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ABSTRACT

Clustered regularly interspaced short palindromic repeat (CRISPR) systems are the
adaptive immune systems of bacteria and archaea against viral infection. While
CRISPRs have been exploited as a tool for genetic engineering, their spacer sequences
can also provide valuable insights into microbial ecology by linking environmental
viruses to their microbial hosts. Despite this importance, metagenomic CRISPR
detection remains a major challenge. Here we present a reference-guided CRISPR spacer
detection tool (Metagenomic CRISPR Reference-Aided Search Tool-—MetaCRAST)
that constrains searches based on user-specified direct repeats (DRs). These DRs could
be expected from assembly or taxonomic profiles of metagenomes. We compared the
performance of MetaCRAST to those of two existing metagenomic CRISPR detection
tools—Crass and MinCED—using both real and simulated acid mine drainage (AMD)
and enhanced biological phosphorus removal (EBPR) metagenomes. Our evaluation
shows MetaCRAST improves CRISPR spacer detection in real metagenomes compared
to the de novo CRISPR detection methods Crass and MinCED. Evaluation on simulated
metagenomes show it performs better than de novo tools for I[llumina metagenomes and
comparably for 454 metagenomes. It also has comparable performance dependence
on read length and community composition, run time, and accuracy to these tools.
MetaCRAST is implemented in Perl, parallelizable through the Many Core Engine
(MCE), and takes metagenomic sequence reads and direct repeat queries (FASTA or
FASTQ) as input. It is freely available for download at https://github.com/molleraj/
MetaCRAST.

Subjects Bioinformatics, Computational Biology, Ecology, Genomics, Microbiology

Keywords Metagenomics, Repetitive sequences, CRISPR, Microbial ecology, Virus-host
interactions

INTRODUCTION

The clustered regularly interspaced short palindromic repeat (CRISPR) arrays found in
prokaryotic genomes can help us better understand viral-microbial interactions important
in many ecosystems. Viruses can release cellular nutrients back into the ecosystem through
lytic infection, forming an ecological short-circuit called the viral shunt (Weitz ¢ Wilhelm,
2012). In this manner, viruses not only contribute to nutrient cycling in individual
ecosystems, but also to maintaining biogeochemical cycles on a broader scale. The short
spacers of viral DNA incorporated into CRISPR arrays form a historical record of past
infections, thus linking virus to host (Sorek, Kunin ¢» Hugenholtz, 2008; Makarova, Wolf
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¢ Koonin, 2013). This power of CRISPR spacers to determine viruses’ host specificity has
recently been exploited using metagenomes from many ecosystems (Anderson, Brazelton
& Baross, 20115 Sanguino et al., 2015; Edwards et al., 2015). While many tools exist for
detecting CRISPRs in assembled genomes (Bland et al., 2007; Edgar, 2007; Grissa, Vergnaud
& Pourcel, 2007a; Rousseau et al., 2009), few exist for CRISPR detection in metagenomic
reads (Rho et al., 2012; Skennerton, Imelfort & Tyson, 2013; Skennerton, 2006).

The repetitive nature of CRISPRs makes them difficult to assemble from metagenomes,
necessitating special tools to detect them in unassembled reads. Several tools have been
developed to detect and assemble CRISPR arrays in unassembled reads rather than
assembled contigs. The tool MinCED (Mining CRISPRs in Environmental Datasets),
like metaCRT (Rho et al., 2012), is a modified version of CRT (Bland et al., 2007) that
detects CRISPR spacers (Skennerton, 2006), while the tool Crass (CRISPR assembler)
detects and assembles CRISPR arrays (Skennerton, Imelfort & Tyson, 2013), both from raw
metagenomic reads. MinCED searches each read for CRISPRs using the same strategy as
CRT; it searches for appropriately spaced short k-mers from which it extends longer repeats
if appropriately frequent nucleotides are identified at the ends of the growing repeats. Crass
relies on a hybrid algorithm to detect spacers that blends strategies of CRT (Bland et al.,
2007) and CRISPRFinder (Grissa, Vergnaud ¢» Pourcel, 2007b). In long reads (>177 bp), it
searches for repeats using the CRT strategy previously described. In short reads (<177 bp),
on the other hand, it searches for appropriately spaced full-length repeats (i.e., 20-50 bp)
and extends these repeats only with identical nucleotides, thus avoiding the potential errors
caused by the CRT algorithm over- or under-extending the few repeats found in a short
sequence. Crass then searches further for reads containing a single repeat, determines
consensus direct repeats, uses the first and last k-mers of detected spacers to build a graph
of spacer arrangement, and assembles CRISPR arrays using this graph. Both MinCED and
Crass do not rely on prior knowledge of direct repeat sequences, making them de novo
detection methods. Instead, they use heuristics to determine whether detected repeats are
indeed CRISPRs. Such heuristics include threshold array lengths to avoid short, spurious
CRISPR arrays and threshold repeat-spacer similarities to avoid arrays where spacers are
too similar to repeats (Bland et al., 2007; Grissa, Vergnaud & Pourcel, 2007a; Skennerton,
Imelfort & Tyson, 2013), which might indicate microsatellites rather than CRISPRs.

In this work, we present the Metagenomic CRISPR Reference-Aided Search Tool
(MetaCRAST), a novel reference-guided tool to improve CRISPR spacer detection in
unassembled metagenomic sequence reads. While MetaCRAST, to our knowledge, is
the first reference-guided, read-dependent metagenomic CRISPR detection tool, prior
studies have used known direct repeats to improve CRISPR detection. The genomic
CRISPR identification algorithm CRISPRDetect matches newly identified direct repeats to
a reference library to refine repeat boundaries and validate arrays (Biswas et al., 2016).
Searching reference repeat libraries, together with annotating cas genes adjacent to
CRISPR arrays, has been used to exclude false positive “putative” CRISPRs from CRISPR
annotation (Zhang & Ye, 2017). Unlike MinCED and Crass, as a reference-guided method,
MetaCRAST constrains spacer detection by searching metagenomes for direct repeats
(DRs) that the user specifies. Relationships amongst these tools and such differences in
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Figure 1 This diagram outlines relationships amongst different metagenomic CRISPR detection
methods. CRISPR detection can be performed either using specified direct repeats (reference-guided
detection) or without prior knowledge of direct repeat sequences (de novo detection). De novo detection
searches raw metagenomic reads for direct repeat sequences of the appropriate length and spacing

(i.e., 25-60 bp long repeats with 2560 bp spacers between them). De novo detection techniques either
detect spacers in reads only (MinCED) or assemble reads into arrays (Crass). Reference-guided CRISPR
detection, on the other hand, searches reads for user-specified direct repeat sequences, and extracts spacers
from between direct repeat sequences identified in reads containing direct repeats. While the query is
user-specified, general strategies for generating a query include using direct repeats found in assembled
metagenomic contigs with CRISPR array detection tools (e.g., PILER-CR) or direct repeats found in
genomic CRISPR arrays (e.g., those found in microbial genomes included in CRISPRdb) that might be
expected based on taxonomic profiles. An example of the latter strategy would be searching for known
genomic Streptococcus pyogenes direct repeats if Streptococcus pyogenes is found in the metagenome’s
taxonomic profile.

use are further illustrated in Fig. 1. Such specified DRs may be selected based on assembly
or taxonomic profiling of metagenomic reads. MetaCRAST improves CRISPR annotation
by allowing users to control for the taxonomic composition of the metagenome. It also
avoids the rejection of true CRISPRs that can occur due to the heuristics required for de
novo detection methods. In addition, unlike Crass and MinCED, MetaCRAST provides
consistent performance over different read length Illumina datasets.

MATERIALS AND METHODS

Algorithm and implementation

MetaCRAST can constrain spacer detection by expected host species’ DRs or DRs identified
from assembly (Fig. 2A). It searches each read for DR sequences matching query DRs
specified by the user. These DRs can be selected from CRISPR arrays detected with
genomic CRISPR detection tools such as PILER-CR (Edgar, 2007), CRF (Wang ¢ Liang,
2017), or CRISPRFinder (Grissa, Vergnaud ¢ Pourcel, 2007b) in fully assembled microbial
genomes or assembled metagenomic contigs. The steps of the MetaCRAST pipeline are
outlined in Fig. 2B. In the first step of the pipeline, reads containing DRs within a certain
Levenshtein edit distance (i.e., number of insertions, deletions, or substitutions necessary
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Figure 2 A comparison of per-read CRISPR detection strategies (A) between MetaCRAST and existing
de novo detection tools (e.g., Crass, MinCED) and an outline of the MetaCRAST workflow (B). DR rep-
resents direct repeat, while S represents spacer.

to convert one sequence to another) of the query DRs are quickly identified using the
Wu-Manber multi-pattern search algorithm (Wu, Manber & Myers, 1995). In the second
step, individual reads found to contain a query DR sequence are searched for two or
more copies of the query DRs. In the third step, the sequence fragments between the DRs
detected in these sequence reads are extracted into a comprehensive spacer set, which are
then clustered using CD-HIT into a non-redundant unique spacer set stored in FASTA
format (Li & Godzik, 2006).

MetaCRAST is implemented in Perl as a command line tool to analyze metagenomes in
FASTA or FASTQ formats. The tool has been implemented in several versions that differ
in metagenome loading method (using BioPerl or readfq, the latter of which was paired
either with the standard open routine to load a single file or mce_open for parallel file
loading). Optionally, the user can specify the maximum spacer length, the distance metric
used for comparing DRs to reads (Hamming or Levenshtein), whether to search for the
reverse complement of the DR, the CD-HIT similarity threshold for clustering spacers, and
the maximum number of threads to use to parallelize the search. The reverse complement
argument (-r) should be used when the CRISPR direction is unknown. When the search
is run in parallel, the FASTA (or FASTQ) file is split based on the specified number of
threads. All command line arguments are further described in Table 1. Each split file is
searched in parallel. An additional tool has been provided to assist taxonomy-guided query
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Table 1 Command line arguments for MetaCRAST. Required arguments are in bold.

Argument Description

-p Pattern file containing query DR sequences in FASTA or FASTQ format

-i Input metagenome in FASTA or FASTQ format

-0 Output directory for detected reads and spacers

-d Allowed edit distance (insertions, deletions, or substitutions) for initial read detection
with the Wu-Manber algorithm and subsequent DR detection steps

-t Temporary directory to put metagenome parts (use this if -n option also selected)

-q Input metagenome is a FASTQ file (directs use of fastq-splitter.pl instead of

fasta-splitter.pl)

-h Use Hamming distance metric (substitutions only - no insertions or deletions) to find
direct repeat locations in reads (default: use Levenshtein distance metric - look for
sequences matching DR within insertion, deletion, and/or substitution edit distance)

-r Search for reverse complement of CRISPR direct repeat sequences

-1 Maximum spacer length in bp

-c CD-HIT similarity threshold for clustering spacers detected for each query direct repeat
(value from 0 to 1)

-a CD-HIT similarity threshold for clustering all detected spacers (value from 0 to 1)

-n Number of processors to use for parallel processing (and number of temporary

metagenome parts)

selection. This tool searches a taxonomically-annotated library of CRISPRdb DRs for those
that belong to a particular taxon query (e.g., Streptococcus).

To analyze the distribution of taxonomic affiliations to direct repeats, we examined
all direct repeats found in microbial genomes using the CRISPRdb database. CRISPRdb
provides a library of direct repeats labeled with respective GenBank accessions in the
CRISPR utilities section of the database (Grissa, Vergnaud ¢ Pourcel, 2007a). We processed
this library to assign taxonomy information based on GenBank accession. Taxonomy
information was extracted from GenBank records with the Perl module Bio::DB::GenBank.
Statistics describing the distribution of unique binomial names or genuses to which
individual direct repeats affiliated was compiled with Microsoft Excel. Binomial name
(species-level) and genus statistics are presented in Table 2.

Performance evaluation with simulated and real metagenomes

To study the relationship between CRISPR spacer detection and read length or sequencing
technology, simulated acid mine drainage (AMD) and enhanced biological phosphorus
removal (EBPR) metagenomes were generated using Grinder (Angly et al., 2012). We
generated simulated metagenomes over a range of average read lengths (100 to 600 base
pairs) using models of 454 (Balzer et al., 2010) and Illumina (Korbel et al., 2009) errors.
Following previous studies, we used a fourth-degree polynomial (3e—3 + 3.3e—8 * i,
where i is the nucleotide position from the 5" end of the read, and the output is percentage
chance of an error at that position) to model the Illumina sequencing error rate (Dohm et
al., 2008; Korbel et al., 2009; Angly et al., 2012). This polynomial determined the probability
of substitution, insertion, or deletion at each base of a simulated read (Korbel et al., 2009).
For [llumina simulations, the ratio of substitutions to insertions and deletions was set to
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Table 2 Distribution statistics for binomial name and genus-level taxonomic affiliation of CRISPRdb
direct repeats. A library of direct repeats labeled with respective GenBank accessions from CRISPRdb was
processed to assign taxonomy information based on GenBank accession. Taxonomy information was ex-
tracted from GenBank records with the Perl module Bio::DB::GenBank. Statistics describing the distribu-
tion of binomial names or genuses to which individual direct repeats affiliated were compiled with Mi-
crosoft Excel.

Statistic Binomial names Genuses
Mean 1.308 1.063
Median 1 1

Mode 1 1
Minimum 1 1
Maximum 46 20
Standard deviation 1.567 0.521

80:20 by default. For 454 metagenome simulations, we modeled homopolymer errors as
homopolymer length variation within simulated reads. The distributions of homopolymer
lengths were defined by the mean n and standard deviation 0.03494 4 n * 0.06856, where
n is the homopolymer length, based on a prior study (Balzer et al., 2010; Angly et al., 2012).
We generated six simulated metagenomes per condition (average read length, model,
and microbial community). We used highly simplified taxonomic profiles to model the
AMD and EBPR metagenomes (Tables S1 and S2). To test the effects of community
composition on spacer detection, we simulated the AMD metagenome with a 454 error
model and 600 bp average read length, varying the relative proportions of Leptospirillum
and Ferroplasma genome used for the simulation (i.e., from 0 to 100% Leptospirillum). All
simulated metagenomes contained 100,000 reads. 454 metagenomes were generated with
this command: grinder -reference_file AMDgenomes.fasta—abundance_file AMDprofile.txt
-total_reads 100000 -read_dist (one of 100, 150, 200, 250, 300, 400, or 600) normal 50 -
homopolymer_dist balzer. All 454 read length distributions were normal with a standard
deviation of 50 bp. Illumina metagenomes were generated with this command: grinder
-reference_file AMDgenomes.fasta -abundance_file AMDprofile.txt -total_reads 100000 -
read_dist (one of 100, 150, 200, 250, or 300) -md poly4 3e—3 3.3e—8. All Illumina read
length distributions were uniform with all reads having exactly the average read length.
Simulated metagenomes were searched for CRISPR spacers using Crass (Skennerton,
Imelfort & Tyson, 2013), MinCED (Skennerton), and MetaCRAST. Crass and MinCED
were run with default parameters (crass grinder-reads.fa; minced -spacers grinder-reads.fa
minced.crispr). The default minimum and maximum DR lengths for both Crass and
MinCED were 23 and 47 bp. The default minimum and maximum spacer lengths for both
Crass and MinCED were 26 and 50 bp. MetaCRAST was run with a taxonomy-guided
query (Tables S3 and 54), a maximum spacer length of 60, a maximum allowed edit
distance (insertions, deletions, or substitutions) between query and target direct repeats
of three, a CD-HIT clustering similarity threshold of 0.9, and a total of 16 parallel threads
(MetaCRAST -p query.fa -i grinder-reads.fa -o MetaCRAST -d 3 -160 -¢c 0.90 -a 0.90 -n 16
-t tmp). We selected a maximum allowed edit distance of three based on results of our
prior metagenomic CRISPR detection studies, which showed MetaCRAST searches with a
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taxonomy-guided query that found similar numbers of spacers to Crass when we set this
edit distance (Moller ¢ Liang, 2017). For all analyses, detected spacers were clustered with
CD-HIT with a similarity threshold of 0.9 (cdhit -i spacers.fa -o spacersCD90.fa -c 0.9) to
reduce spacer redundancy. Performance on these simulated metagenomes was evaluated
based on total number of spacers detected, number of false positive spacers detected,
and run time for each average read length. For the mixed composition simulated AMD
metagenomes described above, spacers were aligned against CRISPR spacers present in the
source Leptospirillum and Ferroplasma genomes and the number of matching true positive
spacers for each organism were reported.

The number of false positive spacers found in simulated metagenomes was determined
by comparing the total detected spacers with the expected CRISPRdb spacers found in the
source genomes used for the simulations (AMD and EBPR). Alignments were made to the
annotated CRISPRdD spacers using BLAST with an E-value cutoff of 1e—6 (Altschul et al.,
1990). This analysis was repeated with an E-value cutoff of le—1 to consider whether the
original threshold was too stringent. The number of detected spacers that were aligned
to expected ones was subtracted from the total number of spacers detected to determine
the number of false positive spacers for a particular method and condition. Cases where
zero spacers were detected in a metagenome were treated as zero false positive spacers and
included in overall analysis. Run times were determined for each metagenome and method
using the built-in Linux command time. Run time was calculated as the sum of the user
and system time (together the total CPU time).

Similarly, CRISPR spacers were also detected by the aforementioned three tools in real
AMD and EBPR metagenomes (Table S5) downloaded from iMicrobe (Hurwitz, 2014) and
taxonomically profiled with MetaPhyler (Liu et al., 2011). MetaCRAST analyses of the real
metagenomes were performed with taxonomy- or assembly-guided query DRs generated as
follows. To make an assembly-guided query, CAP3-assembled contigs (Huang ¢» Madan,
1999) were searched for CRISPR DRs using PILER-CR (Edgar, 2007), which finds CRISPRs
in assembled genomes or contigs. These DRs formed an assembly-guided query (Tables 56
and S7), while DRs found in assembled Leptospirillum (AMD), Ferroplasma (AMD), and
Candidatus Accumulibacter phosphatis (EBPR) genomes included in CRISPRdb (Grissa,
Vergnaud & Pourcel, 2007a) formed a taxonomy-guided query (Tables S3 and 54). All of
these aforementioned taxa were found to be major components of the microbial community
based on the AMD and EBPR taxonomic profiles determined with MetaPhyler (Tables S8
and S9).

RESULTS

Effects of read length, sequencing technology, and community com-
position on CRISPR spacer detection

We first investigated the relationships between detected spacers and read length or
sequencing technology. Performance, here determined by the number of spacers detected,
increased with read length over all 454 tests (Fig. 3). While the total number of spacers
detected by Crass and MetaCRAST converged as read length increased, the total number
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Figure 3 Evaluation of MetaCRAST, Crass, and MinCED performance on simulated AMD (A and B)
and EBPR (C and D) metagenomes. The procedure used to generate the simulated metagenomes is de-
scribed in Materials and Methods. All data points represent the averages of six individual simulations and
are presented with error bars representing two times the standard error above and two below the average.
The true number of spacers expected in each simulated metagenome is marked with a black line (138 ex-
pected in the AMD metagenomes; 219 in the EBPR metagenomes).

of spacers detected by MinCED steadily increased even beyond the true number of spacers
found in the genomes used to generate the simulated metagenomes. We speculate that
MinCED inconsistently determined DR lengths amongst different CRISPR-containing
reads due to its CRT-based algorithm, leading to the same spacers being inappropriately
truncated or extended. Meanwhile, amongst metagenomes simulated with the Illumina
model, MetaCRAST detected significantly more spacers than Crass and MinCED for average
read lengths of 200 bp or greater (Fig. 3; p < 0.05 for both AMD and EBPR simulations
using unpaired t-tests). Crass detected more spacers than MinCED and MetaCRAST for
short Illumina reads (100 and 150 bp), however (Fig. 3; p < 0.05 for both AMD and EBPR
simulations using unpaired ¢-tests).

We also tested the effects of community composition on CRISPR detection for each of
the three methods using AMD metagenomes simulated with a 454 error model and 600 bp
average read length. We selected the 600 bp average read length for all mixed metagenomes
to minimize differences in detection between methods based on read length (Fig. 3). We
varied the relative abundances of Leptospirillum and Ferroplasma from 0 to 100 percent
in our taxonomic profiles, thus varying the proportions of CRISPR arrays specific to
each included in the simulated metagenomes. For all detection methods, detected spacers
specific to a genome decreased as the relative proportion of that taxon decreased, with
roughly the same pattern for each method (Fig. 4). As in the read length studies, MinCED
consistently detected far more genome-specific spacers in the metagenomes than were
originally present in the source genomes (Fig. 4). This may account for its steeper increase
in detected genome-specific spacers as the proportion of the corresponding genome in the
simulated metagenomes increased.
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Figure 4 Evaluation of MetaCRAST, Crass, and MinCED performance on simulated metagenomes
with varying proportions of Ferroplasma acidarmanus ferl and Leptospirillum sp. Group II ‘CF-1’
genome sequences. Simulated metagenomes were generated with Grinder. The data points shown repre-
sent the average number of “true positive” spacers detected that matched spacers in corresponding Fer-
roplasma or Leptospirillum CRISPR arrays (A and B, respectively). All data points represent the averages
of six individual simulations and are presented with error bars representing two times the standard error
above and two below the average. The true number of spacers expected for each genome is marked with a
black line (20 expected in the Ferroplasma genome; 118 in the Leptospirillum genome).

Evaluation of CRISPR spacer detection on real AMD and EBPR
metagenomes

We also evaluated MetaCRAST against Crass and MinCED using real AMD and EBPR
metagenomes (Tyson et al., 2004; Martin et al., 2006). While taxonomy-guided queries
consistently found fewer spacers than the other two methods (583 compared to 2,486
for Crass and 4,265 for MinCED in the AMD metagenome; 196 compared to 1,014 for
Crass and 1,821 for MinCED in the EBPR metagenome), an assembly-guided MetaCRAST
search identified more spacers than Crass did in the AMD metagenome (2,813 compared
to 2,486—Fig. 5A). In both AMD and EBPR metagenomes, many common spacers were
detected amongst Crass, MetaCRAST (assembly-guided query), and MinCED (7.1% of
all detected spacers for AMD and 2.5% for EBPR—Figs. 5B and 5C). Despite this, there
were also many spacers detected with Crass and MinCED not identified with MetaCRAST
searches (Figs. 5B and 5C). Notably, however, none of the spacers detected with MetaCRAST
using the taxonomy-guided query overlapped with the Crass-detected spacers (Figs. 5B
and 5C), suggesting MetaCRAST can detect spacers missed by Crass given an appropriate
taxonomy-guided query.

Evaluation of accuracy and runtime performance

In addition to our studies comparing detected spacers over a variety of conditions, we
evaluated all three detection methods for spacer detection accuracy and run time (Figs. 6
and 7). We performed these evaluations on the simulated AMD and EBPR metagenomes
previously used to examine effects of read length and sequencing technology on CRISPR
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Figure 5 Evaluation of MetaCRAST, Crass, and MinCED on real AMD and EBPR metagenomes. (A)
Total number of CRISPR spacers detected in real AMD and EBPR metagenomes using four different
detection methods—Crass (de novo), MetaCRAST (using assembly-guided queries), MetaCRAST
(using taxonomy-guided queries), and MinCED (de novo). Taxonomy-guided and assembly-guided
queries are provided as Tables S3—54 and S6-S7. (B) Comparison of spacers detected in the real AMD
metagenome using Crass (de novo), MetaCRAST (using taxonomy-guided queries), MetaCRAST
(using assembly-guided queries), and MinCED (de novo). Comparison was performed using Venny

2.1 (http://bioinfogp.cnb.csic.es/tools/venny/). (C) Comparison of spacers detected in the real EBPR
metagenome using the same methods as in (B) Comparison was performed using Venny 2.1.

detection (Fig. 3). For AMD metagenomes simulated with the 454 model, MinCED detected
significantly more false positive spacers than Crass or MetaCRAST for average read lengths
of 200 bp or more (Fig. 6; p < 0.05 using unpaired ¢-tests). Crass and MetaCRAST, on
the other hand, did not have statistically significant differences in detected false positive
spacers over the entire range of average read lengths (p > 0.05 using unpaired ¢-tests). For
the AMD Illumina metagenomes, on the other hand, MetaCRAST generated the largest
number of false positive spacers for average read lengths greater than 200 bp (Crass for
average read lengths of 150 bp and lower), but not by a statistically significant margin
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Figure 6 Evaluation of MetaCRAST, Crass, and MinCED false positive detection on simulated AMD
(A and B) and EBPR (C and D) metagenomes. The procedure for generating the simulated metagenomes
is described in Materials and Methods. The number of detected spacers matching expected ones was sub-
tracted from the total number of spacers detected to determine the number of false positive spacers for a
particular method and condition. All data points represent the averages of three individual simulations
and are presented with error bars representing two times the standard error above and two below the aver-
age.

compared with MinCED (p > 0.05 using unpaired ¢-tests). For the EBPR metagenomes
simulated with the 454 model, there were remarkably few false positive spacers detected
with all methods over the full range of average read lengths. For the EBPR Illumina
metagenomes, MinCED generated the largest number of false positive spacers for average
read lengths greater than 200 bp (Crass for average read lengths of 150 bp and lower), with
MetaCRAST overlapping its pattern closely (Fig. 6). Because of this overlap, differences
between MinCED and MetaCRAST false positive spacers were not statistically significant
(p > 0.05 using unpaired t-tests), (EBPR Illumina metagenomes, Fig. 6). MetaCRAST
did detect more false positives than MinCED for the 200 bp read length (p < 0.05 using
unpaired t-tests, EBPR Illumina metagenomes, Fig. 6). We note that these false positive
spacers are only detected spacers that did not align to expected ones. The false positives
do not necessarily include improperly truncated or extended spacers, which we suspect
MinCED creates, leading to its artificially high spacer counts (Fig. 3). We repeated this
false positive spacer analysis using a weaker E-value threshold of 1e—1 (Fig. S1). Using this
weaker threshold decreased the number of false positive spacers identified in all conditions
(Fig. S1).

We also evaluated relative speed of the detection methods using the Linux function
time. We evaluated seven different combinations of algorithms, implementations,
and parameters. We evaluated both Crass and MinCED with default parameters. For
MetaCRAST, we evaluated five different conditions differing in parallelization and
metagenome loading method—BioPerl for loading and 16 threads, BioPerl and a single
thread, readfq with mce_open for loading and 16 threads, readfq with mce_open and a
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Figure 7 Evaluation of MetaCRAST, Crass, and MinCED run times on simulated AMD (A and B) and
EBPR (C and D) metagenomes. We evaluated seven different combinations of algorithms, implementa-
tions, and parameters. We evaluated both Crass and MinCED with default parameters. For MetaCRAST,
we evaluated five different conditions differing in parallelization and metagenome loading method—
BioPerl loading and 16 threads, BioPerl and a single thread, readfq with mce_open for loading and 16
threads, readfq with mce_open and a single thread, and readfq with the standard open routine and a single
thread. The procedure for generating the simulated metagenomes is described in Materials and Methods.
Run time was calculated as the sum of the user and system time (together the total CPU time). All data
points represent the averages of three individual simulations and are presented with error bars represent-
ing two times the standard error above and two below the average.

single thread, and readfq with the standard open routine and a single thread (Fig. 7). We
used CPU time (user and system time) rather than wall clock time (real time) as a measure
of speed performance.

We noticed steady increases in run time with increasing read length for all detection
methods, metagenomes, and sequencing technologies (Fig. 7). MetaCRAST showed a linear
CPU time dependence on read length in all cases (R?> > 0.98 in all cases; p-values calculated
from Pearson correlation were less than 1le—5 in all cases), while linear correlations for
MinCED and crass were much weaker (R? < 0.88 in all cases; p-values calculated from the
Pearson correlations were more than 0.05 for Illumina datasets but between 9e—4 and 8e—3
for 454 datasets). Among MetaCRAST implementations, the readfq/open version used the
least CPU time by statistically significant margins for all conditions (Fig. 7; p < 0.05 in all
cases using unpaired t-tests). MetaCRAST was slower than Crass for all read lengths by
statistically significant margins (Fig. 7; p < 0.05 in all cases using unpaired ¢-tests). On the
other hand, it was faster than MinCED for 454 read lengths between 100 and 400 bp and
[lumina read lengths between 100 and 250 bp (Fig. 7; p < 0.05 using unpaired ¢ -tests).

Taxonomic affiliations of CRISPR direct repeats annotated in
CRISPRdb

To analyze how direct repeats affiliated to taxa, we examined all direct repeats annotated in
microbial genomes using the CRISPRdb database. We used a Perl script to assign taxonomy
information based on GenBank accession using the module Bio::DB::GenBank. The results
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of this analysis for species (binomial name) and genus-level designations are presented
in Table 2. The average number of unique taxon designations per DR was greater at the
species level than the genus level (1.308 compared to 1.063). Variation was also greater for
species-level designations compared to genus-level (standard deviation of 1.567 compared
0.521). Both species- and genus-level analyses identified DRs that were affiliated to many
taxa (a maximum of 20 genuses and 46 species). We acknowledge that our analysis does not
examine the number of unique DRs per taxon. It also only considers independent, unique
DRs, ignoring the possibility that many unique DRs may have closely related sequences.

DISCUSSION

In this work, we present and evaluate a novel reference-guided method for CRISPR
detection in unassembled metagenomic reads. This method searches metagenomic reads
for user-specified direct repeats which could be provided through taxonomy- or assembly-
guided searches (Figs. 1 and 2). We analyzed currently known DRs with respect to
their taxonomic designations to determine the robustness of taxonomy-guided searches
(Table 2). We found that most DRs in fact do affiliate to a single species or genus, but
there are exceptions that may have arisen through horizontal gene transfer (Table 2). This
analysis does not consider small polymorphisms between closely related DRs. Depending
on the circumstance, it may be important to consider whether one DR could be present in
multiple taxa found in a sample.

Our studies of simulated metagenomes show distinct advantages for Crass and
MetaCRAST depending on average read length (Fig. 3). While the modified assembly
procedure and exhaustive searches Crass provides make it well suited for short read
454 and Ilumina metagenomes, MetaCRAST outperforms Crass for long read Illumina
metagenomes (Fig. 3). We speculate that heuristics to avoid misassembly of CRISPR arrays
or improper repeat detection may hinder Crass in these long-read Illumina metagenomes.
We also noted that all three algorithms detected far more spacers in 454 compared to
[llumina metagenomes (Fig. 3). We have two possible explanations for this phenomenon.
First, our algorithms may have handled homopolymer error better than the substitution
error simulated in the Illumina metagenomes. Second, our Illumina model may have
introduced higher error rates than the 454 error model, making it more difficult to find
multiple similar DRs in the reads. The very high numbers of MinCED-detected spacers
are deceptive because this algorithm has the potential for substantial errors in determining
repeat and spacer lengths (Figs. 3 and 4). Inconsistencies in defining repeat length leads to
false splitting of identical spacers into different groups.

Studies on real metagenomes suggest substantial advantages for Crass and MinCED in
terms of numbers of detected spacers (Fig. 5). While in most cases MetaCRAST detected
fewer spacers than Crass or MinCED, it did identify spacers unique to those from the
two other methods. This suggests that it can complement these methods, finding spacers
missed due to the heuristics that Crass and MinCED use to avoid false positives (Fig. 5).
We had expected that MetaCRAST would underperform compared to Crass and MinCED
in these real metagenomes, because the taxonomy-guided queries we used did not fully
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account for all the taxa found with taxonomic profiling. We only used one or two genomes
to simulate the AMD and EBPR metagenomes, making the simulated metagenomes much
simpler in taxonomic diversity. This simplification was what made MetaCRAST detection
performance comparable to that of Crass and MinCED for the simulations.

Accuracy was roughly similar amongst the three tools (Fig. 6). Relaxing the error
threshold reduced false positive spacers detected by all tools, suggesting sequencing error
rather than algorithm issues could account for some of these false positive spacers (Fig. S1).
MetaCRAST follows the same pattern of increasing run time with average read length as the
other two tools, and it is comparable in run time to MinCED (Fig. 7). MetaCRAST run time
increases linearly with average read length (Fig. 7). We acknowledge that implementation of
the algorithm in a compiled language or increasing the number of threads used to parallelize
the search could further improve MetaCRAST speed. Nonetheless, while MetaCRAST is
not as fast as the compiled program Crass under the conditions tested, it does identify
spacers distinct from these methods in real metagenomes and outperforms it in overall
spacer detection for simulated [llumina metagenomes.

Recent studies of computational methods for determining phage-host interactions
suggest CRISPR spacer alignment is a highly accurate signature of phage-host interaction
but that most identified CRISPR spacers do not align to known phage genomes (Edwards et
al., 2015). This suggests that it is critical to improve metagenomic CRISPR spacer detection
to increase the chances of matching spacers to viral genomes. More broadly, increasing
spacer matching would provide a fuller appreciation of a microbial ecosystem’s phage-host
interaction space. We have recently used MetaCRAST to improve our determination
of virus-host interactions in solar salterns (Moller ¢» Liang, 2017), complementing Crass
with our spacer detection method. MetaCRAST complements de novo methods like Crass
because it avoids the heuristics they use to reduce false positive spacers. Using a targeted
direct repeat query, our tool can avoid the false negative bias of these approaches. We
anticipate that MetaCRAST will be of great interest to microbial ecologists interested in
phage-host interactions because it complements existing de novo methods to improve
metagenomic CRISPR detection.
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