
microorganisms

Review

Whole Genome Sequencing in the Management of
Non-Tuberculous Mycobacterial Infections

Matúš Dohál 1,*, Igor Porvazník 2,3, Ivan Solovič 2,3 and Juraj Mokrý 1
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Abstract: Infections caused by non-tuberculous mycobacteria (NTM) have been a public health
problem in recent decades and contribute significantly to the clinical and economic burden globally.
The diagnosis of infections is difficult and time-consuming and, in addition, the conventional
diagnostics tests do not have sufficient discrimination power in species identification due to cross-
reactions and not fully specific probes. However, technological advances have been made and
the whole genome sequencing (WGS) method has been shown to be an essential part of routine
diagnostics in clinical mycobacteriology laboratories. The use of this technology has contributed to
the characterization of new species of mycobacteria, as well as the identification of gene mutations
encoding resistance and virulence factors. Sequencing data also allowed to track global outbreaks of
nosocomial NTM infections caused by M. abscessus complex and M. chimaera. To highlight the utility
of WGS, we summarize recent scientific studies on WGS as a tool suitable for the management of
NTM-induced infections in clinical practice.
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1. Introduction

Non-tuberculous mycobacteria (NTM) are all species of bacteria within the genus
Mycobacterium (M.), except M. tuberculosis and M. leprae; so far, more than 180 species have
been identified [1]. NTM are environmental, opportunistic pathogenic bacteria and only
a limited number of species cause infections that primarily affect the lungs (pulmonary
disease), skin, soft tissues, lymph nodes, but are also responsible for surgical wound
infections, implant-associated and catheter infections [2–4]. The pulmonary form of the
disease may be manifested by hypersensitivity pneumonitis, nodular bronchiectasis, or
fibrovascular disease. Infections caused by NTM have risen rapidly in recent decades,
and in many developed countries, the number of cases has exceeded the incidence of
pulmonary tuberculosis [5]. In addition, some species of mycobacteria are also associated
with increased mortality in domestic, wild animals, or aquatic organisms, thus contributing
to high economic damage and negative environmental impact [6–8].

Species belonging to the M. avium complex (M. chimaera, M. intracellulare, M. avium) are
the most widespread globally, but species within M. abscessus complex (M. abscessus subsp.
abscessus, M. abscessus subsp. boletti, M. abscessus subsp. massiliense) also pose a great threat
due to high degree of resistance [9,10]. The increasing incidence of infections caused by
NTM is associated with demographic changes, aging population, and an increasing number
of patients with chronic diseases (e.g., chronic obstructive pulmonary disease, cystic fibrosis
(CF), cancer, diabetes), including immunosuppressive conditions [11]. However, the disease
can also occur in patients without obvious predisposition, which may be related to specific
gene mutations encoding changes in the function of the immune system [12].
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The prolonged treatment (at least 18 months) regimens of NTM infections based on
the administration of the combination of several antibiotics are often associated with poor
patient outcomes and cure rates ranging from 30–50% for M. abscessus infections to 80–90%
for M. malmoense infections [13]. The lipid-rich hydrophobic cell walls of NTM are optimal
for biofilm formation. These structures are effectively resistant to antimicrobial agents and
allow bacterial colonies to persist on living and non-living surfaces. In addition, treatment
regimens and management of clinical symptoms vary across the species of NTM, so proper
identification of the causative agent is important in clinical practice [14,15].

In diagnostics of NTM, 3 or more sputum specimens from a single patient are necessary.
However, due to the high risk of contamination from the microflora of the oral cavity, the
diagnosis can be made from a single bronchoscopic sample or a lung biopsy [16]. In
the past, NTMs have been characterized by their growth rate (slow-growers: forming
visible colonies in seven or more days; rapid-growers: forming visible colonies in less than
seven days) and the type of pigment produced. Rapid-growing NTM (the most clinically
relevant species are M. chelonae, M. fortuitum, M. abscessus) do not produce pigment,
whereas slow-growing NTM (the most clinically relevant species are M. avium complex,
M. kansasii, M. marinum, M. simiae, M. haemophilum, M. xenopi) are divided into 3 groups
according to the type of pigment produced: nonchromogens, photochromogens, and
scotochromogens. The slow-growing NTM are more prevalent and present a higher risk of
drug resistance than fast-growing ones [17]. In general, smear microscopy is the diagnostic
method preferred in most clinical laboratories in countries worldwide, due to its low cost.
However, the sensitivity of smear microscopy is only 60–70%, and the inability to diagnose
extrapulmonary forms of mycobacterial diseases significantly reduces its usefulness [18].
Despite these facts, smear microscopy and culture are still gold standards in diagnostics
of mycobacteria. Traditional biochemical and immunological assays or high-performance
liquid chromatography used to identify NTM are time-consuming, insensitive, therefore
have been replaced by molecular methods such as line probe hybridization, polymerase
chain reaction (PCR), real-time PCR, and DNA sequencing. Limitations of conventionally
used 16s rRNA gene sequencing (the approved standard for identification, classification,
and quantitation of microbes) include the inability to distinguish M. abscessus subspecies, as
well as misidentification of M. chimaera as M. intracellulare, therefore other conserved genes
are used (e.g., rpoB, hsp6 and 16S–23S internal transcribed spacer). Some commercial kits,
based on PCR, are available, such as AccuProbe (Hologic Inc., Marlborough, USA), INNO-
LiPA Mycobacteria (Fujirebio Europe, Ghent, Belgium), Speed-oligo Mycobacteria (Vircell,
Granada, Spain), and GenoType NTM-DR (Hain Lifescience, Nehren, Germany), with a
narrow spectrum of detected NTM species and limited sensitivity and specificity [19].

The whole-genome sequencing (WGS) method allows clinicians to overcome the lim-
itations of the conventional tests used for the diagnosis of mycobacterial infections and
better understand the global diversity of NTM species [20]. WGS can identify all single
nucleotide polymorphisms (SNPs) associated with resistance, as well as phylogenetic SNPs
characteristic for individual NTM species [21]. In addition, WGS also contributes to the
diagnosis of mixed NTM infections associated with two or more particular species [22].
Sequencing data should be also used in molecular epidemiology analysis as they provide a
detailed insight into transmission dynamics of NTM (e.g., identification of hospital out-
breaks) [23]. Although WGS technology is currently not available in all clinical settings,
however, the purchase price is gradually reduced, and in some reference mycobacterio-
logical laboratories this method is implemented into routine practice for identification of
mycobacteria and genotypic drug susceptibility testing of M. tuberculosis [24].

In this mini-review, we summarize the latest scientific publications focused on WGS
as a suitable tool for the management of NTM infections.

2. WGS Perspectives for Diagnostics and Characterization of Resistance Patterns
of NTM

The early symptoms of NTM disease are usually non-specific. Patients complain
of chest pain, productive cough, shortness of breath, fatigue, and fever [25]. In clinical
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laboratories in countries with a high incidence of tuberculosis, the diagnosis of mycobac-
terial infections is based mainly on the culture detection of acid-fast bacilli in a sputum
sample and chest radiograph (X-ray or high-resolution computed tomography findings),
which complicates the differentiation of NTM from M. tuberculosis complex due to mor-
phological similarities together with identical clinical symptoms, and can lead to incorrect
and ineffective treatment regimen [26]. In this context, Advani et al. performed a WGS
study on M. tuberculosis isolates and found that almost 20% of all isolates contained NTM
mycobacteria, indicating coinfection [27]. Ongoing NTM infection symptoms are often
non-specific and can be also misdiagnosed as chronic obstructive pulmonary disease,
chest infection of unknown cause, or, more recently, COVID-19. Therefore, the correct
species-level identification of pathogens is essential in clinical practice.

WGS technologies provide the possibility of taxonomic reconstruction and identifica-
tion of unique families of genes occurring within the genus Mycobacteria with biomedical
application in the development of new reliable diagnostic tools [1]. These data are also
useful in identifying rare NTM, the clinical significance of which is greatly underestimated,
because they remain unrecognized in diagnostic laboratories, highlighting the utility of
WGS compared to traditional diagnostic methods [28]. In general, NTM colonies grown
on solid media (e.g., Lowenstein-Jensen) or in liquid media (Middlebrook 7H9 broth) of
automated incubation system (BACTEC MGIT 960 system, Becton, Dickinson and Com-
pany, Franklin Lakes, NJ, USA; VersaTREK system, Thermo Fisher Scientific Waltham,
MA, USA; MB/BacT Alert 3D, bioMérieux, Marcy-l’Étoile, France) proceeded from clinical
(pulmonary-sputum; extrapulmonary-blood, tissues) or environmental samples (micro-
biological swabs) are the most commonly used materials for diagnostic and sequencing
purposes (Figure 1).
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Figure 1. Schematic representation of the WGS methodological procedure. In the first step, DNA
is extracted from colonies grown on a solid or liquid culture medium. Subsequently, sequencing
libraries are prepared for short- or long-read sequencing. In the last step, the sequencing data
are bioinformatically processed for genotyping, identification of resistance patterns, molecular-
epidemiology analysis, and assembling of complete genomes of new NTM species.

Quan et al. tested the efficacy of WGS for NTM classification compared to conven-
tional available line probe assays (GenoType CM test, GenoType Mycobacterium MTBC
or GenoType Mycobacterium AS test). Their results confirmed the high agreement of
the individual methods, of which sequencing showed the highest discriminatory power,
including within complex diversity (important especially within M. avium complex and
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M. abscessus complex) and identification of rare species, for example, M. ratisbonense or
M. tomidae [29]. This is due to the limited number of amplified genes included in the
conventional assays in combination with higher homology between mycobacterial species
in contrast with other bacterial species [30]. The disadvantage of WGS compared to line
probe assay is a slightly longer turnaround time (3–15 days). Similarly, the study by Yoon
et al. confirmed 100% compliance of WGS and classical molecular genetic methods (PCR
and direct sequencing) in the diagnostics of M. avium subsp. hominissuis, M. intracellulare,
and M. abscessus [21].

In addition, WGS has proven to be a suitable tool to distinguish between relapse
and reinfection of NTM caused predominantly by M. ulcerans or M. abscessus [31,32].
WGS also allows the identification of NTM at the clone level, thus allowing the form
(relapse/reinfection) of the ongoing disease to be determined [33]. Flohr et al. have applied
WGS in diagnostics of factitious disorders caused by NTM that may be misdiagnosed as a
recurrent or chronic forms of infection [34]. The need to correctly clarify the form of the
disease is highlighted by the high recurrence rate of some NTM infections, which is up to
10–48% after successful treatment [35,36].

Accurate diagnosis of NTM is crucial in patients with structural or inflammatory lung
disease such as CF, non-cystic fibrosis bronchiectasis, or chronic obstructive pulmonary
disease, as these emerging pathogens cause an accelerated decline in lung function and
do not respond to aggressive antibiotic treatment in up to 50% of cases [37]. The most
important predisposing factors in CF patients include nutritional condition, presence of
bronchiectasis, and impaired mucociliary clearance [38]. In addition, the prevalence of
NTM in CF patients is almost 10,000-fold higher compared to the rest of the population [39].
The two most common NTM species isolated in CF belonging to M. avium complex (repre-
senting 75% of NTM infections in CF) and M. abscessus complex (most common M. abscessus
subsp. abscessus and M. abscessus subsp. massiliense) with prevalence ranges from 3 to
23% in CF centers worldwide [40]. The WGS of M. abscessus ATCC19977 showed that this
species encoded virulence factors typical of both mycobacterial pathogens and common CF
pathogens (Pseudomonas aeruginosa and Burkholderia cepacia) [41]. Trovato et al. confirmed
that WGS can more effectively discriminate M. abscessus subspecies in patients with CF
in comparison with a variable number of tandem repeat (VNTR) methods [42]. Similar
results were shown in a recent study by Redondo et al. in which they successfully diag-
nosed individual subspecies of M. abscessus in CF- and non-CF patients [43]. Furthermore,
M. abscessus complex infections are seen as a contraindication to lung transplant in some
CF patients (currently the only cure for CF), due to the high likelihood of re-infection [44].
The risk of disseminated post-transplant infection is potentiated in patients with a positive
presence of M. abscessus in sputum before lung transplantation [45,46]. Kavaliunaite et al.
confirmed the association between a particular M. abscessus sequence type (ST) and the
success of heart and lung transplantation in CF patients [47]. These results are particularly
important as reported cases are increasing, and in some studies, the rate of NTM infec-
tions in lung transplants was up to 8% and was directly related to an increased risk of
death [48,49]. In contrast, post-transplant infections caused by M. avium complex are less
frequent and associated with a higher cure rate [46]. To decrease the risk of mortality, clini-
cians should consider the pretransplant or posttransplant (colonized by rapidly-growing
NTM) chemoprophylaxis in all patients undergoing the lung transplant [50].

The benefit of WGS has also been shown in the management of multiple-NTM infec-
tions, the diagnosis of which is necessary for the correct setting of the treatment regimen
and outcome expectations, as well as a better understanding of species diversity in var-
ious anatomical regions of the lung [51]. A recent WGS study by Shaw et al. analyzing
the genomes of M. abscessus isolates revealed the multiple subpopulations diversity with
different antimicrobial resistance profiles in children with CF. The results of this study
are also important for the clinical diagnosis of the disease, as they confirmed a higher
diversity of M. abscessus in samples of lungs, chest wounds, and pleural fluid compared to
sputum [52]. Sequencing data provided a more detailed subspecies classification in mixed
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cultures compared to conventionally used methods [53,54]. WGS also contributed to the
finding of a high interspecies and intraspecies M. avium complex diversity in a patient
with an ongoing pulmonary form of the disease. These results elevate the clinical potential
of WGS, as commercial probes resolve M. avium species only to the complex level [55].
Greninger et al. also used WGS technology to diagnose polymicrobial infection in brain
abscess caused by rare, rapidly growing M. immunogenum and M. llatzerense [56].

For diagnostic purposes, better treatment results, and expanding our knowledge of
mycobacterial diseases, it is necessary to identify and classify new species/subspecies of
NTM [28,57,58]. Describing the complete genomes of the novel NTM requires a combina-
tion of short-read (e.g., Illumina MiSeq, San Diego, CA, USA) and long-read (e.g., MinION,
Oxford, UK; PacBio SMRT, Pacific Biosciences, CA, USA) sequencing technologies (Figure 1
and Table 1) [59]. Short-read sequencing is characterized by high accuracy but does not
provide information about the complete genome (including G + C rich regions, recombi-
nation, repetitive PE/PPE regions, deletions, and insertions) [60]. In contrast, long-read
sequencing technologies have increased read lengths 100- to 1000-fold with slightly lower
accuracy compared to NGS platforms and can span much larger repeat regions than NGS,
thus contributing to new genome assembly [61].

Table 1. Comparison of basic sequencing platforms used for complete genome assemblies of new NTM species.

Sequencing Platform Read-Length (bp) Output Accuracy Advantage

Illumina MiSeq 25–300 >50 Gb >99%
Higher read quality

A lower amount of input
DNA Lower cost per sample

Ion PGMTM <400 30–2 Gb <98% Higher read quality
Cost-effective

MinION short to ultra-long
(>4 Mb) reads 300–15 Gb >95%

Resolving repetitive regions,
G + C rich regions, and

indels Portable

PacBio RS II
(Single

molecule
real-time)

>20,000 1–10 Gb >99.999%

Higher read quality
Resolving repetitive regions,

G + C rich regions,
and indels

Matsumoto et al. identified 27 genomes belonging to the novel NTM. In addition,
sequencing data obtained using long-read sequencing technology were used in the same
study to develop a multi-locus sequence typing database and software to identify mycobac-
teria. Sensitivity and specificity were highest compared to conventional methods in the
characterization of 29 species of NTM [62]. Hendrix et al. combined Illumina and MinION
sequencing for whole-genome assembling of M. kubicae isolates. Their results have pro-
vided detailed information regarding the resistance, virulence and persistence encoded on
the chromosome or plasmids of these rare, clinically important pulmonary disease-causing
NTM [63]. A recent study showed that MinION sequencing technology can be used to
detect mycobacteria directly from clinical samples and diagnose the disease within 20 min,
therefore setting the treatment regimen in a clinically relevant time frame [64].

Although NTM resistance is becoming a growing threat, susceptibility testing in
clinical laboratories is performed primarily by broth microdilution and macrodilution
phenotypic methods which may be difficult to evaluate [65]. Additionally, the treat-
ment for NTM infections usually includes a combination of macrolide antibiotics (such
as azithromycin and clarithromycin) with aminoglycosides (for fast-growing NTM) or
first-line antituberculosis drugs (for slow-growing NTM). However, for some combinations,
clinical breakpoints are not well defined, therefore, the effectiveness of treatment can be
greatly reduced [5,66]. Generally, many NTM species are naturally resistant to specific
drugs, however, improperly adjusted and prolonged treatment regimen leads to the devel-
opment of acquired resistance in originally drug-sensitive bacterial strains [67]. A key factor
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that plays a role in natural NTM resistance is the low permeability of the mycobacterial
cell wall [68]. However, M. abscessus exhibits intrinsic high-level resistance to ethambutol
and fluoroquinolones. This resistance is predominantly associated with mutations in the
embB (encoded resistance to ethambutol) and gyrA (encoded resistance to fluoroquinolones)
genes [69]. M. abscessus and M. avium exhibit intrinsic resistance to rifampicin, primarily
due to mutations in the rpoB gene and the presence of the MAB_0591 gene [65]. Another
important mechanism of intrinsic resistance is the overexpression of efflux pumps, which
is responsible for the resistance of M. abscessus, M. avium, and M. intracellulare to bedachilin
and clafazimine [70–72]. Acquired drug resistance in mycobacteria is often mediated by a
chromosomal mutation in genes encoding targets [73]. With the utility of WGS, it is possible
to describe the underlying mechanisms behind the drug resistance of NTM species and
increase the effectiveness of treatment regimens [74]. Wetzstein et al. studied the efficacy of
WGS in predicting M. abscessus resistance to macrolides and aminoglycosides. The results
obtained by WGS were shown to be in full agreement with the Genotype NTM-DR line
probe assay and phenotypic drug susceptibility testing [75]. Lipworth et al. used sequenc-
ing data obtained from M. abscessus species for the identification of new mutations in erm
and rrs genes potentially associated with macrolide antibiotic resistance. These mutations
are not currently included in traditional genotyping tests (such as GenoType NTM-DR;
Hain Lifescience, Nehren, Germany) which may therefore show false-negative results [76].
Similarly, Chen et al. performed WGS on clofazimine-resistant strains of M. abscessus. Their
results revealed several high-confidence gene mutations (in MAB_2299c, MAB_1483, and
MAB_0540 genes) involved in resistance to this drug, whose use is increasingly preferred
due to limited treatment options [77]. In addition, M. abscessus subsp. abscessus possesses
the erm gene, while M. abscessus subsp. massiliense harbor the nonfunctional variant of this
gene that lacks the inducible resistance phenotype, so it is important in clinical practice to
distinguish between these two subspecies [62]. In contrast, a recent WGS study involving
a global collection of M. abscessus complex isolates revealed a 10% higher frequency of
mutations in the rrl gene encoding macrolide resistance in M. massiliense compared to
M. abscessus subsp. abscessus [78]. Based on WGS-data, Yoshida et al. developed special
DNA-chromatographic and PCR-based diagnostic assays for discriminating macrolide-
resistant/susceptible subspecies of M. abscessus (M. massiliense, M. abscessus, M. bolletii). The
agreement rate with WGS was 99.7% [79]. Realegano et al. developed a novel clinical whole
genome sequencing assay to determine the resistance of M. abscessus to clarithromycin and
amikacin. The accuracy of resistance prediction compared to phenotypic results was 100%
for both drugs [80].

However, the increased incidence of resistant strains is leading to the development of
new treatment strategies such as treatment with lytic phages. Dedrick et al. used WGS for
a better understanding of phage resistance mechanisms of M. abscessus [81].

3. WGS Perspectives in Tracing the Transmission of Nosocomial NTM Infection

Nosocomial NTM infections have been defined as infections directly associated with
a hospital stay, or their symptoms may appear immediately after discharge [82]. The
first cases of nosocomial NTM infections caused by M. fortuitum have been recorded
since the beginning of the 20th century [83]. Nowadays, NTMs are classified as well-
adopted nosocomial pathogens with a wide range of clinical manifestations and hospital
sources of infection [26]. Their adaptation to the hospital environment results from their
resistance to disinfectants and sterilants, low nutrient requirements, and ability to form
a biofilm [2]. These nosocomial infections are usually extrapulmonary: bloodstream
infections, postoperative wound infections, implant-associated infections, spinal infections,
etc. [84].

Genotyping of individual NTM strains is crucial for tracing the nosocomial outbreaks
and epidemiological investigation. Previously preferred typing methods, including biotyp-
ing, serotyping, and antibiograms, are no longer performed in reference laboratories due
to their insufficient discriminatory power. Current genotyping techniques based on 16S
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rRNA sequencing, pulsed-field gel electrophoresis, VNTR, and spoligotyping or plasmid
typing, are relatively easy to perform in a short time frame and require only equipment
available in most laboratories [85]. However, these techniques show some limitations in
recognizing similarities and differences between close phylogenetically similar strains,
which are reflected in the misalignment of these strains within clusters and by the inability
to identify their common ancestor [86,87]. Recent studies confirmed that WGS exhibits
higher discriminatory power and a wide range of uses in molecular-epidemiology analysis
than current genotyping techniques (Figure 2) [88,89]. The results of Harris et al. confirmed
higher resolution of WGS in comparison with VNTR profiling in distinguishing NTM sub-
species into individual clades [90]. The WGS phylogenomic analysis is usually based on the
identification of a massive number of different single nucleotide variants between isolates
to cluster and compare genomes, infer relatedness and identify the source of infection. A
factor complicating the diagnosis of the disease as well as the tracing for the source of the
infection is the long incubation period, which can last several months or years [91].
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In the past, it was believed that NTM were transmitted to humans only after exposure
to the environment, including soil particles or water droplets containing mycobacteria. The
ability of NTM to survive and proliferate in this environment is provided by a lipid-rich
and triple-layered outer membrane that protects the cells against acids, high temperatures,
and ultraviolet light [2]. However, WGS served to shift this paradigm by allowing the
characterization of patient-to-patient transmission events and contributing to an increase
in reports of outbreaks of nosocomial NTM infection. In 2012, Aitken et al. reported
person-to-person transmission of M. abscessus subsp. massiliense among the patients with
CF for the first time [92]. Further studies followed documenting healthcare-associated
cross-transmission of M. abscessus between CF patients, including pediatric patients in
national CF centers (with less than 7 SNP difference between isolates) [25,93–96]. In many
of these studies, the specific lineage was isolated only from patients and not from environ-
mental sources. Moreover, Bryant et al. performed a WGS-based study of a collection of
M. abscessus isolates obtained from worldwide (Europe, Australia, the Republic of Ireland,
and the United States) community of CF patients (1080 isolates from 510 CF patients). The
results confirmed the global circulation of three dominant, genetically similar, multi-drug
resistant M. abscessus clones (74% isolates were clustered) that are transmitted within CF
clinics [97,98]. These clones are associated with poorer clinical outcomes and showed
increased intracellular survival, pathogenicity, and virulence in macrophage and mouse
models [99]. Interestingly, the study of Lipworth et al. showed that most genetically related
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M. abscessus clones isolated from CF patients had no identifiable relevant epidemiological
traceback [100]. In addition, Bronson et al. performed a comparative genomic analysis
of 1279 M. abscessus complex genomes from CF and non-CF patients. The results of the
study identified small pairwise SNP distances and similar phylogenetic patterns between
isolates from patients with CF and without CF, suggesting that these cases originate from
a recent common ancestor [77]. However, how these clones are widespread worldwide,
either by asymptomatic transmission or by the environment, has not yet been confirmed.
Nevertheless, the prevention and control guidelines recommend isolating infected patients
to prevent further transmission of M. abscessus within healthcare facilities [101].

In addition to M. abscessus, the transmission of M. avium complex (predominantly
M. chimaera) was also studied. A recent study defining the genetic relationship of M. avium
complex isolates between patients and between patients and their environment confirmed
the minimal likelihood of patient-to-patient transmission and identified the hospital water
distribution system as the main reservoir of NTM [21]. Moreover, WGS has contributed to
the characterization of the global outbreak of nosocomial infections caused by M. chimaera
in patients who underwent cardiac surgery. These infections are usually presented as
prosthetic valve endocarditis, disseminated infections, or infections of vascular grafts [102].
The first outbreak investigation began in 2013 at the University Hospital Zurich in patients
with confirmed presence of M. chimaera after cardiac surgery [103]. WGS epidemiological
analysis in other studies demonstrated that aerosols from the water tanks in the heater-
cooler units contaminated with M. chimaera can be airborne disseminated to patients and the
surrounding environment [87,104–108]. In this context, Götting et al. found the genetically
related M. chimaera contaminated the air of the heater-cooler units as well as medical
instruments in the operating room [109]. Most of the reported nosocomial outbreaks
included patients who were exposed to heater-cooler units from the same manufacturer
during the open-heart surgery (LivaNova, London, United Kingdom). A subsequent study
confirmed the culture positivity of M. chimaera in water samples on the manufacturer’s
site and thus confirmed the source of infection [107]. Despite the aggressive therapy with
the combination of at least 3 antibiotics (usually including the ethambutol, rifamycin, and
macrolide) and surgical removal of any involved devices, 50% of the patients died from
complications associated with M. chimaera infection. This is due to the ability of M. chimaera
to replicate in the tissues and disseminate to other organs even with previous long antibiotic
therapy [110]. The Centers for Disease Control and Prevention (CDC, Atlanta, GA, USA)
has also recently released guidelines for the management and diagnostics of heater-cooler
unit-associated NTM infections, in which WGS plays a crucial role [111]. The available
data also suggest that the risk of M. chimaera infection in patients after cardiac surgery is
almost identical to the level of risk of infection in HIV-positive patients [112]. Moreover,
clinical symptoms and laboratory findings are often nonspecific, therefore, every patient
with a diagnosis of sarcoidosis or culture-negative endocarditis after exposure to a heater-
cooler unit should be considered as M. chimaera positive [113]. Surgical site infection by
M. chimaera may also occur, predominantly in patients after plastic surgery. WGS showed
the genetic relatedness of isolates from patients and the samples of tap water at the surgical
clinic, therefore exposure of the wound to any non-sterile water should be totally forbidden
before complete wound healing [114]. Insufficient sterilization of surgical instruments and
water has been suggested as a source of M. chimaera in many other studies, highlighting
the utility of WGS in clinical practice [115,116].

Labuda et al. used the WGS approach for characterization of a new species of rapidly
growing NTM (Mycobacterium FVL 201832) and identification of saline flushes as a source
of nosocomial bloodstream infections in oncology patients. These results contributed to
the consideration of new state regulations to monitor and reduce the spread of NTM in
oncology clinics [117]. Adherence to these regulations is essential, as recent studies have
confirmed that M. avium complex infection increases tumor-genes inflammatory responses
which could lead to the development of lung and breast cancer and other complications
in oncological patients [118]. Similarly, a study by Inkster et al. revealed hospital water
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supply contaminated with M. chelonae as a potential source of infection in hemato-oncology
patients [119]. The genetic diversity of unique species of M. shigaense (belonging to M. simiae
complex) causing cutaneous infections have been studied using WGS technology [120].

4. Conclusions

NTM infections are associated with a substantially impaired quality of life, increased
morbidity, and mortality, and high treatment costs, therefore, it is essential to use sufficiently
sensitive diagnostic methods such as WGS. Even though the cost of WGS samples decreases
every year, the implementation of this method in clinical diagnostic laboratories requires a
higher initial capital and well-trained personal therefore is not available in the mycobac-
teriology laboratory in resource-limited countries. It is also time-consuming compared
to traditionally used tools, as culture cultivation must be performed prior to DNA isola-
tion. Therefore, more research is focused on WGS directly from clinical material. Another
limitation in the implementation of WGS into routine practice is also caused by the bioin-
formatics processing of sequencing data. Nowadays, it requires demanding software and
programming skills. However, technological advances in the coming years will lead to the
development of easy-to-use online webtools such as TB-Profiler (https://tbdr.lshtm.ac.uk/,
accessed on 22 October 2021) or PhyResSE (https://bioinf.fz-borstel.de/mchips/phyresse/,
accessed on 22 October 2021), which are used to diagnose and determine the complete
resistance profile of M. tuberculosis.

In contrast, the WGS-data are more comprehensive as these allow the precise iden-
tification of novel NTM species from human samples, prediction of genes for virulence,
intracellular existence, disease, defense, and toxic compounds of NTM, thus emphasizing
other applications of this method (Table 2) [58,121,122]. Moreover, extended datasets of
clinical phenotypes and bacterial DNA sequences could resolve ambiguities in the patho-
genesis of NTM. We also assume that in the future, the results of WGS will lead to wider
use of personalized medicine and thus increase the effectiveness of treatment regimens.

Table 2. Current and potential benefits of WGS in the management of NTM infections.

Accurate diagnostics of NTM infection within a clinically relevant time frame

Unrestricted classification of NTM subspecies compared to other genotyping methods
Characterization of the resistance profile and identification of novel gene mutation

encoding resistance
Setting the appropriate combination of antibiotics and increasing the effectiveness of the

treatment regimen
Monitoring of transmission dynamics and clustering of NTM in hospital settings to prevent

nosocomial infections
Description of new genes affecting the pathogenesis of NTM infections

Development of new drugs

In conclusion, the more NTM genomes are sequenced, the more they will contribute to
the global tracing of NTM infections and the description of important genetic determinants,
thus the development of novel diagnostic tools and new therapeutic targets.
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15. Porvaznik, I.; Solovič, I.; Mokrý, J. Non-Tuberculous Mycobacteria: Classification, Diagnostics, and Therapy. Adv. Exp. Med. Biol.
2017, 944, 19–25. [CrossRef]

16. Cowman, S.A.; Loebinger, M.R. Diagnosis of Nontuberculous Mycobacteria Lung Disease. Semin. Respir. Crit. Care Med. 2018, 39,
343–350. [CrossRef]

17. Johnson, M.M.; Odell, J.A. Nontuberculous mycobacterial pulmonary infections. J. Thorac. Dis. 2014, 6, 210–220. [CrossRef]
18. Chopra, K.; Sidiq, Z.; Hanif, M.; Dwivedi, K.K. Advances in the diagnosis of tuberculosis- Journey from smear microscopy to

whole genome sequencing. Indian J. Tuberc. 2020, 67, S61–S68. [CrossRef]
19. Somoskovi, A.; Salfinger, M. Nontuberculous Mycobacteria in Respiratory Infections: Advances in diagnosis and identification.

Clin. Lab. Med. 2014, 34, 271–295. [CrossRef]
20. Dohál, M.; Porvazník, I.; Pršo, K.; Rasmussen, E.M.; Solovič, I.; Mokrý, J. Whole-genome sequencing and Mycobacterium
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