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Response to infections in patients with asthma and atopic
disease: An epiphenomenon or reflection of host
susceptibility?
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Associations between respiratory tract infections and asthma
inception and exacerbations are well established. Infant
respiratory syncytial virus and rhinovirus infections are known
to be associated with an increased risk of asthma development,
and among children with prevalent asthma, 85% of asthma
exacerbations are associated with viral infections. However, the
exact nature of this relationship remains unclear. Is the increase
in severity of infections an epiphenomenon, meaning respiratory
tract infections just appear to be more severe in patients with
underlying respiratory disease, or instead a reflection of altered
host susceptibility among persons with asthma and atopic
disease? The main focus of this review is to summarize the
available levels of evidence supporting or refuting the notion
that patients with asthma or atopic disease have an altered
susceptibility to selected pathogens, as well as discussing the
biological mechanism or mechanisms that might explain such
associations. Finally, we will outline areas in need of further
research because understanding the relationships between
infections and asthma has important implications for asthma
prevention and treatment, including potential new pathways
that might target the host immune response to select pathogens.
(J Allergy Clin Immunol 2012;130:343-51.)
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A role for respiratory tract infections in asthma development
and exacerbations has beenwell documented (Fig 1). Infections in
infancy, including respiratory syncytial virus (RSV) and rhinovi-
rus infections, are known to be associated with an increased risk
of asthma development.1 Furthermore, this has been demon-
strated to be a dose-response relationship, with severe episodes
of infant bronchiolitis increasing the odds of both early childhood
asthma and asthma-specific morbidity.2 The same relationship
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exists between viral respiratory tract infections and asthma
exacerbations.3,4
FREQUENCY AND SEVERITY OF VIRAL

INFECTIONS IN ASTHMATIC PATIENTS
Asthmatic patients have both increased frequency and severity

of lower respiratory tract infections compared with subjects
without asthma (Fig 1). In a prospective study of rhinovirus infec-
tions in cohabitating couples consisting of 1 asthmatic patient and
1nonasthmatic subject, thosewith asthmahadmore frequent lower
respiratory tract infections, along with symptoms that were more
severe and of greater duration.5 In contrast, asthmatic patients5

and those with atopic disease6 do not appear to have increased fre-
quency, severity, or duration of upper respiratory tract infections.
Asthma has also been identified as a risk factor for influenza-

attributable morbidity and community-acquired pneumonia.
Influenza-attributable health care use, including both outpatient
visits7 and hospitalization rates,8 is higher among asthmatic chil-
dren compared with healthy children, as are influenza-related
complications.9 Population-based surveillance for laboratory-
confirmed influenza hospitalizations found children with asthma
to account for 32% of influenza-associated hospitalizations dur-
ing the 2003-2009 influenza seasons and 44% during the 2009
H1N1 pandemic, 4 to 5 times the asthma prevalence rate.8 During
the 2009 H1N1 pandemic asthmatic patients compared with non-
asthmatic subjects were almost twice as likely to have pneumonia
(50% vs 27%) and require care in the intensive care unit (33% vs
19%).9 However, in a study conducted in the United Kingdom, al-
though asthmatic patients were more likely to have severe respi-
ratory distress and require supplemental oxygen, theywere half as
likely to die or require an advanced level of care compared with
nonasthmatic subjects.10 The authors found that the less severe
outcomes in asthmatic patients were associated with prior inhaled
steroid use and earlier hospital admission. Thus asthmatic pa-
tients still might be at an increased risk for influenza-related com-
plications, but because of their medical history, they might be
more likely to seek care earlier, resulting in improved outcomes.
The risk for community-acquired bacterial and viral pneumonia
has been estimated to be at least 2-fold in asthmatic patients com-
pared with that seen in healthy control subjects.11-13

Asthmatic patients with allergic sensitization appear to have an
even greater susceptibility to respiratory tract infections. Children
with atopic asthma were found to experience 47% more symp-
tomatic viral illnesses compared with nonatopic asthmatic
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FIG 1. Levels of clinical evidence to support an increased risk and host susceptibility to infections in the

asthmatic and atopic host. LRTI, Lower respiratory tract infections; RV, rhinovirus; URI, upper respiratory
tract infection.
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subjects during the peak virus season (1.19 vs 0.81 per month).14

Allergen-sensitized asthmatic patients also have a higher risk of
hospital admission for asthma exacerbations compared with non-
sensitized asthmatic patients.15

SUSCEPTIBILITY TO INFECTIONS OUTSIDE THE

RESPIRATORY TRACT
The increased susceptibility to infections among asthmatic

patients extends beyond the lungs (Fig 1). Children with asthma
have increased rates of both otitis media and gastroenteritis dur-
ing infancy. Increased prevalence of ear infections during infancy
was reported by Eldeirawi et al16 amongMexican American asth-
matic children (39%) compared with nonasthmatic children
(20%); this association was independent of antibiotic use and
other infectious history. A similar relationship was noted between
otitis media and both asthma and atopic dermatitis in a German
birth cohort.17 A cross-sectional study of 26,400 Korean children
by Ahn et al18 identified a higher prevalence of acute gastroenter-
itis during infancy in children later given a diagnosis of asthma.
Recall bias is a concern for the studies conducted by Eldeirawi
et al16 and Ahn et al18 because they relied on retrospective report-
ing. In addition, patients with atopic dermatitis are highly suscep-
tible to cutaneous bacterial, viral, and fungal infections, most
notably Staphylococcus aureus and herpes simplex virus.19,20 De-
layed therapeutic response times and an increased likelihood of
recurrence were identified for genital warts in patients with a his-
tory of hay fever, eczema, or asthma.21

COLONIZATION AND INFECTION LATENCY IN

PATIENTS WITH ASTHMA AND ATOPIC DISEASE
Bacterial colonization of the airways in infancy is associated

with asthma development (Fig 1). Bisgaard et al22 collected hypo-
pharyngeal samples from 321 asymptomatic neonates at 1 month
of age and found colonization of the airways with Streptococcus
pneumoniae, Haemophilus influenzae, or Moraxella catarrhalis
to be associated with the development of asthma by age 5 years.
We postulate this colonization is due to an altered immune
response that predisposes these infants to early acquisition of
these pathogens, although this colonization could also indicate
a causal relationship between the pathogen and asthma inception.
Increased frequency of colonization with S pneumoniae has also
been demonstrated in asthmatic patients. In a cross-sectional,
population-based prospective study of 1013 adolescents, asthma
was an independent risk factor for nasopharyngeal colonization
of S pneumoniae, which was identified in 8.2% of subjects.23

An increased prevalence of bacterial colonization of the skin, pri-
marily with S aureus, is seen in patients with atopic dermatitis24

and occurs in both lesional and clinically normal skin.25

A number of latent infections have been demonstrated to be
more common among asthmatic patients, includingMycoplasma
pneumoniae,26,27 Chlamydia pneumoniae,27,28 adenovirus,29,30

and rhinovirus.30-33 We have defined latent infections as asymp-
tomatic bacterial or viral identification after an acute initial infec-
tion. As with colonization, we propose that latent infections
reflect an altered immune response, although an alternative expla-
nation is that these pathogens might play a role in asthma patho-
genesis. Mycoplasma or Chlamydia species have been identified
in the airways of 45% and 11%of asthmatic patients, respectively,
althoughMycoplasma species is found in only 9% of healthy con-
trol subjects.27 A positive relationship between Chlamydia pneu-
moniae–specific secretory IgA antibody levels and asthma
exacerbations28 provides further evidence for latent bacterial in-
fection affecting asthma severity. In contrast, Sutherland et al34

identified only 13% of patients with suboptimally controlled
asthma to have PCR evidence for M pneumoniae or C pneumo-
niae on lower airway endobronchial biopsy. Furthermore, the ad-
dition of clarithromycin did not improve asthma control, making
the clinical relevance of latent atypical bacterial infection unclear.
Improved detection methods for atypical respiratory pathogens
are needed to more fully characterize the relationship between
these pathogens and asthma.
Latent viral infection also appears to be more common among

asthmatic patients. Among 50 asymptomatic asthmatic children,
adenovirus was found in 78.4% of subjects, rhinovirus in 32.4%,
and coronavirus in 2.7%; coinfection with 2 or all 3 viruses was
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also identified.30 Twenty healthy children were included as con-
trol subjects, with only adenovirus detected in 1 nasopharyngeal
swab. Results from other29 but not all27,35 studies have supported
an increased prevalence of latent adenovirus infection in asth-
matic patients, likely because of varying viral detection tech-
niques and small sample sizes. A high incidence of persistent
rhinovirus infection has also been identified in asthmatic patients,
with detectable rhinovirus RNA in greater than 40% of asthmatic
children 6 weeks after an acute exacerbation.31 Rhinovirus RNA
has also been identified in 73% of mucosal biopsy specimens of
asymptomatic asthmatic patients compared with only 22% with-
out asthma, with the presence of human rhinovirus significantly
associated with lower pulmonary lung function.33 Further studies
are needed to investigate the relationship between rhinovirus per-
sistence and asthma disease severity. Because of the finding of
successive infections in children with different serotypes of hu-
man rhinovirus,36 studies that incorporate genotyping will also
be helpful in determining whether what appears to be a latent rhi-
novirus infection in asthmatic patients is indeed viral persistence
or conversely subsequent infections with different serotypes. This
differentiation will be critical to furthering our understanding of
rhinovirus infection in asthmatic patients and to guide future ther-
apeutic measures, including human rhinovirus-specific vaccines.
Because of the strong relationship between RSV-induced

bronchiolitis in infancy and the development of asthma,37 latent
RSV infection of asthmatic patients has also been suggested.38

Persistent RSV infection has been documented 100 days after in-
fection in a murine model39 and 5 weeks after infection in a
guinea pig model,40 but similar findings have yet to be confirmed
in human studies, indicating a key area in need of further research.
The ability of RSV to infect41 and persist42 in vitrowithin human
dendritic cells has been demonstrated, and in vivo RSV persis-
tence in human subjects has been suggested by the identification
of RNA sequences homologous to the RSV genome in the naive
human bone marrow stromal cells of adult and pediatric donors
but not the complete virus.43
INVASIVE INFECTIONS IN PATIENTS WITH

ASTHMA AND ATOPIC DISEASE
Perhaps the strongest evidence for a relationship between

increased infection susceptibility among patients with asthma and
atopic disease is the increased rates of invasive disease (Fig 1). In a
study of children with respiratory illnesses, rhinoviremia was de-
tected in 25% of children presenting with an asthma exacerbation
compared with only 5% of children presenting with other respira-
tory conditions.44 Among persons 2 to 49 years of age enrolled in
Tennessee’sMedicaid Program, the average annual incidence rate
of invasive pneumococcal disease among asthmatic patients was
3-fold higher compared with that seen in persons without asthma
(6.1 vs 2.0 episodes per 10,000).45 Population-based case-control
studies conducted in Minnesota46 and Finland47 confirmed these
findings, with 17% and 5% of the invasive pneumococcal disease
burden attributable to asthma within the respective population
studied. An increased risk for serious pneumococcal disease in pa-
tients with atopic disease has also been demonstrated.48 Patients
with atopic dermatitis are also highly susceptible to widespread
disseminated viral infections, including eczema molluscatum,
eczema herpeticum, and eczema vaccinatum.49 Interestingly,
these conditions are not typically seen in patients with other
inflammatory skin conditions, such as psoriasis.50
POTENTIAL MECHANISMS TO EXPLAIN AN

INCREASED HOST SUSCEPTIBILITY TO VIRAL AND

BACTERIAL INFECTIONS IN PATIENTS WITH

ASTHMA AND ATOPIC DISEASE
A variety of potential mechanisms have been proposed to

explain why patients with asthma and atopic disease appear to
have increased susceptibility to select viral and bacterial patho-
gens (Fig 2). Impaired innate immune responses have been ob-
served in patients with asthma and atopic disease, including
deficient epithelial cell function, mucus overproduction, de-
creased interferon responses, and impaired alveolar macrophage
function.
Airway epithelium
Epithelial cells play important roles in immune responses,

includingmaintenance of barrier function, mucociliary clearance,
production of peptides that have the ability to kill or neutralize
microorganisms, and release of chemokines that influence
antigen-specific T and B cells; deficiencies in these abilities
would be expected to increase a patient’s susceptibility to
infections.51 Examination of bronchial biopsy specimens from
asthmatic patients reveal disrupted tight junctions, an important
component of epithelial barrier function, and increased permea-
bility to macromolecules has been demonstrated in epithelial
cell cultures.52 A significant association between asthma develop-
ment and a proteinase inhibitor gene (SPINK5) polymorphism,
postulated to impair epithelial barrier function has also been iden-
tified within a population of German children.53 The role of atopy
in host susceptibility must also be considered because allergens
have the potential to interfere with proper epithelial barrier func-
tion, and the nasal mucosal changes associated with allergic rhi-
nitis are histologically similar to those seen in the lower airways
in asthmatic patients.54 Peptidase allergens disrupt intercellular
tight junctions in human bronchial epithelial cell lines, thereby in-
creasing permeability of the airway epithelium,55,56 and the dis-
ruption caused by the dust mite allergen Der p 1 enhanced RSV
replication within a human bronchial epithelial cell line.57 These
studies shed light on how alteration of the airway epithelia of
asthmatic and atopic patients might increase susceptibility to
infections.
Mucus
Mucus production is important in handling respiratory patho-

gens, and there is an increase in both quantity and viscosity in
asthmatic patients. Endobronchial biopsy specimens from asth-
matic patients demonstrate airway goblet cell hyperplasia with
increased numbers of mucus-secreting goblet cells in the epithe-
lium and an increase in the size of the submucosal glands.58 Rhi-
novirus infection in vivo increases release of the major mucin
component of airway mucous secretions, MUC5AC, and in asth-
matic patients MUC5AC levels positively correlate with peak vi-
ral load.59
Interferon responses
Studies have shown that patients with asthma and atopic

disease have a deficient interferon response, with significantly
lower levels reported as early as birth60 likely contributing to
the future risk for viral respiratory tract infections. An inverse



FIG 2. Biological mechanisms that explain an altered immune response to viral and bacterial infections in

the asthmatic and atopic host.
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relationship between cord blood IFN-g responses and the fre-
quency of symptomatic viral respiratory tract infections has
been demonstrated within the first year of life.61 Allergen expo-
sure and RSV both reduce INF-g production compared with
RSV infection alone in both murine62 and rat63 models and
might thus be synergistic in increasing host susceptibility to in-
fection. The importance of the deficient IFN-g production is fur-
ther supported by the modulation of postviral sequelae,
including significantly less bronchiolar inflammation and fibro-
sis, when rats with deficient IFN-g responses receive exogenous
IFN-g supplementation during acute viral illnesses.64 Deficient
IFN-b and IFN-l responses to infection with rhinovirus have
been demonstrated in human bronchial epithelial cells
in vitro.65,66 Furthermore, the amount of IFN-l production in
bronchoalveolar lavage cells infected in vitro with rhinovirus
significantly inversely correlated with clinical illness severity
of the same subjects infected with rhinovirus in vivo,65 although
these findings have not been replicated by others. Bochkov
et al67 and Lopez-Souza et al68 demonstrated no difference in
interferon responses in bronchial epithelial cells from asthmatic
patients in vitro in response to rhinovirus infection compared
with those seen in healthy control subjects. More recently,
in vitro studies in nasal epithelial cells from asthmatic patients
have demonstrated lower production of IFN-l1 after rhinovirus
infection compared with that seen in healthy control epithelium
but a higher severity of illness was associated with higher levels
of IFN-l1 production by asthmatic patients in vivo.69 How this
relates to human clinical infection risk and illness severity and
whether increasing interferon responses would modify morbid-
ity still needs to be elucidated.
Alveolar macrophages
Patients with asthma might also have impaired alveolar mac-

rophage function. Airway macrophages from children with
moderate and severe poorly controlled asthma were found to
have significantly blunted phagocytosis of S aureus and increased
apoptosis.70 Children treated with inhaled corticosteroids were
the control group in this study, and although that limits the inter-
pretation, a later study71 also supported impaired alveolar macro-
phage function with altered airway and intracellular airway
macrophage glutathione homeostasis in children with severe
asthma compared with children with moderate asthma.
Adaptive immunity
Asthma is characterized by enhanced TH2 activity.72 An in-

creased number of CD41 T cells, predominantly TH2 cells, are
seen in the airways of asthmatic patients, which is in contrast to
the TH1 cell predominance seen in healthy airways.73 Delayed
postnatal maturation of the immune system, including a delayed
transition from a TH2 to TH1 bias, is a risk factor for respiratory
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tract infections. High IL-5 production by TH2 cells at birth pre-
dicts future risk of severe respiratory tract infections in childhood,
whereas concomitant IL-10 production by T cells at birth attenu-
ated this risk.74 In a murine model, after infection of the lungs
with Chlamydia muridarum, IL-13, a TH2 cytokine, is rapidly
produced and promotes susceptibility to infection, possibly re-
lated to impairment of macrophage phagocytic function.75 This
might explain why allergic asthmatic patients, with a dominant
TH2 response and enhanced IL-13 production, would be more
susceptible to chlamydial lung infection. Downregulation of
Toll-like receptors (TLRs) might be responsible for increased
susceptibility of asthmatic patients to Mycoplasma species
infection because Mycoplasma species clearance in an allergic
murine model has been demonstrated to be due to TLR2
downregulation.76

Impaired adaptive immune responses have been described in
thosewith atopic dermatitis as well. Arkwright et al77 found a sig-
nificantly lower proportion of children with moderate-to-severe
eczema to have adequate antibody responses to pneumococcal
vaccination compared with control subjects with isolated recur-
rent upper respiratory tract infections (17% vs 57%). However,
because the children with eczema had no history of severe or re-
current infections with S pneumoniae, the clinical significance of
their reduced response to pneumococcal vaccination is uncertain.
GENETIC INFLUENCES ON IMMUNE FUNCTION

DEVELOPMENT IN PATIENTS WITH ASTHMA AND

ATOPIC DISEASE
Alterations in immune function might be, at least in part,

caused by genetic influences because multiple asthma and atopic
disease susceptibility genes are functional immune response
genes.78,79 TheGABRIEL consortium,80 a large genome-wide as-
sociation study of asthma, identified a significant association for
IL18R1, IL33, HLA-DQ, SMAD3, IL2RB, and ORMDL3. Many
of these genes have a multitude of functions, but all have been
found to be involved in the TH2 inflammatory response to epithe-
lial damage sustained during trauma or infection. Avariety of ge-
netic mutations have been identified in patients with atopic
dermatitis that are associated with skin barrier dysfunction. The
most commonly identified is a filaggrin mutation present in up
to 50% of patients with atopic dermatitis81 and associated with
the persistence of atopic dermatitis into adulthood,82 as well as in-
creased asthma severity.83 The downregulation of multiple im-
mune response genes have also been identified in patients with
atopic dermatitis.50 It has also been postulated that parental
asthma or allergy might influence immune function, with mater-
nal history of atopy or asthma identified as a risk factor for more
severe infant human rhinovirus–associated illness.84 Further-
more, lower cytokine responses to innate stimulation by TLR2,
TLR3, TLR4, and TLR9 agonists and in vitro stimulation by
RSV have been seen in children with a parental history of allergy
or asthma.85
POSSIBLE TELEOLOGICAL EXPLANATION FOR

ALTERED IMMUNE SYSTEM IN PATIENTS WITH

ASTHMA AND ATOPIC DISEASE
It has long been debated as to why asthma and atopic diseases

have persisted for thousands of years and are prevalent and
increasing inmost populations. The enhanced TH2 activity seen in
patients with asthma and atopic disease might have a teleological
basis because it confers a protective advantage against infection
with helminthic parasites,86-88 which were far more common
pathogens in past centuries.89 TH2 immune signaling in the lungs
of asthmatic patients can have deleterious effects, such as in-
creased eosinophil activity, mucus hypersecretion, and muscle
hyperactivity; however, these same immune mechanisms pro-
mote helminth expulsion when expressed in the gut in response
to parasitic infection.90 Peisong et al88 discovered that children
with upregulated TH2 immune signaling caused by an asthma-
associated genetic variant of signal transducer and activator of
transcription 6 had increased resistance to infection with the hel-
minthAscaris lumbricoides. A similar relationship between atopy
and helminth infection has been described in Venezuelan chil-
dren86 and in an African adult population.87 Together, these stud-
ies support a protective advantage against parasitic infections
among those with asthma and atopy. It has also been proposed
that the reverse is true; that is, that parasitic exposure reduces
the likelihood of the development of asthma and atopic disease.91
EFFECT OF PRIOR INFECTIONS OR LATENT

INFECTION/COLONIZATION ON IMMUNE

FUNCTION IN PATIENTS WITH ASTHMA AND

ATOPIC DISEASE
Other possible mechanisms for increased infection suscepti-

bility include abnormal airway structure and function caused by
prior infections and ongoing airway inflammation. Chronic
responses to paramyxoviral92 and RSV93 infection have been
demonstrated in mice, consisting of airway hyperreactivity and
goblet cell hyperplasia persisting for at least 1 year after complete
viral clearance and methacholine-induced airway hyperrespon-
siveness up to 154 days after viral inoculation, respectively. Par-
amyxovirus infection has also been shown to alter epithelial cell
function characterized by decreased airway mucociliary velocity
and impaired bacterial clearance.94

Infection latency or colonization might contribute to enhanced
susceptibility to infections by promoting ongoing airway inflam-
mation. In a murinemodel trace levels of parainfluenza virus have
been shown to be associated with persistent activation of the
natural killer T cell–macrophage innate immune axis and pro-
duction of IL-13, leading to chronic mucous cell metaplasia and
airway hyperreactivity.95 Long-term persistence of RSV and air-
way hyperresponsiveness and eosinophilia has been demon-
strated in the guinea pig lung.38 These findings are notable, but
their clinical relevance remains unclear because, despite a likely
role for latent parainfluenza and RSV infections in asthmatic pa-
tients, persistence of these viruses in human subjects has not been
clearly established.
INFLUENCE OF EXTRINSIC FACTORS ON IMMUNE

FUNCTION IN PATIENTS WITH ASTHMA AND

ATOPIC DISEASE
Lastly, there are a number of common extrinsic factors that are

associated with both increased susceptibility to infection and
asthma exacerbations or asthma control, including cigarette
smoke, air pollutants, and nutrition. Maternal smoking is a known
risk factor for respiratory tract infections96 and the development
of asthma97,98 and atopic disease99 but has more recently also
been shown to attenuate neonatal immune function with impaired
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TLR-mediated immune responses identified in neonates whose
mothers smoked during pregnancy.100 Passive smoke exposure
has also been shown in adolescents to be associated with higher
rates of pneumococcal colonization of the nasopharynx.23

Outdoor air pollutants, including ozone and diesel exhaust,
have been implicated in alteration of immune function and
increase in infection susceptibility. Exposure to ambient ozone
results in the loss of lung epithelial integrity, a key innate immune
defense mechanism of the airways.101 Exposure to diesel exhaust
increases the susceptibility to influenza virus infection in respira-
tory epithelial cells both in vitro102 and in mice in vivo,103 possi-
bly related to the downregulation of antimicrobial host defense
molecules, including Clara cell secretory protein and surfactant
proteins A and D.104

Nutritional factors, including vitamin D, have also been
described to affect immune function. Subclinical vitamin D
levels are associated with an increased risk for respiratory tract
infections in both infants105,106 and children.107 Proposed mech-
anisms by which vitamin D levels modulate immune function in-
clude induction of antimicrobial peptide expression,108

downregulation of TLR expression by monocytes,109 and inhibi-
tion of T- and B-cell proliferation.110,111 Some of these effects
strengthen the immune system, whereas others actually suppress
immune function, making the exact role of vitamin D in the im-
mune system, as well as the ideal circulating levels, still unclear.
Randomized controlled trials are ongoing to evaluate the role of
vitamin D supplementation during pregnancy and asthma
development.112,113

One must also question whether any of the medications used to
treat asthma or atopic disease, most notably corticosteroids,
modify infection risk. Fortunately, the use of corticosteroids in
asthmatic patients does not appear to be immunosuppressive. The
association identified by Talbot et al45 between invasive pneumo-
coccal disease and asthma remained after adjustment for the long-
term use of oral corticosteroids. Furthermore, Wos et al33 found
no relationship between inhaled corticosteroid dose and rhinovi-
rus presence in the lower airways of patients with bronchial
asthma. Nasal and inhaled corticosteroids might actually be pro-
tective in patients with allergic rhinitis or asthma by resulting in
restitution of the upper and lower airway epithelium, respectively.
IMPLICATIONS FOR TREATMENT IN PATIENTS

WITH ASTHMA AND ATOPIC DISEASE
The suggestion of altered host susceptibility to specific viral

and bacterial pathogens in patients with asthma and atopic disease
has important implications for treatment and prevention. Al-
though the current mainstay of therapy is inhaled corticosteroids,
which inhibit inflammation, more emphasis might need to be
placed on therapies that bolster innate, adaptive, or both immune
responses in response to infection or in deterring the long-term
consequences of infection.
Other therapies that might prove beneficial include increased

vaccination efforts, exogenous type I interferon administration,
and glutathione supplementation. As a result of the recently
demonstrated increased risk of invasive pneumococcal disease
among patients with asthma, pneumococcal vaccination is now
recommended for all adult asthmatic patients114 and has been as-
sociated with a decrease in asthma-related hospitalizations and
asthma-related length of hospital stay.115 Because of the findings
of deficient IFN-b production by asthmatic patients, Cakebread
et al116 investigated the therapeutic potential of exogenous
IFN-b administration on rhinovirus infection in asthmatic patients
in primary bronchial epithelial cells from asthmatic donors. Treat-
ment of cells with exogenous IFN-b followed by infection with
rhinovirus resulted in a normal antiviral response to rhinovirus, in-
cluding induction of apoptosis and reduced rhinovirus replication.
Intrabronchial delivery of IFN-a in an asthmatic cohort has not
been effective because it induced bronchospasmwith a significant
decrease in FEV1.

117 Another treatment option under investiga-
tion includes the use of glutathione supplementation in patients
with severe asthma because these patients have reduced levels
of glutathione and subsequent impairment of airway macrophage
function. Ex vivo glutathione supplementation has been demon-
strated to significantly improve the phagocytic function of airway
macrophages collected from patients with severe asthma.71
CONCLUSIONS
The relationship between infections and asthma is still not fully

understood. There has been historical debate over whether
respiratory tract infections play a causal role or severe infections
are merely a marker of those predisposed to asthma. The
likelihood is that both are true: hosts with a genetic propensity
for asthma are thosewho also have an altered immune response to
specific pathogens, resulting in more severe infection, and these
early-life events are additionally causal in asthma development.
The shared pathways demonstrated by recent studies support the
possibility of altered susceptibility to specific viral and bacterial
pathogens within patients with asthma and atopic disease. More
research is needed to characterize the innate and adaptive immune
responses in patients with asthma and atopic disease to improve
control of these diseases, develop treatment strategies for those
pathogens for which there are currently no therapies, and some-
day even to prevent their development.
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