have similar shapes and orienta-

tions but the signal fractions of fiber populations are different, that is,

a potential difference in AFD. In Table 1, we show the shape and scale

factors of the response functions that were estimated from several

fiber bundles in the brain. In comparison to using the response function

that recursively calibrated from SFPs, different brain structures show

some deviations in the shape and scale factors, with around 11%

decrease in the inferior fronto-occipital fasciculus and inferior longitu-

dinal fasciculus, 14% decrease in the superior longitudinal fasciculus,

and around 16% increase in the forceps regarding the scale factor.

Among the fiber bundles, there is also an increase of up to9% in the for-

ceps and a decrease of up to 12% in the superior longitudinal fasciculus

considering the shape factor. From the deviations of the shape

factors from different fiber bundles, we can expect potential

AFD deviations that could be resulted from the intrinsic mis-

match of the response functions. When considering the poten-

tial merging or separation of FOD peaks that could occur as a

result of the shape factor deviations (Figure 5), the AFD devi-

ations could be disproportionately larger than the shape factor

changes.

FOD characteristics in relation to the response
function modeling

In this study, we modeled the response function with the basic ten-

sor model in simulations, and fit a tensor to the recursive calibrated

response function for in vivo data to evaluate the shape and scaling

factor. The tensor model allows us to represent the response func-

tion by the shape and scaling factor, which can be inversely related

to the FOD characteristics through spherical harmonic basis given

a set of diffusion-weighted signals. For the in vivo experiments, the

tensor-fitting aswell introduces bias in theFODestimation as shown in

Figures 7 and 8. The angular deviations are small in most brain areas,

while in some voxels containing crossing fibers, there can be 1˚–3˚
angular differences between the FOD peaks determined with the

recursive calibrated response function and those obtained by tensor-

fitting to the recursive calibrated response function. The percentage

difference of AFD is around 36% between the FODs from the recur-

sively calibrated response function and the tensor-fitting response

function, which resulted from the scaling difference between the

response functions due to the signals used in the response calibration

and the actual FOD estimation. The response function was calibrated

from the data at b= 1000 s/mm2, where the Gaussian assumption typ-

ically holds, then the determined shape and scaling factor were also

used for the data at b = 3000 s/mm2. While this introduced discrep-

ancy between the scaling of the recursive calibrated response and the

tensor-fitting response, it provided an option to build a reference value

of the shape factor in the FODestimation. The AFD also shows hetero-

geneous deviations across the brain, up to 5%, which can be the result

of a slight difference in the shape factors between the response func-

tions.

FOD characteristics in multishell data analysis

Multishell diffusionMRI data are becoming increasingly available in SD

methods, and several studies have generalized CSD and other frame-

works to accommodate multishell data.47,48 The advantage of multi-

shell SD includes enabling to reduce spurious FODpeaks in regions like

the cortex and differentiate more tissue types.
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In Figure 3, multishell CSD shows less angular deviations compared

to single-shell CSD FOD estimation. The angular deviations are mainly

affected as well by the SNR level, and slightly increase when the shape

factor is getting bigger. However, there are several factors other than

the shape factors and radial diffusivities of the response functions

that could have caused the difference in the angular deviations, which

cannot be excluded or disentangled. First, multishell data in the simu-

lations includemore gradient sampling, which entangle different angu-

lar resolutions and sensitivity to different components of the in-vivo

microstructure.More gradients on a single-shell sampling could aswell

increase the angular accuracy and robustness of CSD to the response

function changes. Second, the accuracy and precision of multishell

CSD estimation itself are different from single-shell CSD estimation,

which can be affected by the parameters like the weight of inner-shells

and the modeling of non-white matter tissue types. Previous studies

explored the related issues47–50 on multishell SD methods. Further,

AFD is as well dependent on b-values, as shown in a recent study,51

which complicates comparisons of AFD across b-values.

Single shell data arewell worth to be investigated especially for typ-

ical data sampling of b-values in SD methods. Therefore, in the study,

we focused on the suggested SD b-values30 for the effects of shape and

scale factors of the response functions.

Limitations and future directions

When estimating AFD as an integration of each “lobe,” the scale and

shape effects are not independent. Changing the shape parameter

has an impact on the mean amplitude of the response functions. An

increase in the shape factor of the response function, that is, a nar-

rower response function, will reduce the overall size of the response,

and thus cause an increase in the mean FOD. Vice versa, a decrease in

the shape factor means a broader (and hence larger) response, andwill

result in a decrease in the mean FOD. Applying the current formula-

tions of the shape and scaling factor does not allow clean separations

of the impact of shape and scaling effects on AFD. A more advanced

formulation of the shape factor will benefit further studies to cleanly

separate its impacts on FODs from the scaling factor effects.

The reference value of the shape and scaling factor of the simulated

diffusion-weighted signals matches with the values in the corpus callo-

sum as reported before. However, recent studies45,52–54 indicated that

the diffusivities of fiber bundles in the brain are not always the same.

There is not a fullmapofdiffusivity characteristics of eachwhitematter

structure yet. Although our simulation study included the same config-

urations of crossing fiber bundles in a voxel, in reality, the diffusivities

of these crossing fibers may not be identical.

In this study, we showed tractography results of an HCP subject

using the tensor-fit to the recursively calibrated response function and

modified response functions. In group studies between healthy sub-

jects and patients with neural degradation diseases (e.g., Alzheimer’s

disease), applying the group response function in the FOD estimation

is suggested, as otherwise the FOD characteristic changes could be

absorbed into the alterations of response functions, leading to failures

of discovering FODmetrics changes.

Overall, the study demonstrates with numerical simulations and in

vivo HCP data that decreasing the shape factor of the response func-

tion can cause large angular deviations of the FODpeak orientations in

crossing fibers. Sharper response functions are responsible for intro-

ducing spurious peaks, which can also confound subsequent tractogra-

phy results. Extremely low shape factors of the response function can

cause significant angular deviations and may complicate the interpre-

tation in studies involving pathology. In addition, although individual

angular deviations of FOD peak orientations are small for single vox-

els at most separation angles, the adverse effect can accumulate for

brain tractography. Since smaller separation angles are more sensitive

to changes of response function shape factors, futurework of intersub-

ject AFD and pathological groups should be aware of this possible con-

founding factor when investigating brain structures with crossing fiber

configurations.
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