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Purpose: The function of curcumin on the gastric cancer cell line, SGC-7901 is unknown.

The present study aimed to observe the effects of curcumin on gastric cancer cells through

the Shh and Wnt signaling pathways.

Methods: SGC-7901 cells were transfected with si-Gli1 and si-β-catenin siRNA, then cells

were stimulated with curcumin and its effects on cell migration, invasion, cytoskeleton

remodeling, EMT, apoptosis and cell cycle were investigated by transwell assays, immuno-

fluorescence and flow cytometry assays. The interaction between Gli1 and β-catenin was

observed by co-immunoprecipitation.

Results: We show that curcumin suppressed the expression of Shh, Gli1 and Foxm1 in the

Shh signaling pathway, and the expression of β-catenin in the Wnt signaling pathway in

SGC-7901 cells, both in mRNA and protein. As a result, cellular migration, invasion and

cytoskeletal remodeling ability decreased. Our results revealed that when stimulated with

curcumin, cells showed decreased cellular migration and invasion, while enhanced apoptosis.

In addition, curcumin induced cytoskeletal remodeling and S phase cell cycle arrest. The

inhibition of Shh and Wnt signaling pathway and the addition of curcumin also inhibited the

epithelial–mesenchymal transition process. Furthermore, a physical interaction was observed

between Gli1 of the Shh signaling and β-catenin of the Wnt signaling in these cells, but

curcumin inhibited the interaction of these two proteins.

Conclusion: The present study indicated that curcumin plays an anti-tumor role through

Gli1-β-catenin pathway in gastric cancer SGC-7901 cells.
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Introduction
Malignant tumors have become the leading cause of death in humans.1 Gastric

cancer is one of the most common types of cancer according to a ten-year tumor

statistics analysis from Wuwei district, Gansu province, China.2 Most patients with

gastric cancer are diagnosed at an advanced stage due to lack of early symptoms

and the limitations in screening programs.3 However, lack of effective treatments

for gastric cancer and the challenge of chemotherapy resistance are still great

problems in gastric cancer therapy. Therefore, it is important to understand the

molecular mechanisms behind gastric cancer and explore new therapeutic drugs.

Curcumin is extracted from turmeric and used widely in India and China.4 The

biological effects of curcumin are primarily anti-inflammatory,5 anti-oxidative6 and

anti-cancer.7 The antitumor effect of curcumin is widely studied.8,9 Curcumin exerts
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pharmacological effect by acting on a variety of signaling

pathway molecules.10–15 It has been reported that curcu-

min have anti-tumor effect by modulate immune T cells,16

In addition, curcumin can also play an anti-tumor effect by

regulating various microRNAs in different cancers.17

The sonic hedgehog (Shh) signaling pathway plays an

important role in embryonic development, adult tissue

maintenance and oncogenesis.18,19 Shh canonical signaling

occurs when Shh binds to Ptch1, Smo inhibition is abol-

ished and the Shh signal is transmitted downstream of

Smo by a cytoplasmic protein complex, composed of

kinin (Kif7), fusion inhibitor (Sufu) and GliFL.20 Smo

signals Sufu to release the Gli activator (GliA). Gli

migrates to the nucleus and activates the expression of

target genes such as Foxm1, cell cycle regulators

(cyclinD1) and apoptosis regulator (Bcl2).21 Studies have

shown that the Shh signaling pathway plays an important

key role in the progression of many cancers.22–25

The abnormal activation of Wnt signaling is associated

with a variety of diseases, particularly cancer.26 In the

canonical Wnt signaling pathway, Wnt proteins bind to

the FZD transmembrane receptor and cellular Dsh to

form a complex. The Wnt/FZD/Dsh complex prevents

phosphorylation of β-catenin by inhibiting GSK-3β activ-

ity. β-catenin is further degraded by ubiquitination and

accumulates in the cytoplasm, from where it translocates

to the nucleus, promoting target gene transcription.26,27

Several studies have shown that Notch signaling,28 Shh

signaling21 and Wnt signaling29 play important roles in tumor

formation. Our laboratory has previously demonstrated that

curcumin affects gastric cancer cells, via the Notch signaling

pathway.30 However, whether curcumin affects gastric cancer

cells via the Shh and Wnt signaling pathways remains

unknown. Our data show that inhibition of the Shh and Wnt

signaling pathways affects themigration and invasion of SGC-

7901 gastric cancer cells. Additionally, curcumin inhibits the

proliferation,migration, invasion and epithelial–mesenchymal

transition (EMT) processes, and cytoskeletal remodeling in

gastric cancer cells. We explored physical interactions

between Gli1 of the Shh signaling pathway and β-catenin of

the Wnt signaling pathway, providing novel insights for the

development of molecular targets for gastric cancer.

Materials and Methods
Cell Culture and Reagent
The human gastric cancer cell line, SGC-7901 was

obtained from the Laboratory of Pathology, School of

Basic Medical, Lanzhou University (Lanzhou, China),31

and the cells were authenticated by STR. Cells were cul-

tured in RPIM-1640 (HyClone, UT, USA) supplemented

with 10% fetal bovine serum (FBS; Kibbutz Beit Haemek,

Israel) and 1% penicillin/streptomycin (Sigma-Aldrich,

MO, USA) in a humidified atmosphere of 5% CO2 at

37°C. Curcumin and a CCK-8 kit were purchased from

Beijing Solarbio Science & Technology (Beijing, China).

Primary antibodies included: Anti-Shh (Abcam,

Cambridge, UK), anti-Gli1 antibody (Abcam), anti-Foxm1

antibody (Abcam), anti-β-catenin antibody (Cell Signaling

Technology, MA, USA), anti-E-Cadherin antibody (Cell

Signaling Technology), anti-vimentin antibody (Cell

Signaling Technology), anti-F-actin antibody (Abcam) and

anti-β-actin antibody (Thermo Fisher Scientific, MA,

USA). Secondary antibodies included: HRP-labeled goat

anti-rabbit IgG (Abcam) and HRP-labeled goat anti-mouse

IgG (Abcam). All the primary antibodies were diluted to

1:1000. The secondary antibodies were diluted to 1:5000.

Cell Transfection
Small interfering RNAs (siRNA) for transfection assays

were synthesized by Gene Pharma (Shanghai, China). The

knockdown of Gli1 and β-catenin was performed by the

transfection of si-Gli1 and si-β-catenin into SGC-7901

cells. NC siRNA was used as a negative control. SiRNA

transfection was performed using Lipofectamine 2000®

(Thermo Fisher Scientific) according to the manufacturer’s

protocol. The following siRNA primers were used;

Negative control sense: 5ʹ-UUCUCCGAACGUGUCA

CGUTT-3ʹ, antisense 5ʹ-ACGUGACACGUUCGGAGAA

TT-3ʹ,

Gli1 siRNA Sense: 5ʹ-CCAGGAAUUUGACUCCCA
ATT-3ʹ and Antisense: 5ʹ-UUGGGAGUCAAAUUCCUG

GCT-3ʹ;

β-catenin siRNA: 5ʹ-GGACCUAUACUUACGAAA

ATT-3ʹ, antisense 5ʹ-UUUUCGUAAGUAUAGGUCCT

C-3ʹ.

Cell Proliferation Assay (CCK-8)
SGC-7901 cells were seeded into 96 well plates (Corning,

NY, USA) (5000 cells/well), and divided into a control

group and curcumin treatment groups (10, 20, 40, and

80 µM). After incubation at 5% CO2 at 37°C for 48 h,

10 µL CCK-8 solution was added to each well and further

incubated for 2 h. Absorbance values were measured at

490nm using a microplate reader (Flash Spectrum

Biotechnology, Shanghai, China) and the cell survival
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rate was calculated using the formula: [Cell Viability (%)

= (A experiment-A blank)/(A control-A blank) x100].

RNA Extraction and Reverse

Transcription-QuantitativePCR

(RT-qPCR)
Total RNA was extracted from cells using TRIzol® reagent

(Invitrogen; Thermo Fisher Scientific) following manufac-

turer’s instructions. cDNA was synthesized using M-MLV

reverse transcriptase (Promega Corporation, WI, USA) and

random hexamer primers (Takara, Otsu, Japan). The

Mx3005P qPCR System (Agilent Technologies, CA, USA)

and SYBR Premix Ex Taq reagents (Takara, Dalian, China)

were used for qPCR, according to manufacturer’s instruc-

tions. Theromocyling conditions consisted of 95°C for 2 min

(hold stage); 95°C for 10 sec, 60°C for 34 sec (40 cycles,

PCR stage); 95°C for 15 sec, 60°C for 1 min, 95°C for 1 sec

(melt curve stage). Relative mRNA expression levels were

normalized to GAPDH using the comparative cycle threshold

2−ΔΔCT method.32 All primer sequences are shown in Table 1.

Western Blotting and

Co-immunoprecipitation (Co-IP)
After transfection and curcumin treatment, cell protein was

extracted and protein concentration was measured using

BCA protein assay kit (Beyotime Biotechnology,

Shanghai, China) according to the manufacturer’s proto-

col. Protein lysates were loaded and separated on 10%

SDS-polyacrylamide gels, then transferred 2 h in cold

transfer buffer. Membranes were blocked in 5% fat-free

milk for 2 h at room temperature and then incubated with

primary antibodies and secondary antibodies as described

previously.33 Protein bands were visualized using

enhanced chemiluminescence detection reagent (Thermo

Fisher Scientific) and Image Lab™ software 4.1 (Bio-Rad

Laboratories, CA, USA). The protein bands were analyzed

as a percentage of β-actin levels.

For Co-IP assays, cells were cultured in 10 cm dishes

(Corning) and divided into untreated (mock) and curcu-

min-treated groups for 48 h. The cells were lysed in RIPA

lysis buffer (Beijing Solarbio Science & Technology) on

ice for 30 min, and precleared with protein-G agarose

beads (Sigma) for 4 h at 4°C. Lysates were then incubated

overnight at 4°C with anit-Gli1 or anti-β-catenin primary

antibodies, on a rotating wheel. The next day, antibody-

antigen complexes were analyzed by Western blotting as

described.

Cell Migration and Invasion Assays
SGC-7901 cell migration and invasion assays were per-

formed in 24 well transwell chambers (Corning) contain-

ing polycarbonate filters with 8-µm pores, with or without

Matrigel (BD Biosciences, NJ, USA). Matrigel was mixed

with serum-free RIPM-1640 (1:8 ratio) in upper chambers,

and incubated at 37°C for 2 h. SGC-7901 cells were

suspended in serum-free RPMI-1640 medium at

a density of 2x105 cells. Approximately 100 uL of this

serum-free cell suspension was added to the upper cham-

ber, and 800 µL 20% serum-containing medium was added

to the lower chamber. The cells were incubated at 37°C,

5%CO2 for 48 h and later fixed in 4% paraformaldehyde

for 30 min. They were then stained in 0.1% crystal violet

for 15 min. After this period, surface crystal violet was

removed using cotton swabs, and cells that had passed

through the membrane were counted and photographed

under a microscope (magnification, x100). The experiment

was repeated three times and five images were taken for

each sample. Cell numbers that had crossed the membrane

were counted for statistical analysis.

Immunofluorescence Assay (IFA)
After transfection and curcumin treatment for 48 h, SGC-

7901 cells were plated into Nunc glass-bottom dishes

(Thermo Fisher Scientific). Cells were washed in PBS and

fixed in 4% paraformaldehyde for 30 min at room tempera-

ture. The cell cytoskeleton was stained with fluorescein

isothiocyanate (FITC)-phalloidin (Sigma) for 40 min and

nuclei were stained with DAPI (Sigma) at room temperature

for 5 min, in the dark. Finally, cells were analyzed and

imaged on a fluorescent microscope (magnification, x63).28

Table 1 qPCR Primers Used in This Study

Primers Sequences (5’-3’) Target Gene

Shh-F 5′-TCCTCGCTGCTGGTATG-3′ Shh

Shh-R 5′-AAGCGTTCAACTTGTCCTTA-3′

Gli1-F 5′-CTGGACCTGCAGACGGTTATC-3′ Gli1

Gli1-R 5′-AGCCTCCTGGAGATGTGCAT-3′

Foxm1-F 5′-GAACTCCATCCGCCACAACC-3′ Foxm1

Foxm1-R 5′-TTGGCACTGGGGTGAATGG-3′

β-catenin-F 5′-CGTGGACAATGGCTACTCAAGC-3′ β-catenin

β-catenin-R 5′-TCTGAGCTCGAGTCATTGCATAC-3′

GAPDH-F 5′-AAGGTGAAGGTCGGAGTC-3′ GAPDH

GAPDH-R 5′-TGTAGTTGAGGTCAATGAAGG-3′
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Cell Cycle and Apoptosis Assays Using

Flow Cytometry
For the cell cycle assay, SGC-7901 cells were transfected

with Gli1 or β-catenin siRNA and treated with curcumin for

48 h. Cells were then digested in 0.25% EDTA-free trypsin

and washed in PBS, before fixing in 70% alcohol at 4°C

overnight. Cells were then incubated in an RNAse-free buffer

containing propidium iodide (PI) (Beyotime Biotechnology)

and quantified by flow cytometry (BD FACSverse™). All

data were processed in Modfit LT™ software.

For the cell apoptosis assay, SGC-7901 cells were

treated as above and digested in 0.25% EDTA-free trypsin.

Cells were then stained with an FITC Annexin

V Apoptosis Detection Kit (BD Biosciences) in the dark

and quantified using flow cytometry.

Statistical Analysis
Each assay was repeated at least three times. Measured

values are represented asMean ± SD, from three independent

experiments. Student’s t-tests, of GraphPad Prism software

7 (GraphPad Software, CA, USA), were used to compare

groups. Data were considered significant when ∗P < 0.05, and

highly significant when ∗∗P < 0.01.

Results
Curcumin Inhibits the Proliferation of

SGC-7901 Cells and Shh and Wnt

Signaling Pathways
To verify the effects of Shh and Wnt signaling on the biologi-

cal behavior of gastric cancer cell line SGC-7901, we knocked

down the key transcription factors Gli1 in the Shh signaling

pathway and β-catenin in the Wnt signaling pathway. SGC-

7901 cells were transfected with siRNA, targeting Gli1 and β-
catenin expression. At 48 h post-transfection (hpt), cells were

collected to analyze the expression of associated factor by

Western blotting and qPCR. The results indicated that Gli1

and β-catenin expression was successfully knocked down by

Gli1 siRNA and β-catenin siRNA, respectively (Figure 1A). In
addition, the knockdown of Gli1 decreased Foxm1 expression

in the Shh signaling pathway (Figure 1B).

Curcumin has been shown to inhibit the proliferation of

cancer cells.34,35 In the study, SGC-7901 cells were plated

in 96 well plates and stimulated with 10, 20, 40 and 80 µM

curcumin for 48 h. The effects of curcumin on cell pro-

liferation were observed by CCK-8 assay. Our results

showed that the growth-inhibiting effect of curcumin on

SGC-7901 cells was dose-dependent (Figure 1C). The

medial IC50 was 32 µM curcumin for these cells.

Therefore, a 30 µM curcumin dose and 48 h incubation

range were used in subsequent experiments.

We also detected the expression of Gli1, Foxm1, and β-
catenin in cells that were transfected with Gli1 or β-catenin
siRNA, and treated with curcumin. The curcumin signifi-

cantly reduced the expression of Shh, Gli1, Foxm1, and β-
catenin at the protein and mRNA levels (Figure 1D and E).

Taken together, these results suggest that curcumin inhib-

ited the proliferation of SGC-7901 cells and reduced the

expression of Shh, Gli1 and Foxm1 in the Shh signaling

pathway and β-catenin in Wnt signaling pathway.

Inhibition of Shh and Wnt Signaling

Pathways and Curcumin Stimulation

Affect the Migration and Invasion of

SGC-7901 Cells
To implicate inhibition of Shh and Wnt signaling, as well as

the effects of curcumin on the migration and invasion of SGC-

7901 cells, SGC-7901 cells were transfected with Gli1 or

β-catenin siRNAs and treated with curcumin for 48 h. They

were then transferred to transwell chambers (without Matrigel

for the migration assay and with Matrigel for the invasion

assay) to observe cell numbers crossing the 8-µm pores mem-

branes. As shown (Figure 2A and B), transmembrane cells

were reduced for Gli1 or β-catenin siRNA-treated cells in the
migration assay when compared to NC siRNA-treated cells.

Transmembrane cell numbers for curcumin-treated cells were

significantly decreased when compared with untreated cells.

For the invasion assay, transmembrane cell numbers were

significantly reduced for Gli1 or β-catenin siRNA-transfected
cells when compared with NC siRNA-transfected cells.

Similar results were also observed for the curcumin-treated

group when compared with the non-treated group (Figure 2C

and D). Collectively, the decreased expression of Gli1 in the

Shh signaling pathway and the decreased expression of β-
catenin in the Wnt signaling pathway, and curcumin treat-

ment, all inhibited SGC-7901 migration and invasion.

Inhibition of Shh and Wnt Signaling

Pathways and Curcumin Stimulation

Treatment Regulate Apoptosis and Cell

Cycle Arrest of SGC-7901 Cells
To explore the effects of Shh and Wnt signaling and

curcumin on SGC-7901 apoptosis and cell cycle, cells
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were plated into six-well plates and transfected with

Gli1 siRNA or β-catenin siRNA and treated with curcu-

min for 48 h. The cells were stained with FITC Annexin

V/PI and quantified by flow cytometry. No significant

changes in cellular apoptosis rates were observed in

Gli1 or β-catenin siRNA-treated cells, when compared

A

B

β-actin
Gli1

β-actin
β-catenin

β-actin
Gli1
Shh
Foxm1

- - +      +    si-β-catenin

+    +      - - si-NC

β-actin
β-catenin

- + - +    curcumin

β-actin
Gli1

Foxm1

- - +     +       si-Gli1

+    +      - - si-NC

- +     - +    curcumin

Shh

C D

E

Figure 1 Curcumin inhibits the proliferation of SGC-7901 cells, Shh and Wnt signaling pathways. (A) SGC-7901 cells were transfected with 150 nM siRNA targeting Gli1 or

β-catenin. Gli1 and β-catenin expression were successfully knockdown and detected by Western blotting and qPCR. (B) SGC-7901 cells were transfected with 150 nM Gli1

siRNA, and the expression of Shh, Gli1, and Foxm1 detected by Western blotting and qPCR. (C) CCK-8 assays were performed in SGC-7901 cells, supplemented with 10,

20, 40, and 80 µM curcumin for 48 h. The IC50 of curcumin was calculated to determine inhibitory concentrations for subsequent experiments. (D) SGC-7901 cells were

transfected with 150 nM siRNA, targeting β-catenin and treated with curcumin for 48 h. β-catenin expression was successfully knockdown and detected by Western blotting

and qPCR. (E) SGC-7901 cells were transfected with 150 nM siRNA targeting Gli1 and curcumin treatments were performed. Shh, Gli1 and Foxm1 expression were

detected by Western blotting and qPCR. These results were representative of three independent replicates.

Notes: *P<0.05; **P<0.01 compared to control group.

Abbreviations: NC, negative control; si, small interfering RNA; Cur, curcumin; (-), cells treated with no curcumin; (+), cells treated with 30 µM curcumin.
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to NC siRNA-treated cells. However, apoptosis rates

were significantly increased in curcumin-treated cells

when compared to the untreated group (Figure 3A

and C).

Then, we performed cell cycle assays to investigate

apoptotic mechanisms induced by curcumin. SGC-7901

cells were transfected with Gli1 or β-catenin siRNA

and treated with curcumin for 48 h. Cells were

then stained with PI and quantified by flow cytometry.

There was a reduction of Gli1 induced cell cycle arrest

at the G0/G1 phase, while the reduction of β-catenin
induced cell cycle arrest at the S phase. Cell cycle

arrest at the S stage increased significantly in curcu-

min-treated cells when compared with the non-treated

group (Figure 3B and D). Collectively, these data

indicated that curcumin-induced apoptosis and cell

cycle arrest at the S stage in SGC-7901 cells. The

reduction in Gli1 and β-catenin expression-induced

cell cycle arrest, but had no significant effects on

apoptosis.

A BMigration assay Migration assay

C Invasion assay D Invasion assay

Figure 2 Inhibition of Shh and Wnt signaling pathways and curcumin stimulation affect the migration and invasion of SGC-7901 cells. SGC-7901 cells were transfected with 150 nM

siRNA, targeting Gli1 or β-catenin and treated with curcumin for 48 h. Transmembrane cells were counted under themicroscope (x100). Migration (Aand B) and invasion (C andD)

of SGC-7901 cells transfected by Gli1 or β-catenin siRNA when compared to NC siRNA-transfected cells. These data are representative of three independent replicates.

Notes: **P<0.01; ***P<0.001 with comparisons shown by lines.

Abbreviations: NC, negative control; si, small interfering RNA; (-), cells treated with no curcumin; (+), cells treated with 30 µM curcumin.
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NC(-) si-Gli1(-) si-β-catenin(-)

NC(+) si-Gli1(+) si-β-catenin(+)

A

NC(-)

NC(+)

si-Gli1(-)

si-Gli1(+)

si-β-catenin(-)

si-β-catenin(+)

B

DC

Figure 3 Inhibition of Shh and Wnt signaling pathways and curcumin stimulation treatment regulate apoptosis and cell cycle arrest of SGC-7901 cells. SGC-7901 cells were

transfected with 150 nM siRNA targeting Gli1 or β-catenin and curcumin treatments were performed. All cells were stained with Annexin V-FITC/PI for apoptosis assay.

Cells were stained with PI for cell cycle assays. (A) Apoptosis was quantified by flow cytometry. (B) Cell cycle was detected by flow cytometry. (C) Apoptosis and (D) cell

cycle data were analyzed statistically. These results are representative of three independent replicates.

Note: *P<0.05 with comparisons shown by lines.

Abbreviations: NC, negative control; si, small interfering RNA; Cur, curcumin; (-), cells treated with no curcumin; (+), cells treated with 30 µM curcumin.
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Inhibition of Shh and Wnt Signaling

Pathways and Curcumin Stimulation

Affect the EMT Process and Cytoskeletal

Remodeling in SGC-7901 Cells
The impact of curcumin on the gastric cancer cell cytoskele-

ton is unknown. IFA was performed to detect the impact of

Shh and Wnt signaling and curcumin on the cytoskeleton of

SGC-7901 cells. Cells were transfected with Gli1 or

β-catenin siRNA and treated with curcumin for 48 h. Cells

were then observed under a confocal microscope.

Pseudopods and skeleton fibers on the cell membrane surface

were significantly reduced in curcumin-treated cells when

compared with untreated cells. Similar transfections were

performed as described above, showing that skeleton fibers

in Gli1 or β-catenin siRNA-transfected cells were slightly

decreased when compared to NC siRNA-transfected cells

(Figure 4A). To further confirm this effect, SGC-7901 cells

were transfected with Gli1 siRNA or β-catenin siRNA and

treated with curcumin for 48 h. The cells were then analyzed

A

β-actin
Gli1
vimentin
E-cadherin

β-actin
β-catenin
vimentin
E-cadherin

β-actin
vimentin
E-cadherin

β-actin

β-catenin
F-actin

- +      - +    curcumin
- - +    +    si-β-catenin

+     +      - - si-NCB

C

β-actin
Gli1
F-actin

- +     - +    curcumin
- - +      +    si-Gli1
+     +     - - si-NC

Figure 4 Inhibition of Shh and Wnt signaling pathways and curcumin stimulation affect the EMT process and cytoskeletal remodeling in SGC-7901 cells. (A) SGC-7901 cells

were transfected with siRNA targeting Gli1 or β-catenin and treated with curcumin for 48 h. IFA was performed to assess the impact of Gli1, β-catenin and curcumin on

SGC-7901 cell cytoskeleton. (B) The expression of F-actin, (C) vimentin and E-Cadherin in Gli1 or β-catenin siRNAs-transfected cells, and curcumin-treated cells were

performed using Western blotting. These results are representative of three independent replicates.

Abbreviations: NC, negative control; si, small interfering RNA; (-), cells treated with no curcumin; (+), cells treated with 30 µM curcumin.
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for F-actin expression by Western blotting. F-actin was

decreased in curcumin-treated cells when compared with

non-treated cells. Similar results were observed for Gli1 or

β-catenin siRNA-transfected cells when compared to NC

siRNA-transfected cells (Figure 4B).

The EMT process plays an important role in the devel-

opment of malignant tumors. We examined expression

changes in the molecules E-cadherin and vimentin, which

are associated with EMT. To investigate the effects of Shh

and Wnt signaling and curcumin on EMT in SGC-7901

cells, cells were transfected with siRNAs targeting Gli1 or

β-catenin expression and treated with curcumin for 48

h. Cells were then collected to analyze the expression of

proteins associated with EMT by Western blotting. Our

results showed that expression of E-cadherin significantly

increased, while vimentin expression decreased in Gli1 or

β-catenin siRNA-transfected cells, when compared with

NC siRNA-transfected cells. Similar results were observed

for the curcumin-treated group when compared with the

non-treated group (Figure 4C).

Taken together, these data indicate that inhibition of

Shh and Wnt signaling pathways and curcumin stimulation

affected EMT processes and cytoskeleton remodeling in

SGC-7901 cells.

Gli1 Interacts with β-Catenin
To investigate the potential interaction between Shh and

Wnt signaling pathways, a Co-IP assay was performed.

SGC-7901 cells were cultured in 10 cm dishes and divided

into a control group (mock) and curcumin treatment group

for 48 h. After this period, cells were lysed and lysates

were immunoprecipitated with anti-Gli1 antibody, and

analyzed by Western blotting. As shown (Figure 5), Gli1

pulled down β-catenin. A reverse immunoprecipitation

experiment was also performed using anti-β-catenin anti-

bodies to pull down Gli1. Taken together, these results

indicate that Gli1 in the Shh signaling interacted with β-
catenin in the Wnt signaling.

Discussion
Currently, the main treatment strategies for gastric cancer

are surgery and chemotherapy.36 Some patients are resis-

tant to chemotherapy and their prognosis remains poor,

especially if diagnosed with lymph node metastases. In

recent years, natural herbal extracts have also been found

to elicit anti-tumor effects.37,38 A previous study reported

that curcumin had anti-tumor properties, but mechanisms

at the cellular level were not defined. Curcumin inhibited

the proliferation and migration of malignant glioma

through Shh signaling,39 which was consistent with our

results that curcumin inhibited the migration of SGC-7901

cells through Shh signaling pathway. In this study, we

showed that curcumin inhibited the proliferation, migra-

tion, invasion and cytoskeletal remodeling of SGC-7901

cells through Shh and Wnt signaling pathways. It has been

reported that curcumin suppresses the proliferation, cell

cycle arrest and induction of apoptosis in mantle cell

lymphoma, through the suppression of NF-κB-regulated
gene products.40 We have shown that curcumin-induced

apoptosis in SGC-7901 cells and cell cycle arrest at the

S phase. Studies have found that curcumin can exert anti-

tumor effects on colorectal cancer cells by activating the

apoptosis pathway, These targets include enzymes, tran-

scription factors (β-catenin, NF-κB), ROS, Bcl-2 family

members (Bak, Bcl-2, Bax, and Bcl-xL), BH3 proteins

(Bim, Bad, and Bid), protease enzymes (caspase3, cas-

pase8), death receptors, and other important signaling

pathways (p53, PI3K/AKT, JNK, and ER stress).41 We

IB: β-catenin

IB: Gli1

IP Abs  IgG β-catenin IgG β-catenin

Mock        Cur

IP Abs   IgG  Gli1  IgG Gli1

Mock        Cur

IB: β-catenin

IB: Gli1

Lysate Lysate

β-catenin
Gli1

β-actin

β-catetin
Gli1
-actin

Figure 5 Gli1 interacts with β-catenin in SGC-7901 cells. SGC-7901 cells were treated with or without curcumin in 10 cm dishes for 48 h, after which Co-IP assays were

performed. Cell lysates were immunoprecipitated with anti-Gli1 antibody and subjected to Western blotting. A reverse immunoprecipitation assay was also performed using

anti-β-catenin antibodies. Whole-cell lysates and antibody-antigen complexes were analyzed by immunoblotting using anti-Gli1, anti-β-catenin or anti-β-actin antibodies.

These results are representative of three independent experiments.

Abbreviations: Cur, cells treated with 30 µM curcumin; IgG, immunoglobulin G; IP, immunoprecipitation.
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also found that curcumin affected SGC-7901 cells by

inhibiting cytoskeletal remodeling and EMT progression,

further delineating curcumin-mediated molecular mechan-

isms in gastric cancer cells.

Some studies have shown that Shh signaling plays key

roles in tumor progression.22,42 Activation of the Shh path-

way is common in advanced gastric adenocarcinoma, and

elevated Gli1 and Ptch expression levels are associated

with poor tumor differentiation and prognoses.43

Overexpression of sonic hedgehog is a driving factor and

prognostic index of gastric cancer development.44,45

Interestingly, studies have shown that high levels of Shh

protein in human benign bladder urothelium were

detected; however, there was little Shh in the primary

cancer cells of all invasive carcinomas.25 These findings

suggest that Shh expression is different in different types

of tumors. Here, we observed the biological effects of Shh

signaling in SGC-7901 cells. Inhibition of Shh signaling

decreased migration, invasion and inhibited cytoskeletal

remodeling and EMT progression of SGC-7901 cells. In

addition, some studies have shown that Shh overexpres-

sion in tumor cells plays a role in perineural invasion and

tumor metastasis.46 These observations suggest that Shh

signaling is associated with malignant behaviors of tumor

cells.

Free β-catenin, located in the cytoplasm, is a key par-

ticipant in the Wnt signaling pathway.47 It has been

reported that the Wnt signaling pathway is activated in

ovarian cancer and may become a new target for the

treatment of drug-resistant ovarian cancer.48 Increasingly,

evidence has shown that excessive β-catenin accumulation

is associated with tumor invasion and proliferation.49,50 It

has been reported that aberrant membranous β-catenin
expression was significantly correlated with poor survival

in patients with craniopharyngioma.51 We demonstrated

that inhibition of β-catenin in Wnt signaling decreased

migration, invasion and inhibited cytoskeletal remodeling

and EMT progression in SGC-7901 cells. Taken together,

these data suggest that Wnt signaling is associated with

tumor progression, and may be a target for tumor therapy.

Cancer occurrence is usually associated with signaling

pathway activation, these signaling pathways constitute

a complex network regulating the proliferation, migration

and invasion of cancer cells.52 Zhang et al, observed that

crosstalk between Shh-Gli1 and PI3k-Akt signaling pathways

in the cellular EMT of ovarian cancer.53 There was an inter-

acting network of the Hippo, Wnt/β-catenin and Notch signal-
ing pathways in hepatocellular carcinoma, which controls the

tumor development.54 Identifying relationships between these

signaling pathways is highly significant in understanding the

mechanisms behind tumor progression. In liver cancer, the

negative regulation of AMPK by Gli1 has also been

reported.55 Additionally, β-catenin knockdown inhibits the

expression of STAT3 and AKT in pituitary adenoma cells.56

Here, we confirmed that Gli1 interacted with β-catenin in

SGC-7901 cells, and the interaction between these molecules

is inhibited by curcumin. Similarly, the interaction between

Gli1 and β-catenin can also be observed in medulloblastoma,

it was further found that stable β-catenin increased the inter-

action, leading to Gli1 degradation and inhibiting Shh

signaling.57 In our study, the mechanism by which curcumin

inhibits the interaction between Gli1 and β-catenin in gastric

cancer cells is unknown, and is the focus of our future work.

In conclusion, we have shown that Shh and Wnt sig-

naling pathways are important in migration, invasion,

apoptosis and cytoskeletal remodeling in gastric cancer

SGC-7901 cells. We identified a physical interaction

between Gli1 and β-catenin, and discovered that curcumin

inhibits this interaction. The data from this study lay the

foundation in identifying target molecules for the explora-

tion of mechanisms in gastric cancer tumors in the future.
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