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This paper presents a class of approximations to
a type of wave field for which the dispersion
relation is transcendental. The approximations have
two defining characteristics: (i) they give the field
shape exactly when the frequency and wavenumber
lie on a grid of points in the (frequency, wavenumber)
plane and (ii) the approximate dispersion relations
are polynomials that pass exactly through points
on this grid. Thus, the method is interpolatory in
nature, but the interpolation takes place in (frequency,
wavenumber) space, rather than in physical space.
Full details are presented for a non-trivial example,
that of antisymmetric elastic waves in a layer. The
method is related to partial fraction expansions
and barycentric representations of functions. An
asymptotic analysis is presented, involving Stirling’s
approximation to the psi function, and a logarithmic
correction to the polynomial dispersion relation.

1. Introduction
This paper is concerned with the derivation of reduced-
order models for wave propagation in layered media.
The starting point is a recent method [1,2] for obtaining
a family of polynomial approximations to a type of
transcendental dispersion relation that often arises in
practice. The approximate dispersion curves intersect the
exact dispersion curve, i.e. have no error, at points on
a certain grid in the (frequency, wavenumber) plane;
moreover, the number of points on the grid increases
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quadratically with the degree of the polynomial, so that the method provides accurate
approximations at indefinitely large frequencies and wavenumbers.

The results in [1,2] concern the dispersion relation. The next stage, to determine the
corresponding approximations to the displacement and stress fields, is the subject of this paper.
The key observation is that a polynomial dispersion relation automatically reduces the problem
to finite order, because it gives only finitely many modes at a given frequency (in contrast to the
original transcendental dispersion relation). Hence, we seek expressions for the field variables
which, likewise, are of finite order, in that they consist of finite sums of simple terms. We
require that these finite sums have two properties: (i) they give the field shape exactly when
the frequency and wavenumber lie on the previously found grid and (ii) they give polynomial
dispersion relations.

It might be thought that such expressions for the field could not exist, in that too much is
expected of them. But the authors have found that certain forms of Fourier series, if carefully
chosen, give, upon truncation and application of a simple Euler correction, a family of finite
approximations of the required type. Although Fourier series are the most traditional of
representations in wave theory, the approach of choosing just the right series to satisfy conditions
(i) and (ii), with no redundant terms, appears to be new, and is the original aspect of the present
investigation. The nearest we have found in the literature to our approach is [3], which is,
however, confined to low wavenumbers rather than including in its scope a large area of the
(frequency, wavenumber) plane. Another analysis based on Fourier series is [4]; this is primarily
a numerical approach and does not give an analytical approximation to the dispersion relation.

The structure of the paper is as follows. Section 2 gives the required theory for the example
to be considered, namely antisymmetric elastic waves in a layer. Section 3 represents the
displacement and stress fields by Fourier series, chosen, so that the truncations provide a family
of reduced-order models of the required type, and §4 gives the corresponding barycentric
representations, exact and truncated, of the dispersion relation. Section 5 reports numerical
results, comparing the approximate and exact field shapes, and includes correction terms
related to Euler summation. Section 6 gives a local analysis of the field shape for (frequency,
wavenumber) points close to grid points, and §7 presents an asymptotic theory for the remainder
term in the barycentric truncations of the dispersion relation. The asymptotic theory is based on
Stirling’s approximation applied to the psi function (also called the digamma function), defined
as the logarithmic derivative of the gamma function. Section 8 presents conclusions, and indicates
some directions for further work.

2. Elastic waves in a layer

(a) Governing equations
An isotropic elastic medium of thickness h occupies the layer −∞< x<∞, |y|< h/2 and supports
elastic waves that are assumed to satisfy the linear equations [5, pp. 59, 257]

utt = c2
1uxx + (c2

1 − c2
2)vxy + c2

2uyy (2.1)

and
vtt = c2

1vyy + (c2
1 − c2

2)uxy + c2
2vxx. (2.2)

Here, (u(x, y, t), v(x, y, t)) are longitudinal and transverse displacements at position (x, y) and time
t, and subscripts x, y and t denote partial differentiation. Throughout the paper, a subscript 1 refers
to P-waves, and a subscript 2 refers to S-waves; thus, c1 is the P-wave speed, i.e. compression-
wave speed, and c2 is the S-wave speed, i.e. shear-wave speed. The elastic medium has Young’s
modulus E, Poisson’s ratio ν, density ρ and reference speed c0 = (E/ρ)1/2. In plane strain, the wave
speeds are

c1 =
{

1 − ν

(1 + ν)(1 − 2ν)

}1/2
c0 and c2 = c0

{2(1 + ν)}1/2 . (2.3)
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For plane stress, the value of c1 is replaced by c0/{(1 − ν2)}1/2. In numerical calculations, we shall
take ν = 0.3. Thus, for plane strain, we have c1 = 1.16c0 and c2 = 0.62c0, and for plane stress, we
have c1 = 1.05c0 and c2 = 0.62c0. The normal stresses τxx, τyy and shear stress τxy corresponding to
displacements (u, v) are

τxx = ρ{c2
1ux + (c2

1 − 2c2
2)vy}, (2.4)

τyy = ρ{(c2
1 − 2c2

2)ux + c2
1vy} (2.5)

and τxy = ρc2
2(uy + vx). (2.6)

(b) Antisymmetric waves
We consider antisymmetric waves in the layer, so that (u, v) are (odd, even) in the transverse
coordinate y. These reduce to simple bending waves in the limit of low frequency and
wavenumber. We seek solutions of the governing equations with real frequency ω and
longitudinal wavenumber k in which all components are proportional to e−iωt+ikx. The
components are taken to be linear combinations of sin ly and cos ly; by (2.1) and (2.2),
the transverse wavenumber l, which may be complex, must satisfy l2 = (ω/c1)2 − k2 or
l2 = (ω/c2)2 − k2, corresponding to P-waves and S-waves.

The displacement field may be written [5]

u = U1h
i sin L1Y

sin 1
2 L1

− V2h
L2

K
i sin L2Y

cos 1
2 L2

(2.7)

and

v = U1h
L1

K
cos L1Y

sin 1
2 L1

+ V2h
cos L2Y

cos 1
2 L2

. (2.8)

We use dimensionless variables Y = y/h, K = kh, and

L2
1 =

(
ωh
c1

)2
− (kh)2, L2

2 =
(
ωh
c2

)2
− (kh)2 and L2

3 =
(
ωh√
2c2

)2
− (kh)2. (2.9)

For the moment, U1 and V2 are arbitrary; they are dimensionless measures of the P-wave part
of u and the S-wave part of v at the boundary Y = 1

2 . We omit the factor e−iωt+ikx from all field
expressions. The stresses (τxy, τyy) corresponding to (2.7)–(2.8) are

τxy = 2ρc2
2

{
U1L1

i cos L1Y

sin 1
2 L1

− V2
L2

3
K

i cos L2Y

cos 1
2 L2

}
(2.10)

and

τyy = 2ρc2
2

{
−U1

L2
3

K
sin L1Y

sin 1
2 L1

− V2L2
sin L2Y

cos 1
2 L2

}
. (2.11)

In accordance with our convention, a subscript 1 refers to quantities related to P-waves, and a
subscript 2 refers to quantities related to S-waves. The dimensionless frequency used in the paper
is Ω =ωh/c0.

The boundary conditions at the traction-free boundaries Y = ± 1
2 are τxy = 0 and τyy = 0, giving

two homogeneous equations for the coefficients U1 and V2. Equating the determinant to zero
gives a relation between ω and k, namely the dispersion relation. In the variables defined above,
this is [5]

(2/L2) tan( 1
2 L2)

(2/L1) tan( 1
2 L1)

= − L4
3

K2L2
2

. (2.12)

The coefficients satisfy
U1

V2
= L2

3
KL1

tan
L1

2
= −KL2

L2
3

tan
L2

2
. (2.13)
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Figure 1. Exact and approximate dispersion relation for plane strain with Poisson’s ratio ν = 0.3. Axes areΩ =ωh/c0, K =
kh; symbols are (i) Euler–Bernoulli point (square); (ii) P-wave cut-on points (asterisk); (iii) S-wave cut-on points (downside
triangle); (iv) Lamé points (diamond); (v) even interior points (circles) and (vi) odd interior points (upside triangle). Exact curves
are solid (blue); approximate curves, with Euler truncations of order r = 3, 2, 1, are dashed (red), dashed-dotted (green) and
dotted (cyan). The exact and approximate curves are indistinguishable almost everywhere; this has determined the size of the
regions plotted. Values of (m, n) are (a) (0, 1); (b) (2, 3) and (c) (4, 5). Field shapes for points A–F, marked with dots, are given
in figure 2. (Online version in colour.)

Hence, displacements and stresses can be written in various ways, for example without U1 or
without V2. We do this without comment in simplifying formulae.

Plots of the branches of (2.12) are given as solid curves in figure 1. The lower left corner
of each plot is the Euler–Bernoulli region, describing bending waves. Grid points are marked,
categorized as the Euler–Bernoulli point (square); P-wave cut-on points (asterisk), i.e. thickness–
stretch resonances; S-wave cut-on points (downside triangle), i.e. thickness–shear resonances;
Lamé points (diamond); even interior points (circle) and odd interior points (upside triangle).
These points will be defined more fully below. Lamé and interior points are of particular interest
for this work, as their significance for constructing approximations does not seem to have been
recognized prior to the theory given in [1].

(c) Reduced-order models
The exact theory just presented is unwieldy for many purposes. The underlying reason is that it
includes infinitely many modes, and correspondingly gives a transcendental dispersion relation.
In practice, only finitely many modes are of interest, corresponding to a range of frequencies and
wavenumbers determined by the purpose of the investigation. Thus, it is usually preferable to
reduce the model to finite order in some way. This paper displays explicitly a class of reduced-
order models, namely those having the properties (i) and (ii) given in the introduction. That is,
the reduced-order field shapes agree exactly with expressions (2.7)–(2.8) and (2.10)–(2.11) when
(Ω , K) lies on the grid of points displayed in figure 1; and the approximate dispersion relations
are polynomials passing through these grid points.
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3. Fourier series representation of the field

(a) Exact Fourier series
The transverse dependence of a field quantity may be expressed as a Fourier series in different
ways, giving different periodic extensions outside the layer region |Y| ≤ 1

2 . However, as it
is usually desirable to eliminate or reduce the effects of Gibbs’ phenomenon, i.e. overshoot
oscillations at discontinuities, only two types of expansion are of interest, and both will be
considered in this paper.

The first type of expansion is continuous. Such an expansion is obtained by requiring that all
quantities are even about Y = 1

2 and Y = − 1
2 , though discontinuities in slope are permitted at these

points. For example, consider u and v. Because u is odd about Y = 0 and v is even about Y = 0,
the extended u has period 2 in Y, i.e. 2h in y, and the extended v has period 1 in Y, i.e. h in y. This
construction determines which components occur in the Fourier series of u and v, and a similar
construction determines which components occur in τxy and τyy. An elementary calculation, based
either on the original differential equations and boundary conditions, or on (2.7)–(2.11), gives

u = hi
V2

K
{L2

3S(Y, L1) − L2
2S(Y, L2)}, (3.1)

v = h
U1

K
{L2

1C(Y, L1) − L2
3C(Y, L2)} (3.2)

and

τxy = 2ρc2
2

iU1

K2 {L2
1K2C(Y, L1) + L4

3C(Y, L2)}, (3.3)

τyy = −2ρc2
2

V2

K2 {L4
3S(Y, L1) + L2

2K2S(Y, L2)}, (3.4)

where the functions S and C are defined by

S(Y, L) =
∞∑

n′=1

(−1)n′
sin{(2n′ − 1)πY}

1
4 L2 − {(n′ − 1

2 )π}2
and C(Y, L) =

∞∑′

m′=0

(−1)m′
cos(2 m′πY)

1
4 L2 − (m′π )2

. (3.5)

A prime on a summation indicates that the first term is to be halved. Throughout the paper, U1
and V2 are related by (2.13); thus, (3.1)–(3.4) may be written with U1 and V2 interchanged, if
expressions in tan(L1/2) and tan(L2/2) are included.

The second type of expansion is analytic up to and well beyond the layer boundaries Y =
± 1

2 , but discontinuities in value or slope are permitted far enough away from these boundaries.
In consequence, any Gibbs oscillations are remote from the layer itself. It is simplest to allow
discontinuities at Y = ±1, and take field quantities to have period 2 in Y, i.e. period 2h in y, though
other choices are possible. The Fourier components are then determined, and a calculation similar
to the previous one gives

u = hi
V2

K

{
L2

3 sin 1
2 L1

L1
S̃(Y, L1) − L2 sin( 1

2 L2)S̃(Y, L2)

}
, (3.6)

v = h
U1

K
{L2

1 cos( 1
2 L1)C̃(Y, L1) − L2

3 cos( 1
2 L2)C̃(Y, L2)} (3.7)

and

τxy = 2ρc2
2

iU1

K2 {L2
1K2 cos( 1

2 L1)C̃(Y, L1) + L4
3 cos( 1

2 L2)C̃(Y, L2)}, (3.8)

τyy = −2ρc2
2

V2

K2

{
L4

3 sin 1
2 L1

L1
S̃(Y, L1) + K2L2 sin( 1

2 L2)S̃(Y, L2)

}
, (3.9)
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where S̃ and C̃ are defined by S̃ = S̃o + S̃e and C̃ = C̃o + C̃e with

S̃o(Y, L) =
∞∑

n′=1

−(2n′ − 1)π sin{(2n′ − 1)πY}
1
4 L2 − {(n′ − 1

2 )π}2
, S̃e(Y, L) =

∞∑
m′=1

2 m′π sin(2 m′πY)
1
4 L2 − (m′π )2

, (3.10)

C̃o(Y, L) =
∞∑

n′=1

− cos{(2n′ − 1)πY}
1
4 L2 − {(n′ − 1

2 )π}2
, C̃e(Y, L) =

∞∑′

m′=0

cos(2 m′πY)
1
4 L2 − (m′π )2

. (3.11)

The subscripts o and e indicate the odd multiples 2n′ − 1 and even multiples 2m′ of πY appearing
in the trigonometric terms.

(b) Truncated Fourier series
A decisive feature of the above Fourier series is that denominators of individual terms are zero
at certain values of L1 and L2. This is a great strength of these representations, because the
apparent singularities are removable, on multiplying all expressions by a factor independent
of Y, which is permissible, because the problem is homogeneous. When this is done, only the
terms which start out with zero denominators remain, because the other terms have all been
multiplied by zero. Hence, zero denominators serve as labels indicating exact solutions of the
problem obtainable from individual terms in the Fourier series. Two denominators can vanish
simultaneously, because L1 and L2 may be chosen independently. Any such choice gives a point
(Ω , K), because L1 and L2 are functions of Ω and K. Hence, the choice of a discrete set of pairs of
values (L1, L2) gives a corresponding set of points in the (Ω , K) plane, i.e. a ‘grid’.

The approach just outlined may be implemented by truncating the Fourier series separately
for different series. For example, one may distinguish series involving L1 from those involving
L2, i.e. the P-wave and S-wave series, and use separate truncation orders, which may be varied
independently as parameters. Alternatively, one may distinguish even-multiple series from odd-
multiple series, as defined in (3.10)–(3.11), and truncate these at different orders. Any truncation of
the Fourier series to a finite number of terms gives the field shape exactly on a grid of points in the
(Ω , K) plane. When successively greater numbers of terms are retained in the truncations, the grid
extends to successively larger regions, i.e. higher frequencies and wavenumbers. The truncation
parameters give excellent control of the trade-off between the simplicity of an approximation and
its accuracy over a wide range. A technicality in implementing the method is that the ratio U1/V2
may tend to zero or infinity as the relevant values of L1 and L2 are approached, because of the
tangent terms in (2.13). Hence, a zero in one denominator may imply a zero in another, and in this
case, all of the corresponding terms must be retained. This is accomplished by a simple limiting
process, or the application of L’Hôpital’s rule, and is carried out in §6, where a local analysis near
grid points is presented.

One interpretation of the truncated Fourier series is that they represent the wave field as a set
of coupled oscillators. Thus, the formulae we have obtained may be used to write down explicitly
the coupled partial differential equations which correspond to the reduced-order models.
Mathematically, this is equivalent to adopting Whitham’s wave hierarchy approach [6, p. 353],
in that the coupled equations contain products of a large number of low-order operators, namely
L2 − {(2n′ − 1)π )}2 and L2 − (2 m′π )2 for n′ = 1, . . . , n and m′ = 1, . . . , m. Here, L2 is of the form
given by the right-hand sides of (2.9), but with (ω2, k2) replaced by (−∂2/∂t2, −∂2/∂x2) if the
space–time domain is used in preference to the frequency–wavenumber domain. The results
of this paper show that there exist wave hierarchies of this type which display extremely high
accuracy at only modest positions in the hierarchy. From this point of view, our results provide
a generalization of the reduced-order models of the type pioneered by Mindlin and Timoshenko,
and in continuous use since then [7]; until now, these models have been restricted to the lower
parts of the first and second branches of the dispersion relation, and have not been extended to
the higher branches.
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4. Barycentric representation of the dispersion relation

(a) Exact barycentric representation
When the representations in §3 are used in imposing the boundary conditions at Y = ± 1

2 , and
common factors are cancelled, the dispersion relation takes the form

L4
3

K2

∞∑
n′=1

(−1)n′
(2n′ − 1)π

1
4 L2

1 − {(n′ − 1
2 )π}2

∞∑′

m′=0

(−1)m′
L2

1
4 L2

2 − (m′π )2

= −L1L2

∞∑
n′=1

(−1)n′
(2n′ − 1)π

1
4 L2

2 − {(n′ − 1
2 )π}2

∞∑′

m′=0

(−1)m′
L1

1
4 L2

1 − (m′π )2
. (4.1)

This must be equivalent to (2.12), and the equivalence arises through the partial fraction
expansions of sec( 1

2 L) and cosec( 1
2 L), which are [8, p. 118]

sec
L
2

=
∞∑

n′=1

(−1)n′
(2n′ − 1)π

1
4 L2 − {(n′ − 1

2 )π}2
and cosec

L
2

=
∞∑′

m′=0

(−1)m′
L

1
4 L2 − (m′π )2

. (4.2)

That is, (4.1) is obtained from (2.12) by writing the tangents as sec(·)/cosec(·), and then using (4.2)
to express each of tan( 1

2 L1) and tan( 1
2 L2) as the ratio of two partial fraction expansions.

In recent years, the representation of a function as a ratio of partial fraction expansions has
emerged as central in approximation theory [9–11], where it is referred to as the barycentric
representation. The key aspect is immediate access to the zeros of the denominators in the
partial fractions, which succinctly encode the most important analytical features of the function,
especially its zeros and poles. Thus, our analysis has revealed that in problems of wave
propagation in a layer there is an intimate connection between Fourier series representations
of the field and barycentric representations of the dispersion relation. This is the mathematical
observation on which the paper is based, and is believed to be new; its exploitation will be seen
to have considerable power.

(b) Truncated barycentric representation
In (4.2), we may chose values L1 and L2 for L, so that two denominators vanish simultaneously,
and hence obtain values of (Ω , K) for which the dispersion relation (4.1) is satisfied exactly.
The resulting grid of points in the (Ω , K) plane is the same as that found in §3b, for which the
Fourier series reduce to single terms. Hence, truncation of the barycentric representation (4.1)
of the dispersion relation corresponds precisely to truncation of the Fourier series of the field
as described in §3b, and the parameters specifying the orders of truncation in the field and in
the dispersion relation also correspond. When cleared of fractions, the truncated terms in (4.1)
become polynomials. Thus, truncations in (4.1) give polynomial approximations to the dispersion
relation, which pass exactly through points on the grid in the (Ω , K) plane.

In determining the local behaviour of (4.1) near values of L1 or L2 where denominators vanish,
a limiting process similar to that described in §3b is required. This is easily performed using local
linear expansions in differentials, or L’Hôpital’s rule, as carried out in §6.

(c) Euler truncation
To specify truncations of the expressions for sec(L/2) and cosec(L/2) in (4.2), we first introduce the
notation

sn′ = sn′ (L) = (−1)n′
(2n′ − 1)π

1
4 L2 − {(n′ − 1

2 )π}2
, cm′ = cm′ (L) = (−1)m′

L
1
4 L2 − (m′π )2

(4.3)
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and

Sn = Sn(L) =
n∑

n′=1

sn′ (L), Cm = Cm(L) =
m∑′

m′=0

cm′ (L). (4.4)

For such series of alternating terms, Euler truncation gives a highly accurate family of
approximations to the corresponding infinite sum. The first member of this family is obtained
from the rule ‘add half the first term omitted’; the second member is obtained from the first two
terms omitted, with coefficients 3/4 and 1/4 and so on to arbitrary order r, with appropriate
coefficients [12, p. 161]. We shall use the first three members of the family, defined by

Sn1 = Sn + 1
2 sn+1, (4.5)

Sn2 = Sn + 3
4 sn+1 + 1

4 sn+2 (4.6)

and Sn3 = Sn + 7
8 sn+1 + 1

2 sn+2 + 1
8 sn+3, (4.7)

and similarly for Cm1, Cm2, and Cm3.
In the above notation, the (m, n) approximation to the dispersion relation (4.1), with order r

truncation, is
L4

3
K2 Snr(L1)Cmr(L2) = −L1L2Snr(L2)Cmr(L1). (4.8)

This is equivalent to (2.12) with Euler-truncated barycentric approximations to the tangents in the
form

tan
L1

2
� Snr(L1)

Cmr(L1)
and tan

L2

2
� Snr(L2)

Cmr(L2)
. (4.9)

(Recall that Snr and Cmr refer to secant and cosecant, not sine and cosine.)
The parameters (m, n) and r determine a truncation of the field. Starting with the Fourier series

for u and v given in §3a, the summations over m′ and n′ are continued as far as m and n, and
then r further terms are included, for a small value of r, with coefficients given by (4.5)–(4.6). The
end result is that we have obtained a class of reduced-order models of the type promised at the
start of the paper. Our method of derivation is general: it applies to a large class of problems
in the theory of waves and stability, especially in elasticity, acoustics and electromagnetism. We
shall see below that the frequency range (‘bandwidth’) of these models, even for low order, is
high. That is, these models satisfy a common need, for a low-order approximation which works
well up to the medium-frequency range, and is not confined merely to very low frequencies.
The excellent performance of these models at such higher frequencies strongly suggests that the
mathematical basis of the paper, namely barycentric approximation, is faithful to the underlying
analytic structure of the exact solution.

5. Numerical results
The numerical performance of the above-mentioned models is excellent. Their accuracy is
sufficiently high that, in a large region of interest for given (m, n), the approximate and exact
dispersion relations are indistinguishable on a graph, and the field shapes are accurate on a large
number of the dispersion curves within this region.

Let us be precise about the term ‘region of interest’. The series truncations are expected to
be accurate up to certain values of Ω and K, but not beyond. Hence, ideal numerical behaviour
would have two features: (i) for a given value of (m, n), there is a box in the (Ω , K) plane within
which the (m, n) model is highly accurate and (ii) the box is large even for small values of (m, n),
and its size increases rapidly with m and n. We refer to such a box as a region of interest for the
given value of (m, n).

The above-mentioned ideal behaviour is closely realized. Even if ‘accurate’ is defined to mean
‘almost indistinguishable on the scale of a graph’, the boxes are surprisingly large, especially for
the dispersion relation. Thus, the real interest is the size of boxes, and the presentation of results
will reflect this. Boxes are chosen for which visible differences between the exact and approximate
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dispersion relation are just starting to appear somewhere near the boundary of box, but nowhere
in the interior. Thus, the size of the plots is an important aspect of what is presented, as it gives
the region of interest of a given model.

In this discussion, we have taken our criterion of accuracy to be no visible difference on the
scale of a graph, i.e. accuracy to two or three significant figures. This is an appropriate criterion for
most modelling purposes, especially reduced-order modelling. It is also the appropriate criterion
for truncated Fourier series of functions whose periodic extensions are not analytic, because
higher accuracy would require a large number of terms to be retained. In different contexts, for
which rapid approach to machine precision is required, one would use an expansion based on
Chebyshev or Legendre polynomials. The analytical results obtained in this paper would then no
longer be available.

(a) Dispersion curves
Figure 1a superposes exact and approximate dispersion curves for (m, n) = (0, 1), in which the
approximate dispersion curves are for Euler truncations r = 1, 2, 3. The box has boundaries Ω = 7
and K = 7. Within this box, it can be seen that the value of r makes rather little difference to the
location of the curves, the main difference being towards the upper part of the first branch, for
which the field largely consists of a Rayleigh wave at each surface of the layer. Three branches of
the dispersion relation are captured accurately. Numerical tests for this and other cases showed
that the choice r = 0, i.e. blunt truncation of (4.1) without Euler correction, is not a good idea,
as the range of validity in the (Ω , K) plane is greatly reduced, and moreover gives a somewhat
unpredictable range of validity as m and n are varied. This is not surprising: in a series of terms of
alternating sign, the minimum sensible form of truncation is to take half of the last term retained.

The striking feature of figure 1a is how large the box is for such small values of m, n and r.
This arises because the polynomial dispersion curves intersect the exact transcendental dispersion
curves, i.e. are exact, at the points marked square, downside triangle, triangle and diamond in the
figure, which are grid points as defined in §3b. It will be recalled that the essence of our method,
based on partial fraction expansions and barycentric approximations, is that the many simple
denominators and their associated zeros define this grid, on which expansions collapse to single
terms, and truncations become exact. For given (m, n), a definite number of grid points is captured,
so that our approach is really an interpolation method in the (Ω , K) plane.

The interpolatory nature of the method explains the loss of accuracy on the higher part of the
first branch. Because this part is outside the convex hull of the grid points, it relies on extrapolation
rather than on interpolation, and loss of accuracy in an extrapolated region is only to be expected.
Equivalently, as the branch is ascended, the transverse length scale of the corresponding Rayleigh
wave ultimately becomes too small for the resolving power of a truncation at fixed (m, n).

These features of the method are confirmed in figure 1b,c for (m, n) = (2, 3) and (4, 5), both for
r = 1, 2, 3. The box sizes are 15 × 15 and 20 × 20. The diamonds (♦), indicating the Lamé points,
lie on a straight line, the Lamé line, as explained in [1], which contains a full account of all aspects
of the grid. The excellent fit somewhat above the Lamé line, even though this is an extrapolated
region, arises because the slope, as well as the position, is correctly interpolated at the Lamé
points. Thus, at these points, the method is performing Hermite interpolation [11, p. 86]. The other
indicated grid points in the figure are the Euler–Bernoulli point (square); P-wave cut-on points
(asterisk); S-wave cut-on points (upside triangle); even interior points (circles), corresponding
to captured values of m′ in (4.1); and odd interior points (triangle), corresponding to captured
values of n′.

In the plots, we have taken n = m + 1. This is not compulsory, but related work in [1,2] gives
this as the best choice, followed by n = m. Numerical tests show that the same pattern is repeated
here. The explanation is not hard to find. The dispersion relation can be written equally in terms
of tangents or cotangents, their reciprocals; hence, in the barycentric approximations (4.9) to
tangents, the numerator and denominator should be taken to comparable accuracy. Thus, n − 1

2
should be as close as possible to m; and because n and m are integers, this leads to n = m and
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n = m + 1 as candidates. It so happens here that the choice n = m + 1 gives slightly more accurate
results.

(b) Field shape
In §3a, we derived two types of Fourier expansion of the field. The first, which may be called
the continuous type, has a continuous extension to all Y, and is specified by (3.1)–(3.4); the
second, which may be called the remotely discontinuous type, is discontinuous at points remote
from the boundaries |Y| = ± 1

2 , and is specified by (3.6)–(3.9). The summation indices m′ and n′
correspond to those used in defining the truncations of the dispersion relation, so that we can
write down at once the (m, n) truncation of the field corresponding to a given (m, n) truncation of
the dispersion relation.

Numerical tests show that the best results, in the sense of the largest box sizes, are obtained
if the continuous type of field extension is used on the first branch of the dispersion relation,
i.e. the Rayleigh wave branch, but the remotely discontinuous type is used on the other branches.
The reason is that, high up on the Rayleigh wave branch, the Gibbs oscillations at remote
discontinuities become sufficiently great to produce unwanted oscillations even in the layer itself,
i.e. far from the discontinuities. This effect grows as the Rayleigh wave branch is ascended,
because the analytical continuation from the surfaces Y = ± 1

2 to the discontinuities at Y = ±1
is in a region of exponential growth, and the growth rate is steeper (in Y) at higher points on
the branch. The effect is not present in the interpolatory region of the (Ω , K) plane, i.e. below the
Lamé line. Hence below this line, the advantage lies with a Fourier extension which is analytic at
the surfaces Y = ± 1

2 and somewhat beyond, i.e. the remotely discontinuous extension as we have
defined it.

Figure 2 gives exact and approximate displacement field shapes (U, V) for the points A–F in
the (Ω , K) plane indicated in figure 1. Here, U and V are dimensionless forms of u and v obtained
by omitting the factors h and i from the right-hand side of expressions such as (2.7)–(2.8) and
(3.1)–(3.2); we have also taken V2 = 1 and determined U1 from the coefficient relation (2.13) or its
barycentric equivalent based on (4.9). Figure 3 gives the corresponding stress field shapes Txy and
Tyy, i.e. the dimensionless forms of τxy and τyy obtained by omitting the factors ρc2

2 and i from
expressions such as (2.10)–(2.11) and (3.3)–(3.4). In each figure, plots (a–f ) correspond to points
A–F; and (g) and (h) give higher approximations to the field corresponding to point E, so that (e),
(g) and (h) form a sequence. All plots are for are for Euler truncation parameter r = 3.

Consider first the displacements (figure 2). On the first branch, i.e. at points A, C and E,
corresponding to plots (a), (c), (e), (g) and (h), the continuous type of field extension is used;
for points on other branches, i.e. points B, D and F, which are on the second, fourth and eighth
branches, corresponding to plots (b), (d) and ( f ), the remotely discontinuous extension is used. In
plots (a)–(f ), the values of (m, n) correspond to those in figure 1. Thus (m, n) = (0, 1), for points A
and B; (m, n) = (2, 3) for points C and D and (m, n) = (4, 5) for points E and F. Plots (g) and (h), also
for point E, are for parameter values (m, n) = (8, 9) and (m, n) = (16, 17). Thus, the plots (e), (g) and
(h) show the effect of model order on accuracy in the most demanding region for the method.

For the stress field, the level of accuracy at given (m, n) is not quite as high as for the
displacement, because of the greater steepness of the curves near the boundaries, and the values
of (m, n) should be increased slightly if the same accuracy is to be maintained. This has been done
in figure 3, in which the values of (m, n) are (2, 3) for points A and B; (4, 5) for points C, D and F;
and (8, 9), (16, 17) and (32, 33) for point E. In the last of these approximations for point E, the exact
and approximate curves are indistinguishable on the scale of the graph.

The plots taken as a whole demonstrate the high accuracy obtainable from reduced-order
models of the type proposed in this paper. Even for the low-order models, accuracy is
maintained up to high frequencies and wavenumbers. Moreover, the location and magnitude
of the differences between exact and approximate field shapes are easy to explain, so that the
trade-off between accuracy and model order is easy to control. For example, in the first-branch
approximations, for points A, C and E, the difference between the exact and approximate solutions
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Figure 2. Exact and approximate field shapes (U, V) for points A–F in figure 1. Exact curves are solid (blue), and approximate
curves are dashed (red). Plots (a–f ) correspond to points A–F, with the same values of (m, n) as in figure 1; and plots (g–h)
show further approximations, for higher (m, n), corresponding to point E. All plots are for Euler truncation with r = 3, and the
values of (m, n) are (a), (b) (0, 1); (c), (d) (2, 3); (e), (f ) (4, 5); (g) (8, 9) and (h) (16, 17). (Online version in colour.)

is apparent only near the surfaces |Y| = 1
2 of the elastic layer. This difference arises, because the

continuous extension of the field, implicit in the Fourier series used, has a jump in slope at
|Y| = ± 1

2 . A truncated Fourier series, being analytic, must round off the region near the jump,
and this is just what the plots show. For many modelling purposes, a small rounded off region
is of no concern; and in any case, the sequence of plots (e), (g) and (h) in figures 2 and 3
shows that the rounded off region becomes almost invisibly small at model orders which are
not excessively high.

6. Local analysis near grid points
It was pointed out in §3b that the essence of our method is the occurrence of zero denominators
at carefully selected points in the (Ω , K) plane, forming the grid indicated by symbols in
figure 1. Finite expressions for the field are obtained by a limiting process involving differentials.
Details of this limiting process will now be presented for the displacement; the corresponding
calculation for the stress is similar. We deal in turn with the even and odd interior points (circle,
upside triangle), the Lamé points (diamond) and the P-wave and S-wave cut-on points (asterisk,
downside triangle).

(a) Even interior points
The even interior points (circle) are given by

(L1, L2) = (L̃1, L̃2) = (2m1π , 2m2π ), (6.1)
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Figure 3. Exact and approximate stress fields (Txy , Tyy) for points A–F in figure 1. Exact curves are solid (blue), and approximate
curves are dashed (red). Plots (a–f ) correspond to points A–F, with values of (m, n) slightly higher than in figure 2 and plots
(g–h) show further approximations, for higher (m, n), corresponding to point E. All plots are for Euler truncation parameter
r = 3, and the values of (m, n) are (a), (b) (2, 3); (c), (d), (f ) (4, 5); (e) (8, 9); (g) (16, 17); (h) (32, 33). (Online version in colour.)

for m1 = 1, 2, . . . and m2 = 1, 2, . . .. The corresponding values ofΩ , K and L3 are denoted Ω̃ , K̃, and
L̃3. Near an interior point, we take

(L1, L2) = (L̃1 + dL1, L̃2 + dL2), (6.2)

in which dL1 an dL2 are differentials, so that only their leading powers are retained in any
expression. Then, the dispersion relation (2.12) and coefficient ratios (2.13) give

dL1

dL2
= − K̃2L̃1L̃2

L̃4
3

,
U1

V2
= L̃2

3

2K̃L̃1
dL1 = − K̃L̃2

2L̃2
3

dL2. (6.3)

In deriving and using (6.3), we always have available, from (6.1), the values

sin 1
2 L̃1 = sin 1

2 L̃2 = 0, cos 1
2 L̃1 = (−1)m1 and cos 1

2 L̃2 = (−1)m2 . (6.4)

Hence, explicit formulae for Ω̃ , K̃ and L̃3 are readily obtained from (2.9), as given in [1].
The differentials on the right-hand sides in (6.3) do not imply that terms in U1 can be ignored in

expressions for u and v such as (2.7)–(2.8), because further differentials appear in denominators.
The complete terms in U1 and V2 in these expressions are of the same order of magnitude; hence,
ũ and ṽ at even interior points, when expressed in terms of V2, are given by

ũ = V2h i

{
L̃2

3

K̃L̃1

sin L̃1Y

cos 1
2 L̃1

− L̃2

K̃

sin L̃2Y

cos 1
2 L̃2

}
(6.5)



13

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150703

...................................................

and

ṽ = V2h

{
L̃2

3

K̃2

cos L̃1Y

cos 1
2 L̃1

+ cos L̃2Y

cos 1
2 L̃2

}
. (6.6)

These can be simplified, using (6.1) and (6.4), to give ũ as a linear combination of sin(2m1πY) and
sin(2m2πY), and ṽ as a linear combination of cos(2m1πY) and cos(2m2πY).

The terms just identified correspond to the terms with zero denominators in the Fourier series
for u and v defined by (3.6)–(3.11). In this correspondence, they come from the terms with m′ = m1
in the series for S̃e(Y, L̃1) and C̃e(Y, L̃1), and the terms with m′ = m2 in the series for S̃e(Y, L̃2) and
C̃e(Y, L̃2). No other zero denominators occur for the values of (L̃1, L̃2) given by (6.1); for example,
there are none in S̃o or C̃o. Hence, expressions (6.5)–(6.6) are the result of applying the process
described in §3b at the even interior points, parametrized by (m1, m2). The result of the process,
which removes the apparent singularities, is an exact solution of the problem containing only
individual terms in the Fourier series, namely (6.5)–(6.6) after simplification using (6.1) and (6.4).
We have thus proved that truncations of the Fourier series (3.6)–(3.11) capture the field exactly at
any desired number of the points marked by circles in dispersion diagrams as shown in figure 1.

The same argument can be applied to the other Fourier series for v given in §3a, defined in
(3.1)–(3.2). Expression (6.6) for ṽ corresponds to the terms with m′ = m1 in C(Y, L1) and m′ = m2
in C(Y, L2), as defined in (3.5). Thus, truncations of (3.1)–(3.2) capture v exactly at even interior
points. However, they do not capture u exactly at these points, because the series for u contains
no terms of the required type in sin(2 m′πY), but only terms in sin((2n′ − 1)πY). Of course, u is
represented exactly by the infinite series of such terms, but the series does not collapse to a single
term at even interior points. We shall see next that for odd interior points the situation is reversed:
truncations of (3.1)–(3.2) capture u exactly, but not v. Hence, taking even and odd interior points
together, there is no loss of symmetry between u and v.

(b) Odd interior points
The field at odd interior points (upside triangle) is found in the same way, but starting with

(L̃1, L̃2) = ((2n1 − 1)π , (2n2 − 1)π ), (6.7)

for n1 = 1, 2, . . . and n2 = 1, 2, . . .. This gives

dL2

dL1
= − K̃2L̃1L̃2

L̃4
3

,
V2

U1
= L̃2

3

2K̃L̃2
dL2 = − K̃L̃1

2L̃2
3

dL1 (6.8)

and

cos 1
2 L̃1 = cos 1

2 L̃2 = 0, sin 1
2 L̃1 = (−1)n1−1 and sin 1

2 L̃2 = (−1)n2−1, (6.9)

from which

ũ = U1h i

{
sin L̃1Y

sin 1
2 L̃1

+ L2
3

K̃2

sin L̃2Y

sin 1
2 L̃2

}
(6.10)

and

ṽ = U1h

{
L1

K̃

cos L̃1Y

sin 1
2 L̃1

− L̃2
3

K̃L̃2

cos L̃2Y

sin 1
2 L̃2

}
. (6.11)

Thus, ũ is a linear combination of sin((2n1 − 1)πY) and sin((2n2 − 1)πY), and ṽ is a linear
combination of cos((2n1 − 1)πY) and cos((2n2 − 1)πY). These correspond to the terms with n′ = n1
in the series for S̃o(Y, L̃1) and C̃o(Y, L̃1), and n′ = n2 in the series for S̃o(Y, L̃2) and C̃o(Y, L̃2), as
defined in (3.10)–(3.11). Hence, (6.10)–(6.11), i.e. the field at odd interior points, is obtainable from
individual terms in the series for u and v given by (3.6)–(3.11). Thus, truncations of the Fourier
series (3.6)–(3.11) capture the field exactly at odd interior points, i.e. at any desired number of the
points marked by upside triangles in dispersion diagrams as shown in figure 1.
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In the alternative Fourier series for u and v, defined by (3.1)–(3.2), the trigonometric terms with
argument (2n′ − 1)πY appear in u but not v. Hence as noted above, truncations of these series
capture u exactly, but not v, and there is no loss of symmetry between u and v in our results taken
as a whole. We also have an alternative explanation of a feature of the numerical results noted in
§5(b). This was that in the interpolatory region of the (Ω , K) plane, i.e. within the convex hull of
the symbols shown in figure 1, truncations of the Fourier series defined by (3.6)–(3.11) give more
accurate representations of the field shape than do truncations of (3.1)–(3.2). The explanation is
that the former is exact at more points in the (Ω , K) plane, so that the interpolation intervals
are shorter. Truncations of (3.1)–(3.2) display leap-frogging, in that as a branch of the dispersion
relation is ascended, either u or v is represented exactly at each symbol circle or triangle, but not
both u and v at any one symbol. By contrast, truncations of (3.6)–(3.11) represent both u and v

exactly each symbol.

(c) Lamé points
The field at the Lamé points (diamond) is found by starting with (L̃2, L̃3) = (2 mπ , 0) for m =
1, 2, . . ., and using the corresponding values of L̃1, Ω̃ , and K̃, where K̃ = L̃2 = 2 mπ . Near a Lamé
point, we take

(L2, L3) = (L̃2 + dL2, L̃3 + dL3). (6.12)

This gives

(dL3)4

dL2
= −1

2
K̃2L̃1L̃2 cot

1
2

L̃1,
U1

V2
= −1

2
K̃L̃2

dL2

(dL3)2 = (dL3)2

K̃L̃1
tan

1
2

L̃1 (6.13)

and

sin 1
2 L̃2 = 0, cos 1

2 L̃2 = (−1)m, (6.14)

from which

ũ = −V2hi
sin L̃2Y

cos 1
2 L̃2

, ṽ = V2h
cos L̃2Y

cos 1
2 L̃2

. (6.15)

Thus, Lamé points are in the same category as even interior points: truncations of the Fourier
series (3.6)–(3.11) capture the corresponding field (u, v) exactly, but truncations of the series (3.1)–
(3.2) capture only v exactly.

(d) Cut-on points
The P-wave cut-on points (asterisk) are given by K̃ = 0, L̃1 = 2 mπ , for m = 1, 2, . . .. Near a cut-on
point, we take K = dK, L1 = L̃1 + dL1, to obtain

(dK)2

dL1
= − L̃4

3

2L̃1L̃2
cot

1
2

L̃2,
U1

V2
= L̃2

3

2L̃1

dL1

dK
= − L̃2dK

L̃2
3

tan
1
2

L̃2, (6.16)

and cos 1
2 L̃1 = (−1)m, from which

ũ = V2hi
L̃2

3

L̃1dK

{
sin L̃1Y

cos 1
2 L̃1

− L̃1L̃2

L̃2
3

sin L̃2Y

cos 1
2 L̃2

}
and ṽ = V2h

L̃2
3

(dK)2
cos L̃1Y

cos 1
2 L̃1

. (6.17)

Here, ũ is negligible compared with ṽ, because of the squared term (dK)2 in the denominator of ṽ,
as is evident anyway from the fact that this is a thickness–stretch resonance. Thus, in examining
truncations of Fourier series, we need check only for the presence of a term in cos(2 mπY) in v.
This term is present in both types of series given in §3(a); hence, truncations of both types of series
capture the field shape exactly at P-wave cut-on points.



15

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150703

...................................................

For S-wave cut-on points (downside triangle), the analysis is similar. We put K̃ = 0, L̃2 = (2n −
1)π for n = 1, 2, . . ., and near a cut-on point take K = dK, L2 = L̃2 + dL2. This gives

(dK)2

dL2
= L̃4

3

2L̃1L̃2
cot

1
2

L̃1,
V2

U1
= L̃2

3

2L̃2

dL2

dK
= − L̃1dK

L̃2
3

cot
1
2

L̃1, (6.18)

and sin 1
2 L̃2 = (−1)n−1, from which

ũ = U1hi
L̃2

3
(dK)2

sin L̃2Y

sin 1
2 L̃2

and ṽ = U1h
L̃2

3

L̃2dK

{
L̃1L̃2

L̃2
3

cos L̃1Y

sin 1
2 L̃1

− cos L̃2Y

sin 1
2 L̃2

}
. (6.19)

Here, ṽ is negligible compared with ũ, as expected, because the wave is a thickness–shear
resonance. Therefore, in Fourier series, we look for the presence of a term in sin((2n − 1)πY) in u.
Such a term is present in both types of series in §3(a), and so truncations of both types of series
capture the field shape exactly at S-wave cut-on points.

7. Asymptotic theory
Given the important role played in this work by barycentric approximation, it is noteworthy
that exact formulae can be derived for the truncation errors incurred in using the finite sums
(4.4) instead of the complete expressions (4.2) for secant and cosecant. The exact formulae, (7.8)–
(7.9), appear to be new; they involve the gamma function Γ (z), especially via its logarithmic
derivative, the psi function ψ(z) = Γ ′(z)/Γ (z), and make available highly accurate asymptotic
approximations to the remainder terms by means of Stirling’s approximation. The formulae
involve auxiliary functions hm(z) for m = 0, 1

2 , 1, 3
2 , . . ., defined by

hm(z) =ψ(m + 1 + z) − ψ(m + 1 − z). (7.1)

They satisfy

h0(z) = 1
z

− π cotπz, (7.2)

and the recurrence relations

hm(z) − hm−1(z) = − 2z
m2 − z2 , (7.3)

hm(z) − hm(z − 1) = 2m + 1
(m − z + 1)(m + z)

(7.4)

and hm(z) − hm−1/2

(
z + 1

2

)
= − 1

m − z
, (7.5)

obtainable from the basic identities

ψ(z + 1) − ψ(z) = 1
z

(7.6)

and

ψ(z) − ψ(1 − z) = −π cotπz (7.7)

[8, ch. 5]. There are no recurrence relations giving simple expressions for hm(z) − hm−1/2(z) or
hm(z) − hm(z − 1

2 ).
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The exact formulae giving the remainders on truncation of the series for sec 1
2 L and cosec 1

2 L in
(4.2) are

sec
L
2

=
n∑

n′=1

(−1)n′
(2n′ − 1)π

1
4 L2 − {(n′ − 1

2 )π}2
+ (−1)n

2π

{
h(n−1)/2

(
L

4π
+ 1

4

)
− h(n−1)/2

(
L

4π
− 1

4

)}
(7.8)

and

cosec
L
2

=
m∑′

m′=0

(−1)m′
L

1
4 L2 − (m′π )2

+ (−1)m−1

2π

{
hm/2

(
L

4π

)
− h(m−1)/2

(
L

4π

)}
. (7.9)

These may be deduced from the ratio of the gamma function expressions for sine and cosine given
in equations (1.2)–(1.3) of [1]; the logarithmic derivative of this ratio, after some rearrangement,
gives (7.9) for the cosecant, and a transformation of the argument of (7.9) gives (7.8) for the secant.

The analytical structure of (7.8)–(7.9) is reflected in the identities (7.3)–(7.5). For example, if m
or n is decreased by 1, the effect is to place the last term of the sum in the remainder; this must
be equivalent to reducing the index of the remainder by 1, and this fact is expressed by (7.3).
The other identities reflect periodicity with respect to L, and functional properties under such
transformations as L �→ L + 2π or L �→ L + 4π . When written out in full, each remainder is a linear
combination of four psi functions, with appropriate arguments.

Stirling’s approximation to hm(z), with the 1
12 correction included [8, p. 140], is

hm(z) � ln
(

m + z
m − z

)
− z

m2 − z2 + z(m + 1/24)
3(m2 − z2){(m + 1/12)2 − z2} , (7.10)

which is highly accurate for |z| ≤ m + 1
2 . There is a tricky point regarding the sign of the middle

term in this expression. If m is replaced by m + 1 in (7.3) and (7.10), the result can be rearranged
to give the alternative approximation

hm(z) � ln
(

m + 1 + z
m + 1 − z

)
+ z

(m + 1)2 − z2 + z(m + 1 + 1/24)
3((m + 1)2 − z2){(m + 1 + 1/12)2 − z2} , (7.11)

in which the sign of the middle term has changed. At first sight, this appears to be an error. In fact,
a careful re-expansion of the right-hand side of (7.11) for large m produces an extra term of twice
the magnitude of the second term, and of opposite sign, so that the two expansions are consistent.
The explanation in relation to the original infinite series is that the terms alternate in sign, and the
psi functions in the definition of hm(z) are correctly keeping track of the term which comes or goes
when m is changed by 1. Hence, either of the approximations for hm may be used.

Numerical tests show that the use of approximation (7.10) or (7.11) in the barycentric form of
the dispersion relation gives results of comparable accuracy to the previous results with Euler
truncation of order r = 3, which were shown in figure 1. Within the interpolation region of the
figure, i.e. below the Lamé line, reasonable accuracy is maintained when some or all of the terms
in (7.10) and (7.11) are omitted. However, accuracy on the Rayleigh wave branch requires at least
the logarithmic term to be included, and if accuracy up to high frequencies for modest m and n is
required, then all three terms should be kept.

It is a principle in asymptotic theory that at the first sign of difficulty, one should consider
whether a logarithmic term has been omitted. The above results show that the principle applies
here. It can happen that an expansion works well except on one branch, where a large number
of terms is needed to obtain good accuracy, unless another term, of a different analytical type, is
included. This phenomenon occurs in other problems in wave theory, for example in boundary-
layer flows [13].

8. Conclusion
The results in this paper demonstrate that reduced-order models of the wave field in a layer
can be accurate up to high frequencies and wavenumbers, yet correspond to dispersion relations
which are only low-order polynomials. The construction of such models involves a familiar idea,
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that of expansion in a finite number of elementary functions, combined with an idea whose full
power has only recently been appreciated, that of barycentric representation and approximation.
The results provide a numerical advance on [3] to high wavenumbers, and a theoretical advance
on [4] to analytical understanding of the numerical results.

As pointed out in [1], many applications of the theory of waves and stability lead to dispersion
relations which, though complicated and containing many terms, amount to generalizations
of (2.12) containing further trigonometric expressions. For example, they occur in problems of
fluid loading [14], homogenization [15], anisotropy [16] and elastic instability [17]. The method
presented in this paper applies to all problems of such type; in the case of stability analysis, the
principal difference is that the frequency is allowed to be complex. Thus, reduced-order models
of simple structure which are exact on a grid of points in the (frequency, wavenumber) plane can
be obtained in a very wide range of problems requiring the theory of waves and stability.
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