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Abstract

Reconstructing 3D shapes from images are becoming popular, but such methods usually
estimate relative depth maps with ambiguous scales. A method for reconstructing a scale-
preserving 3D shape from monocular endoscope image sequences through training an
absolute depth prediction network is proposed. First, a dataset of synchronized sequences
of RGB images and depth maps is created using an endoscope simulator. Then, a super-
vised depth prediction network is trained that estimates a depth map from a RGB image
minimizing the loss compared to the ground-truth depth map. The predicted depth map
sequence is aligned to reconstruct a 3D shape. Finally, the proposed method is applied to
a real endoscope image sequence.

1 INTRODUCTION

Endoscopes are devices that allow non-invasive direct obser-
vation of internal structures and are used in the medical and
industrial fields. In gastrointestinal examinations and surg-
eries, wired endoscopes are mainly used for the digestive tract,
excluding the small intestine, while wireless capsule endo-
scopes are used for the examination of the entire digestive
tract.

Most endoscopes are equipped with a monocular cam-
era. Stereoscopic endoscopes are used to provide a 3D view
to the surgeon in medical surgery, although they are not
yet widely used due to operability limitations. Attempts are
being made to reconstruct 3D information from stereoscopic
endoscopes [1].

Reconstructing 3D structures from images has been an
important topic in the history of computer vision. Recently,
monocular 3D reconstruction has been realized using neural
networks. Eigen et al. [2] developed a supervised monocular
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depth estimation using CNNs, whose depth error measure is
scale-invariant, so the estimated depth is relative. Monocular
3D reconstruction is possible in limited domains where train-
ing images are provided, such as street views in the KITTI
dataset [3] and indoor scenes in the NYU dataset [4]. Most
methods for obtaining 3D structure from monocular images
provide relative depth estimation.

Methods such as structure from motion (SfM) and simulta-
neous localization and mapping (SLAM) are re-modelled by the
learning framework [5] to reconstruct object shape and cam-
era motion from image sequences. SfMLearner [6] modelled
SLAM with two neural networks: DispNet for estimating dis-
parity from a single image and PoseNet for estimating camera
motion in a short-term image sequence. These two networks are
jointly optimized by minimizing photometric consistency loss,
which evaluates the change in pixel values before and after cam-
era motion. Wang et al. [7] extended PoseNet with differentiable
direct visual odometry (DVO), and Godard et al. [8] (mon-
odepth2) integrated PoseNet with ResNet-18 and introduced a
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binary mask to remove irregular motion. These methods do not
require the ground truth depth map for training and are referred
to as unsupervised methods.

Even if the depth has scale ambiguity, it can be con-
strained to be consistent throughout the image sequence. The
geometry consistency loss was introduced to penalize depth
inconsistency between consecutive frames [9]. This work was
further improved by pre-correcting for rotation [10] and by
combining it with an additional relative monocular depth esti-
mation module for high-density reconstruction that allows
deformations [11].

SfMLearner [6] was adapted to endoscopic image sequences
by EndoSfMLearner [12]. The geometry consistency loss was
used to measure predicted depth consistency in addition to
RGB value consistency evaluated as well by the photometric
consistency loss. This study makes use of a capsule endoscope
simulator called VR-Caps [13] to generate their own dataset
for training and evaluation. The predicted depth maps still
have scale ambiguity and they need to be rescaled appropriately
for evaluation.

Predicting in the correct scale is beneficial for real med-
ical applications. If a reference object is available, scale can
be recovered by the post-processing, but it would be ben-
eficial if absolute shape and position could be predicted
online without any reference targets. DispNet [6] can be
thought as an encoder-decoder model, and the encoder part
can be replaced by various image encoder networks. Fang
et al. [14] tested various encoders for supervised and unsu-
pervised training of DispNet. Their conclusion is in short that
supervised depth estimation is superior to unsupervised depth
estimation.

This paper presents an absolute depth estimation method for
monocular endoscopic image sequences. In general, monocu-
lar depth prediction is possible by assuming a specific scene
domain. For our case, it is possible for endoscopic images
of the digestive organs because the organs are usually in
limited shape and colour, surely with individual differences,
lighting and surface conditions. Compared to typical 3D
reconstructed scenes such as KITTI and NYU, the difficul-
ties in analyzing endoscopic scenes are featurelessness, wet
specular reflections, uneven illumination, and severe turbu-
lence and deformation. Therefore, using VR-Caps [13], we
created a dataset that simulates a gastrointestinal endoscopy
sequence with synchronized pairs of RGB images and ground
truth depth maps. Using this dataset, we first train Disp-
Net in a supervised manner using the ground truth depth
maps with the correct scale, and then reconstruct the 3D
shape by aligning and merging the predicted depth maps.
Finally, the developed method was applied to real endoscopic
image sequences.

The contributions of this paper are: first, we generated a
synthetic dataset of the sequences of images with synchro-
nized ground truth depth maps by an endoscope simulator,
then we used it for training the DispNet to predict scale pre-
serving depth maps from image sequences, and finally, we
developed a SLAM algorithm to reconstruct the 3D shape from

the predicted depth maps, and applied it to real endoscope
image sequences.

We first explain dataset preparation in Section 2, then the
supervised training of DispNet in Section 3 and PoseNet in Sec-
tion 4. In Section 5, a SLAM method to reconstruct the 3D
shape is proposed, and we show the results of application to the
real endoscope image sequences in Section 6.

2 DATASET PREPARATION

For supervised training, the ground truth depth maps are
needed in addition to the RGB images. Currently, it is still dif-
ficult to obtain reliable real depth maps synchronized with the
image frames from endoscopes. Instead, we used VR-Caps [13],
a Unity [15]-powered capsule endoscopy simulator, to gener-
ate computer-graphics datasets. Its graphical shape model is
derived from a human CT scan and includes the major diges-
tive organs from the stomach to the large intestine, with realistic
textures applied. It features configurable camera, reflection, and
illumination parameters, and can synchronously render a pair
of realistic RGB images and depth maps by controlling camera
position and pose.

In the original VR-Caps dataset [16], the image size is 320 ×
320 and the projection matrix and lens distortion are set to
simulate a real capsule endoscope. In their dataset, we found
that misalignments between the RGB images and the depth
map is incomplete (Figure 1). We suppose that this misalign-
ment is caused by capture timing delay due to online capturing,
and we recreated our own dataset using the same system by
off-line rendering with perfect synchronization. For generating
our own dataset, the image size is kept the same as the orig-
inal (320 × 320) for both the RGB images and depth maps,
and the focal length is 159.45 pixels and the projection center
is at the image center. We didn’t apply lens distortion because
it can be easily undistorted even for real endoscope images if
calibrated.

With these settings, we manually controlled the camera posi-
tion and pose, and finally generated 17 sequences of 9714
frames in total, and each frame is composed of synchronized
frames of a RGB-image and a depth map.

We split this dataset into two subsets: 13 sequences of
8249 frames for training and 4 sequences of 1465 frames
for validation.

3 SUPERVISED DEPTH ESTIMATION

3.1 DispNet

DispNet is a neural network model that estimate a disparity map
from a single RGB image (Figure 2). It consists of an encoder
and a decoder, where the former extracts image features and
the latter synthesizes the disparity map. The supervised Disp-
Net [14] was trained on the ground truth depth maps and RGB
images with validate various encoder structures. Following
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FIGURE 1 Two examples of misalignment of image and depth map in the original VR-Caps dataset [13]. In each example, left and middle show the RGB
image and the depth map at the same frame in grey-scale. For clear visualization, we extracted the image edges by Canny operator, and overlaid them on the grey
scaled image and the depth map in yellow and cyan respectively. These two-coloured edges are overlaid in right, which shows that the edges of image and depth map
are not perfectly aligned. The amount and orientation of misalignment are not consistent over the whole sequence.

FIGURE 2 Diagram of the method. We assume that we have synchronized sequences of RGB images and depth maps. Is is composed of DispNet and
PoseNet, and they are evaluated by the supervised and unsupervised losses.

many SfMLearner variants, the depth map D is obtained by
taking the inverse of the disparity map d as D = 1∕d .

The decoder part of DispNet consists of four-layers of up-
convolution blocks. Each output of the up-convolution block
is followed by a sigmoid function and a linear transforma-
tion, where d ′ = 𝛼 sigmoid(d ) + 𝛽 where d and d ′ are the
disparity map before and after the transformation. The param-
eters 𝛼 and 𝛽 are fixed to match the output range of the
sigmoid function [−1, 1] to the target disparity range, which
is commonly used by many successors of SfMLearner [6].
We replaced this to the softplus function d ′ = softplus(d ) =
log(1 + ed ). This ensures that the predicted disparity is always
non-negative and eliminates the tuning of 𝛼 and 𝛽 for the
target dataset.

3.2 Supervised training of DispNet

For obtaining the scale-preserving monocular depth estimator,
we train DispNet by optimizing the loss function comparing the
predicted depth map and the ground truth depth map [14]. We
used the synthetic dataset of synchronized sequential pairs of
RGB images and depth maps for training DispNet (Section 2).

As for the loss for the supervised depth estimation, we used
the simple L1 loss:

Esup =
1
N

∑
i

|D̃i − D̂i |, (1)

where D̃i and D̂i are the predicted and true depth values respec-
tively at all corresponding pixels, and N is the total number of
the pixels.

We trained DispNet from scratch with the batch size of 4 and
the data augmentation of random horizontal flip and random
90-degree rotations. RGB values were normalized so that RGB
channels have a mean of [0.5, 0.5, 0.5] and a standard deviation
of [0.5, 0.5, 0.5]. The optimizer was Adam with the learning rate:
10−7, momentum: 0.9, beta: 0.999, no weight decay. We used a
cloud-based computing system called ABCI [17].

3.3 Ablation study of DispNet encoders

We compared the performance of various encoders of DispNet
for depth prediction from endoscope images. Among the
encoders tested in [14], we used the following five encoders
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FIGURE 3 The trained network was applied to the RGB images in the validation dataset to predict the depth map. From top left to bottom right, the input
RGB image, the truth depth map, and the predicted depth maps of the various trained networks. All depth map colour maps are the same: black-magenta pixels are
near and yellow-white pixels are far apart.

TABLE 1 Results for the VR-Caps validation dataset. The columns
represent, respectively, the network model, the number of model parameters to
train, the minimum training mean absolute error (MAE) and the number of
epochs in which it occurred, the validation MAE (lower is better) and
correlation coefficient (CC: higher is better), and training time. The best model
is shown in bold and the second best model in italics. The learning epochs for
DispNet was 500; the other models were 1000. The units for MAE are meters.

Network #params Least MAE MAE CC time

dispnet 31,596,900 1.208e-2@111 0.01172 0.328 10:14

disp_res_18 14,330,244 5.955e-3@907 0.00568 0.872 20:29

disp_res_50 32,523,140 5.724e-3@992 0.00540 0.873 35:16

disp_res_101 62,907,268 7.584e-3@919 0.00728 0.782 57:58

disp_vgg 143,507,564 1.158e-2@30 0.01120 0.297 39:27

disp_vgg_BN 143,516,012 5.665e-3@919 0.00539 0.883 42:21

for DispNet: dispnet, disp_res_18, disp_res_50,
disp_res_101, disp_vgg, disp_vgg_BN, which stand for
the original DispNet [2, 6], DispNet with ResNet-18/50/101
and VGG without/with batch normalization, respectively.

The optimization results are summarized in Table 1. The val-
idation loss of the dispnet and disp_vgg were minimized
in an early stage of the optimization process, which may mean
that they are suffered from the over fitting. In terms of the
MAE and the correlation coefficient, disp_vgg_BN was the
best, but disp_res_50 and disp_res_18 followed with very
minor differences.

The predicted depth maps are shown in Figure 3. We
can understand that the predictions of disp_res_18,
disp_res_50, and disp_vgg_BN are visually close to

the true depth map, which supports the previous insights of
error metrics. When we carefully inspect the predicted depth
map, there are some noisy dots in disp_vgg_BN cases that
don’t exist in the ground truth depth map. Although it does not
appear in Table 1, from a viewpoint of stability, we consider
that ResNet based encoders (disp_res_18/_50) are more
stable than VGG based encoders.

Figure 4 shows the supervised training procedure and the
result of DispNet with ResNet-50 encoder (disp_res_50).
Comparison of the true and predicted depth values shows that
the prediction of absolute depth values was successful.

4 POSE ESTIMATION

4.1 PoseNet

PoseNet is a neural network that predicts a 6-DoF 3D rela-
tive rigid motion parameters from a sequence of input images
frames [18], and there are many varieties of implementations.
For the target image, we take its preceding and succeeding
images as the reference images to form a sequence. We used
two types of PoseNet with different sequence length: one uses
the target image and all the reference images as the input,
and the other uses the target image and only one of the
reference images, which are respectively referred by “Pose-
ExpNet” and “PoseResNet” as appeared in the source codes
of [6, 14] and [8, 12]. The former is implemented as a pure
CNN with 1.6M parameters, and the latter uses ResNet18 as
the feature detector followed by a CNN with 13M parameters
in total.
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FIGURE 4 Left: plot of training and validation losses of DispNet with ResNet-50 encoder (disp_res_50). Right: The values of the true and predicted depth
map at the image center (160,160) through the sequence.

FIGURE 5 Training results of PoseNet. Left: plot of training and validation losses during training. Middle and right: the relative motion between successive
frames.

FIGURE 6 Graphical representation of 3D shape reconstruction (Algorithm 1). With the trained DispNet, an absolute depth map is predicted from each input
image. The depth maps are further aligned and merged to the global shape.

There are also varieties of 6-DoF SE(3) pose parameteri-
zation used for SfMLearner descendants: a translation vector
and a quaternion for rotation [6], a translation vector and Euler
angles [12], a translation vector and a rotation vector (axis-angle
representation or Rodrigues’ formula) [7, 8, 10].

In the followings, we show the result of PoseExpNet
that takes the next and previous images from the tar-
get image as the reference images, where the sequence
length is 3, with the pose representation of the exponential
map [19].
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FIGURE 7 3D shape reconstruction results. The reconstructed shape from 50 frames of the true depth map (left) and the predicted depth map (middle), and
the true poses and the estimated poses are compared (right). The rotation parameters are in the axis-angle representation. Back faces are culled off for visualizing
meshes.

ALGORITHM 1 Pseudocode for our SLAM algorithm

Require: {Dn} (0 ≤ n ≤ N − 1), K ▹ A sequence of depth maps and the
intrinsic matrix

1: M0 ← I4×4 ▹ the pose of the first frame is fixed to the identity matrix

2: V ← ∅ ▹ set the global SDF voxels

3: for n ← 0,N − 1 do

4: Pn ← convertToPointSet(Dn,K ) ▹ convert a depth map to a point set

5: if n > 0 then

6: Q ← extractPointSet(V ) ▹ extract a point set from the global SDF
voxels

7: Mn ← ICP(Pn,Q,Mn−1 ) ▹ optimize the pose Mn from Mn−1 such
that Q ≈ Mn (Pn )

8: end if

9: V ← V ∪ Mn (Pn ) ▹ merge the transformed point set to the global
SDF voxels

10:
if n > 0 and n mod NI = 0 then ▹ global alignment at every NI = 50
iterations

11:
Q ← extractPointSet(V ) ▹ extract a point set from the global SDF

voxels

12:
for m ← 1, n do

13:
Mm ← ICP(Pm ,Q,Mm ) ▹ update pose Mm

14:
end for

15:
V ← ∅ ▹ reset the global SDF voxels

16:
for m ← 0, n do

17:
V ← V ∪ Mm (Pm ) ▹ update global SDF voxels

18:
end for

19:
end if

20:
end for

4.2 Unsupervised training of PoseNet

With the supervised DispNet, we train PoseNet in an unsuper-
vised manner using its prediction. We used the loss function
that is a weighted sum of the supervised and unsupervised
losses:

Etotal = wsupEsup + wunsupEunsup,

where Esup and Eunsup signify respectively the supervised depth
loss (Equation (1)) and the unsupervised loss. The unsupervised
loss is the L1 (the mean absolute error) of RGB values between
the reprojected reference image and the target image, which is
identical to the photometric consistency loss of [6, 14]. The
weights wsup and wunsup are for balancing these losses, and we
set wsup = 1 and wunsup = 1.

We used DispNet with ResNet-50 encoders whose parame-
ters were pre-trained in Section 3.2. We set the learning rates for
DispNet and PoseNet to 10−7 and 10−4 respectively, and the
optimizer settings are the same as Section 3.2. The optimization
process was iterated for 200 epochs.

Figure 5 shows that the pose prediction is still imperfect and
much more optimization is needed. The possible causes are the
dataset, where the endoscope images are generally uniform and
featureless, and our choice of PoseNet, pose parameterization
and loss function.

5 3D SHAPE RECONSTRUCTION

With the trained PoseNet, we can predict the relative pose
between the image frames, but the pose prediction is not
reliable. In the original SfMLearner [6], the authors reported
their pose estimation by the PoseNet outperformed the ORB-
SLAM [9], but in many its variants, the output of PoseNet
is refined by the ICP algorithm [12] or by the other SLAM
methods like ORB-SLAM [9].

In our case, PoseNet did not predict the pose with sufficient
quality, and we use the ICP algorithm [20] for more reliable
shape reconstruction. Instead applying the ICP algorithm to
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FIGURE 8 The example cases where evident difference can be observed in comparing the prediction of the DispNet with two different encoders:
disp_res_50 and disp_vgg_BN. The depth colourmap is common to all depth maps: black-magenta pixels are near and yellow-white pixels are far.

FIGURE 9 The reconstructed 3D shape and the camera poses rendered from two viewpoints. Each triplet of arrows represents the estimated pose of the
camera. Back faces are culled off for visualizing meshes.

successive frames, we use the global signed distance field (SDF)
voxels as the global (canonical) shape, and align each frame
to it [21, 22]. We developed a SLAM algorithm (Algorithm 1,
Figure 6) for reconstructing the global shape and the camera
poses implemented by the Open3D Python packages [23].

The function “convertToPointSet” converts a depth map
to a point set, where a depth value D at (u, v) of
a depth map is converted to a 3D point by p = D ⋅
K−1 ⋅ (u, v, 1)T . The transformation M (P ) represents a 3D
rigid motion whose rotation and translation are respec-
tively R and t , where a point p ∈ P is transformed to a
point p′ by p′ = Rp+ t . The SDF voxels are implemented
by open3d.integration.ScalableTSDFVolume, and its
integrate and extract_point_cloud functions are used
for “extractPointSet” and merging of point sets at lines 9 and
17 respectively in Algorithm 1.

Figure 7 shows the reconstruction result of this algorithm
from the depth sequence of 50 frames predicted from the syn-
thetic images. The predicted depth value is used only in the
central region where pixels are located within the circle circum-
scribing the image boundary. The plots of poses estimated from
the true depth is almost identical to the ground truth pose,
and the 3D shape reconstructed from the predicted depth is
similar to that from the true depth, which shows that the pro-
posed algorithm worked correctly. For pose estimation from

the predicted depth map, the rotation estimation is not accu-
rate because the object shape is nearly cylindrical and no colour
information was used.

6 APPLICATION TO REAL DATA

6.1 Depth prediction

We applied the trained supervised DispNet to a real dataset that
contains 13 RGB image sequences of digestive organs. There is
no ground truth depth map that can be used for evaluation in
this dataset. We estimated the camera parameters including the
lens distortion from small portion of the sequence where the
COLMAP [24] algorithm could work on, and rectify the images
to adapt our DispNet. We chose two encoders: disp_res_50
and disp_vgg_BN for comparison, and we found that there are
frames with significant difference between these two encoders:
selected cases are shown in Figure 8. The performances of
these two encoders were similar as observed in Table 1 in
terms of the error metrics, but considering the adaptation capa-
bility to the real data, disp_res_50 works more stably than
disp_vgg_BN. Due to lack of real endoscope images with
ground truth depth map, we could not apply additional training
for adaptation.
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6.2 3D Shape reconstruction

We applied our 3D reconstruction algorithm (Algorithm 1) on
the predicted depth maps. Figure 9 shows the result of recon-
struction from 110 images. Due to lack of the ground truth
depth map, we cannot evaluate this result like as in Section 6.1,
but this figure shows that a reasonable cylindrical 3D shape was
reconstructed by the proposed algorithm.

7 CONCLUSIONS

This paper presents supervised learning of depth prediction
networks from monocular RGB images with absolute depth
preservation. Synchronous sequences of RGB images and depth
maps were generated using an endoscope simulator. The perfor-
mance of various DispNet models was compared, and as far as
we tested, ResNet-based encoder performed the best. By train-
ing DispNet with the ground truth depth maps, the absolute
depth maps were predicted from RGB images. According to
interviews with clinicians, reconstructed shape accuracy should
be at least 5 mm or less for practical use, and our results largely
satisfied this requirement. We also developed a SLAM algorithm
based on the ICP algorithm and SDF to align and integrate the
predicted absolute depth maps to form a scale-preserving 3D
shape model. These methods were applied to actual endoscopic
image sequences.

We hope to improve our study to perform better in a variety
of endoscopic scenes. Since it is difficult to obtain datasets of
real endoscope RGB images with synchronized ground truth
depth maps, we trained with synthetic datasets, but we need
datasets with much varieties. For PoseNet, the performance for
endoscopic images needs to be verified, since results of suffi-
cient quality were not obtained. The proposed SLAM algorithm
worked properly, but to improve its performance, it is neces-
sary to use colour and texture information in addition. Also,
we would like to extend the SLAM algorithm to handle more
realistic cases including deformations and turbulence.

NOMENCLATURE

SfM Structure from motion
SLAM Simultaneous localization and mapping
CNN Convolutional neural network
MAE Mean absolute error

ICP Iterative closest point
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