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Abstract
Mutations in BAP1 have been identified in a hereditary cancer predisposition syndrome and in sporadic tumours. Indi-
viduals carrying familiar BAP1 monoallelic mutations display hypersusceptibility to exposure-associated cancers, such 
as asbestos-driven mesothelioma, thus BAP1 status has been postulated to participate in gene-environment interaction. 
Intriguingly, BAP1 functions display also a high degree of tissue dependency, associated to a peculiar cancer spectrum 
and cell types of specific functions. Mechanistically, BAP1 functions as an ubiquitin carboxy-terminal hydrolase (UCH) 
and controls regulatory ubiquitination of histones as well as degradative ubiquitination of a range of protein substrates. 
In this article we provide an overview of the most relevant findings on BAP1, underpinning its tissue specific tumour 
suppressor function. We also discuss the importance of its epigenetic role versus the control of protein stability in the 
regulation of genomic integrity.

1  Gene, environment and BAP1

The largest majority, if not the entirety, of the human diseases emerge from the interaction of at least an exogenous 
factor, including also microorganisms, and the genetics of the individual. How the cell responds to a stress and man-
ages to maintain the stability of its molecular circuits determines whether there will be a disease. Ability to regulate 
epigenetic landscape and the integrity of the genome is especially important in cancer development, hence, here, the 
gene-environment (GxE) interactions play critical roles [1–3].

Epigenetic modifications as DNA methylation and histone posttranslational modifications (PTMs) regulate cellular 
processes. Epigenetic perturbations or even mutations in epigenetic enzymes can trigger changes in chromatin confor-
mation leading to aberrant transcriptome which may support tumorigenesis [4–6]. The balance between euchromatin 
and heterochromatin is finely tuned by a number of chromatin modifying factors, including the Polycomb group (PcG) 
family, broadly classified into 3 complexes: Polycomb Repressive Complex 1 (PRC1), Polycomb Repressive Complex 2 
(PRC2) and Polycomb Repressive Deubiquitinase Complex (PR-DUB) [7]. BRCA1-Associated Protein 1 (BAP1) is a ubiquitin 
carboxy-terminal hydrolase (UCH), which also functions as a member of Polycomb Repressive—Deubiquitinase complex 
(PR-DUB). PR-DUB removes monoubiquitin residue at lysine 119 of the Histone 2A (H2AK119ub), thus remodelling chro-
matin and maintaining functional epigenetic landscape. This enzymatic activity directly counteracts Polycomb Repres-
sive Complex 1 (PRC1)-mediated histone ubiquitylation, modulating transcriptional programs and a variety of cellular 
processes including DNA repair, metabolism, cell proliferation, differentiation and cell death [8–10]

Originally, BAP1 was directly implicated in a mechanism of DNA repair following double strand break. BAP1 direct 
physical interaction with BRCA1-RING finger domain was associated to enhancement of BRCA1 tumour suppressor 
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activity in breast cancer [11] (Fig. 1a). BAP1-BRCA1 interaction is however still controversial [12]. Several studies later 
demonstrated that BAP1 mainly interacts with BARD1 perturbing BARD1/BRCA1 complex [13]. Nevertheless, further 
works have highlighted that BAP1 enables the initial recruitment and accumulation of BRCA1 and other DNA damage 
repair proteins as RPA and RAD51, at the double strand breaks (DSBs), requisite for DNA repair via Homologous Repair 
(HR) system [14–16].

BAP1 has attracted strong interest in the recent decades since the identification of the “BAP1 cancer syndrome”. 
Individuals carrying germline monoallelic mutation in BAP1 show a high frequency of malignant mesothelioma (MM), 
uveal melanoma (UM) and clear cell renal cell carcinoma (ccRCC) [15, 17, 18]. The germline mono-allelic mutation of BAP1 
appears to play a role predisposition to exposure-induced cancers. This is particularly relevant in the context of asbestos-
associated mesothelioma and UV-associated melanomas. Hence, such specific pattern of human cancers associated to 
BAP1 inactivation suggest a role in the response to environmental stressors and indicate a cooperation of predisposing 
gene mutations and environmental factors in cancer onset and progression. Thus, BAP1 mutation was proposed as key 
prototype of Gene-Environment interaction (GxE) [19]. Intriguingly, alike the canonical tumour suppressors such as 
p53 [20], sporadic mutations of BAP1 are found a peculiar spectrum of tumours, that recall the genetic predispositions 
(Fig. 1b). Hence, BAP1 inactivation emerged as directly linked to the tumorigenesis process of these cancers.

Despite the evidence that BAP1 enforces control of the epigenetic landscape and influences genomic integrity, it is 
still unclear whether the intersection of these two processes underlies a role of BAP1 in cancer. In this perspective, we 

Fig. 1  BAP1 structure and 
frequency of alteration in 
cancer. a Schematic represen-
tation of BAP1 structure and 
interacting partners. BAP1 
protein can be divided in 
three regions: an N-terminal 
region (1–240 aa), where 
the catalytic triad is located 
and responsible for deubiq-
uitylation; a middle region 
(241–596 aa), demonstrated 
to interact with BARD1, HCF1 
through the HCF-1 bind-
ing motif (HBM) and FOXK1 
and 2; the C-terminal region 
harbouring two nuclear locali-
zation sequences. The 2 NLS 
can be targeted by UBE2O 
allowing BAP1 retention in 
the cytoplasm. This region 
was demonstrated to interact 
with BRCA1, YY1 (Yin Yang 1) 
and ASLX1 and 2. b Frequency 
of genetic alteration of BAP1 
in cancer. In red the most rel-
evant alterations of BAP1 are 
shown. Mesothelioma, Intra-
hepatic Cholangiocarcinoma, 
Renal Clear Cell Carcinoma 
and Uveal Melanoma, display 
the highest frequency of BAP1 
genetic alterations. Source: 
cBioportal [75]
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discuss classic and more recent literature regarding BAP1, aiming to provide a unifying view of its role in epigenetic 
stability and genomic integrity.

2  BAP1/PR‑DUB: the fine regulation of histone ubiquitination

The PR-DUB is a multiprotein complex constituted by BAP1, HCF1, FOXK1/2, OGT, MBD5/6, LSD2 associated with ASXL1, 
2 or 3 [7, 21]. In this complex, BAP1 is the catalytic subunit and its activity is strongly dependent on the interaction with 
conserved DEUBiquitinase Adaptor (DEUBAD) domain of ASXLs that induces conformational changes able to increase 
BAP1 affinity for ubiquitin [22]. Moreover, FOXK1 and FOXK2 seem to have a role in site-specific recruitment of BAP1 
across the genome [7] (Fig. 2).

The interplay between PRC1 and PRC2 complexes control the chromatin dynamic. Polycomb Repressive complex 
1 monoubiquitylates H2A at lysine 119 (H2AK119ub), while Polycomb Repressive complex 2 catalyse mono-, di- and 
trimethylation of H3 at lysine K27 (H3K27me1-2-3), both posttranslational modifications of histone tails required for 
modulating chromatin architecture, cellular stemness and differentiation. An additional level of complexity is given 
by PR-DUB complex, which reshapes the epigenetic landscape by counteracting PRC1 activity through the removal of 
H2Aub from chromatin and, thus, indirectly influencing the PRC2-mediated H3K27me [7, 8, 23].

H2Aub is particularly enriched at specific silent genomic regions, notably Polycomb Target Genes (PcG) [22]. In mam-
malian, this group includes 39 Hox genes located in 4 clusters, involved in vertebrate development and organogenesis 
and their deregulation is commonly observed in cancer [24, 25]. Generally, Hox genes are silenced via two different 
mechanisms: the methylation of CpG islands in their promoters and PRC1/PRC2-driven chromatin repression by ubiq-
uitination of H2A and trimethylation of histone H3 at lysine 27. RNF1/RNF2-mediated ubiquitylation of histone H2A is 
a required step for the recruitment of PRC2 on chromatin thereby leading to the subsequent deposition of H3K27me3 
[22]. BAP1/PR-DUB associates to chromatin at active gene promoters and removes ubiquitylation mainly deposited by 
PRC1.3/5 (non-canonical PRC1 complex) while it is excluded from the canonical PRC1 (c-PRC1) and PRC2 Polycomb repres-
sive regions [8]. Overall, BAP1 maintains the spatial distribution of both H2AK119ub and H3K27me3 on Polycomb regions, 
preserving gene repression. Indeed, loss of BAP1 catalytic function titrates away both c-PRC1 and PRC2 complexes 

Fig. 2  BAP1 in the PRC-DUB 
complex. BAP1 is directly 
involved in controlling the 
dynamics of chromatin as 
a component of PR-DUB 
complex. Loss of BAP1 directly 
impacts of cell transcriptome 
due to the altered deposition 
of H2AK119ub and H3K27me3 
histone marks
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from their genomic loci causing derepression of Polycomb genes, the spreading and accumulation of H2AK119ub and 
H3K27me3 sustained by PRC1.3/5 at intergenic sites across the genome [8]. This results in a global chromatin compaction, 
reshaping of epigenetic landscape and aberrant transcriptome that associates with loss of cellular identity, oncogen-
esis, immune evasion and poor tumour response to immunotherapy [26–28] (Fig. 2). Indeed, Yan and colleagues have 
recently demonstrated that the unbalanced activity of chromatin modifying factors like that caused by PRC2 inactiva-
tion, can strongly contributes to epigenetic reprogramming and transcriptional downregulation of genes involved in 
the immune cell recruitment, driving immune-desert tumour microenvironment [28]. Thus, identification and targeting 
of tumour-specific epigenetic dysregulations represent a possible therapeutic approach via administration of epidrugs 
as EZH2 (inhibitors of histone methyltransferase, core component of PRC2 complex), DNMT (DNA Methyltransferase), 
HDAC (Histone deacetylase) and BAP1 inhibitors [18, 29–31].

3  BAP1 in cancer: more than epigenetic?

Several studies have highlighted that BAP1 tumour suppressor activity is strictly cell type- and context-dependent: inac-
tivation of BAP1 or catalytically inactive mutants (i.e. C91A) can drive opposite phenotypes in different tissues [12, 32, 33].

BAP1 conditional knock out mice showed hematopoietic defects as anaemia, thrombocytopenia, leucocytosis, liver 
damage and atrophy of pancreas. In these organs, increases in cleaved caspase-3 levels suggest that the loss of this pro-
tein triggers apoptotic events. Furthermore, BAP1 loss-associated lethality can be observed in several cell types including 
embryonic stem cells, primary keratinocytes and E1A-immortalized embryo fibroblasts [31]. Conversely, BAP1 genetic 
deletion in mouse primary melanocytes and mesothelial cells induces proliferation and the expression of pro-survival 
genes. The differential activity in cell types resides into the different selectivity of BAP1 in regulating gene expression [32, 
34]. The tumour suppressor function of BAP1 is also described in prostate and kidney cancers in which BAP1-dependent 
deubiquitinase activity stabilizes the tumour suppressor Phosphatase and Tensin homolog (PTEN) and Death Inducer-
Obliterator 1 (DIDO1), a protein of the centrosome involved in spindle assembly and correct chromosome segregation 
[35–37]. In pancreas, BAP1 inactivation causes organ atrophy while triggers the inactivation of tumour suppressor Hippo 
pathways in pancreatic KRAS mutated cancer [38, 39]. Hence the interplay between BAP1 deficiency and oncogenic KRAS 
leads to pancreatic tumour progression. In breast cancer cell lines, BAP1 plays an oncogenic function by directly deu-
biquitinating and stabilizing KLF5 (Kruppel-like factor 5). Protein stabilization of KLF5 promotes cell proliferation, migra-
tion and tumour growth [38]. Moreover, in these KLF5-positive cell lines, BAP1 knock-down inhibits the DNA synthesis 
reducing cell viability, while it has no effect on the cell growth in KLF-5 negative MDA-MB-231 breast cancer cells [21, 41]. 
In small cell lung carcinoma (SCLC), BAP1 promotes oncogenic roles inducing the expression of ASCL1 (Achaete-Scute 
Family BHLH Transcription Factor 1), a key lineage-specific oncogenic driver in SCLC. BAP1 inhibitors and CRISPR-cas9 
knock-out in NCI-H1963, NCI-H748 and NCI-H1882 cells abrogate ASCL1 chromatin occupancy at the promoter region of 
its target genes reducing cell growth [18]. In leukaemia the gain-of-function of ASXL1 mutants increase PR-DUB activity; 
the stabilization of BAP1 and its undue ASXL1 mutant-dependent chromatin recruitment leads to aberrant oncogenic 
pattern of gene expression [42, 43]. In this context, the reduction of BAP1 catalytic activity with iBAP (BAP1 inhibitors) 
might represent a therapeutic strategy [40]. In contrast, BAP1 function is required to avoid the onset of myeloproliferative 
disorder since BAP1 KO mice showed hematopoietic defects as myeloid progenitor expansion [44, 45].

BAP1 exerts its function predominantly in the nuclear compartment as the two NLS can direct the translocation of this 
protein in the nucleus. Notably, BAP1 can be sequestered in the cytoplasm by the ubiquitin-conjugating enzyme UBE2O 
that ubiquitylates its nuclear localization signals leading to its cytoplasmatic retention. Exogenous and endogenous 
stimuli trigger the activation of the self-deubiquitylation activity of BAP1. This allows the translocation from cytoplasm 
into nucleus where BAP1 regulates the cell biological response [44]. Furthermore, BAP1 exerts cytoplasmatic functions 
as it can localize in the endoplasmic reticulum for modulating intracellular Ca 2+ release and the activation of apoptosis 
[45]. BAP1 regulates stabilization of type-3 inositol-1,4,5-trisphosphate-receptor (IP3R3), ER calcium channel that controls 
the release of Ca2 + from endoplasmic reticulum into cytosol and mitochondria. Changes in mitochondrial permeability 
are required for the activation of the apoptotic process and the loss of BAP1 protects the cells from caspase-induced cell 
death as a consequence of IP3R3 level reduction and Ca2 + signalling decrease [45]. In addition to apoptosis, BAP1 also 
modulates the activation of cysteine-dependent cell death, ferroptosis, by downregulating the expression of SLC7A11, 
the major transporter for extracellular cysteine uptake. Also in this context, the inactivation of BAP1 triggers cell resist-
ance to ferroptosis [10]. Moreover, BAP1 deficiency drives the reprogramming of cell metabolism, promoting anaerobic 
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glycolysis for energy production rather than mitochondrial respiration and increasing extracellular lactate secretion 
which induces immune evasion, tumour growth and cell malignant transformation.

BAP1 emerges as a highly tissue-specific and context-specific tumour suppressor participating to the biology of the 
tumour with multiple mechanisms and different levels (summary in Table 1).

4  The BAP1 cancer syndrome

Germline monoallelic inactivation of BAP1 is a prototype of GxE predisposing to tumorigenesis. Carriers of BAP1 muta-
tions have high frequency of mesothelioma, cutaneous and uveal melanoma, clear cell renal cell carcinoma. In carrier 
individuals, tumour onset is accompanied by the loss of heterozygosity with the inactivation of the second wild-type 
allele [12]. More than 80% of gene carriers are affected by at least one type of cancer and 90% of the affected individuals 
have at least two close first-degree relatives affected by a cancer. BAP1 families require genetic and oncological counsel-
ling to handle cancer risk management and undergo routine testing for at-risk family members.

Tumour onset in carriers is accompanied by the loss of heterozygosity with the inactivation of the second wild-type 
allele [12]. Mutations frequently occur in the N-terminal catalytic UCH domain within Gly185, Arg227, impacting the 
affinity of BAP1 for ubiquitin, and within Cys91, His169, Asp184 by inactivating the catalytic domain. Missense muta-
tions are also found in BAP1 interacting domains and in C-terminal region, interfering with its nuclear localization, auto-
deubiquitination and recruitment on chromatin [12, 46, 47].

Therapeutic approaches have been suggested for the treatment of BAP1-deficient cancers such as the epigenetic 
drugs that inhibit EZH2, ther platinum-based compounds and PARP-1 inhibitors. EZH2 inhibitors reduces proliferation 
of BAP1-mutant mesothelioma cell lines, while platinum-based drugs and PARP-1 inhibitors should be able to target 
cancer cells with defective DNA repair mechanisms [9, 44, 48].

Here, we discuss the current knowledge about the contribution of inactivating BAP1 mutations in development and 
progression of inherited cancers as Mesothelioma, Uveal melanoma and Clear Cell Renal Cell Carcinoma in which BAP1 
is recurrently lost.

4.1  Mesothelioma

Malignant Mesothelioma (MM) is a tumour arising from mesothelial cell transformation mainly of pleura and peritoneum 
and it is correlated to persistent exposure to environmental carcinogen such as asbestos that includes 6 natural fibres 
(crocidolite, actinolite, tremolite, anthophyllite, amosite and chrysotile) [17]. After inhalation, asbestos is phagocytized by 
macrophages and mesothelial cells of pleura where accumulates forming deposits and hence exerts its cytotoxic effects 
[47]. The initiation of carcinogenesis process is attributed to HMGB1 extracellular release by necrotic mesothelial cells 
that activates chronic inflammation and ROS production triggering an inflammatory microenvironment [48]. In addi-
tion, these fibres could mechanically interfere with chromosomal segregation during mitosis leading to DNA damage, 
genome instability, thus contributing to mesothelial cell oncogenic transformation [49, 50]. In addition to mutations of 
BAP1, frequent deletion of tumour suppressors Cdkn2a/b and Nf2 were observed in malignant mesothelioma [51–53]. 
The functional interaction between BAP1 inactivation and these other genetic events in the development of MM has 
not been fully elucidated.

4.2  Uveal melanoma

Uveal Melanoma (UM) is the most widespread primary intraocular malignant tumour in adult arising from melanocytes 
of pigmented uveal tissues as the iris in the anterior chamber of the eye and ciliary body and choroid in the posterior 
chamber of the eye [54, 55]. UM incidence shows a south to north increasing gradients as it ranges from < 1 (Africa) up to 
9 (Norway and Denmark) per million population per years depending on the countries [54]. Despite the treatment with 
radiotherapy until the ocular enucleation in most advanced cases, the half of patients affected by UM develop metasta-
ses within 5-years in liver, lung, skin and brain reducing the survival at less of one year from the onset of symptoms [55]. 
Genetic features as fair-skin, light-coloured eyes, ocular melanocytosis besides germline mutations in BAP1 gene, increase 
the odds of developing uveal melanoma [12, 56, 57]. Moreover, loss of chromosome 3 or BAP1 deficiency are predic-
tors of metastatic UM since BAP1 biallelic inactivation correlates with the most aggressive phenotype of melanocytes, 
characterized by driver mutations in G-protein-α subunits GNAQ or QNA11 [25, 30, 58, 59] that are not sufficient alone 
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to induce malignant transformation but sustain cell growth by downstream activation of YAP/TAZ [60–62]. However, the 
molecular mechanisms through which BAP1 promotes UM metastasis is still unclear.

An important open question is whether the sunlight exposure could cooperate with BAP1 inactivation in UM develop-
ment and progression. Interestingly, few evidences indicate a direct link between ultraviolet radiation exposure, a com-
mon environmental risk factor for cutaneous melanoma onset, and the occurrence or progression of uveal melanoma [56, 
63]. Nevertheless, the melanoma of the iris, the part of the eye directly exposed to sunlight, shares ultraviolet radiation 
(UVR) mutational signature, suggesting an association between UV exposure and this malignancy [64, 65].

4.3  Clear cell renal cell carcinoma

Clear cell renal cell carcinoma (ccRCC) represents 70–80% of all kidney tumours and arises from epithelial cells of renal 
tubular. ccRCC is characterized by genetic features as loss of chromosome 3p, mutations in Protein Polybromo-1 gene 
(PBRM1), Von Hippel–Lindau (VHL), Set domain-containing 2 (SETD2) histone methyltransferase and BAP1 genes [66, 
67]. BAP1 inactivation status is strongly associated to high tumour grade and worse clinical outcomes in ccRCC patients 
[68–70]. However, BAP1 mutations increase the susceptibility of renal cancer cells to the treatment with CCR5 inhibitor. 
This compound reduces  CCR5+ T-reg cells in the tumour microenvironment increasing the immune response and cancer 
regression [71, 72].

5  Conclusion

The last decades have seen the accumulation of a huge amount of cancer genomics data, that have supported the 
development of predictive models of cancer [71]. Despite this data have undoubtedly pointed out a role for BAP1 in 
tumorigenesis of a specific spectrum of cancer, the determination of the molecular underlying mechanisms has not yet 
led to development of therapeutic strategies. Important questions remain elusive; the selectivity of the cancer spectrum 
has not yet an explanation. Remarkably the relevance of the epigenetic role of BAP1 versus the other described func-
tions has still no answer. Finally, we argue that in cancer development the maintenance of genomic integrity is a pivotal 
aspect of the pathogenesis and whether and BAP1 dependent regulation of the cellular epigenome impact the genomic 
integrity remain an eluded critical question.
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