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Transcriptome-wide association study identifies
novel candidate susceptibility genes for migraine
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Summary
Genome-wide association studies (GWASs) have identified more than 130 genetic susceptibility loci for migraine; however, how most of

these loci impact migraine development is unknown. To identify novel genes associated with migraine and interpret the transcriptional

products of those genes, we conducted a transcriptome-wide association study (TWAS). We performed tissue-specific and multi-tissue

TWAS analyses to assess associations between imputed gene expression from 53 tissues andmigraine susceptibility using FUSION software.

Meta-analyzed GWAS summary statistics from 26,052migraine cases and 487,214 controls, all of European ancestry and from two cohorts

(the Kaiser Permanente GERA and the UK Biobank), were used. We evaluated the associations for genes after conditioning on variant-level

effects fromGWAS, andwe tested for colocalization of GWASmigraine-associated loci and expression quantitative trait loci (eQTLs). Across

tissue-specific and multi-tissue analyses, we identified 53 genes for which genetically predicted gene expression was associated with

migraine after correcting for multiple testing. Of these 53 genes, 10 (ATF5, CNTNAP1, KTN1-AS1, NEIL1, NEK4, NNT, PNKP, RUFY2,

TUBG2, andVAT1) did not overlap knownmigraine-associated loci identified fromGWAS. Tissue-specific analysis identified 45 gene-tissue

pairs and cardiovascular tissues represented the highest proportion of the Bonferroni-significant gene-tissue pairs (n¼ 22 [49%]), followed

by brain tissues (n ¼ 6 [13%]), and gastrointestinal tissues (n ¼ 4 [9%]). Colocalization analyses provided evidence of shared genetic var-

iants underlying eQTL and GWAS signals in 18 of the gene-tissue pairs (40%). Our TWAS reports novel genes for migraine and highlights

the important contribution of brain, cardiovascular, and gastrointestinal tissues in migraine susceptibility.
Introduction

Migraine (MIM: 157300) is a syndromic neurological dis-

ease1 that affects approximately 14% of the global popu-

lation and is the second most common source of years

lived with disability.2,3 While classified as a headache dis-

order primarily involving dysregulated sensory process-

ing in the brain,1 migraine has been associated with a

wide range of symptoms, including gastroesophageal re-

flux, diarrhea, constipation, and nausea4; sound and light

sensitivity and disturbed vision.5–7 Migraine has also

been associated with myocardial infarction and ischemic

stroke, particularly in women, even after adjusting for car-

diovascular disease risk factors.8–14 This suggests that

multiple mechanisms underly migraine pathophysiology

and its symptoms; however, those mechanisms are still

poorly understood.

Although family and twin-based studies have estimated

the heritability of migraine ranging from 30% to 60%,15–18

SNP array-based heritability is estimated to be approxi-

mately 10% to 15%.19 Over the past decade, genome-

wide association studies (GWASs) have identified more

than 130 genetic susceptibility loci for migraine in

adults19–25; however, these loci only explain a small frac-

tion of migraine heritability, and the causal genes underly-

ing those associations remain poorly understood.
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We have previously conducted a multiethnic GWAS

meta-analysis of migraine,20 using the Kaiser Permanente

Northern California (KPNC) Genetic Epidemiology

Research on Adult Health and Aging (GERA) cohort, the

UK Biobank, and data from the International Headache

Genetics Consortium,21 and identified 45 novel genetic

loci associated at a genome-wide level of significance

(p < 5 3 10�8) with migraine. However, for the majority

of these loci, the impact on migraine etiology is unknown,

and whether these loci regulate genes differentially across

tissues has not yet been explored. Recently, transcrip-

tome-wide association studies (TWAS), which integrate

data from GWAS and tissue gene expression datasets,

have emerged as an effective approach to identify gene-

trait associations.26–30

The current study builds on our previous GWAS meta-

analysis of migraine20 that also reported strong positive ge-

netic correlations betweenmigrainewith neck, shoulder, or

back pain, and anxiety or depression, suggesting shared ge-

netic factors andmechanisms underlying those conditions.

Here,we conduct aTWASofmigraine to identifynovel asso-

ciated genes and interpret the transcriptional and disease

risk mechanisms for putative migraine risk genes. We

impute gene expression into GWAS data (26,052 migraine

cases and 487,214 controls of European descent from the

GERA and UK Biobank cohorts) from our previous study20
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using expression quantitative trait loci (eQTL) datasets31

from multiple tissues (53 tissue reference panels). The

different stages and datasets used for this study are summa-

rized in an overview diagram (Figure 1). Furthermore, we

analyze the frequency of TWAS genes across different tissue

types, given evidence thatmigraine affects the not only the

brain, but also the cardiovascular and gastrointestinal sys-

tems.We identify novel geneswhose changes in expression

may play a role in migraine susceptibility and identify tis-

sues potentially relevant to migraine.
Material and methods

Migraine GWAS data
We used summary statistics from our recent GWAS study.20 Briefly,

we performed a meta-analysis, including 513,266 individuals of

European descent (26,052 migraine cases and 487,214 controls)

from two cohorts: GERA32 and UK Biobank.33,34 Themeta-analysis

was conducted using the R package ‘‘meta’’35 and fixed-effects

summary estimates were calculated for an additive model. A total

of 9,056,148 genetic variants passing quality control were used for

the TWAS analysis.

For GERA, all study procedures were approved by the Institu-

tional Review Board of the KPNC, and written informed consent

was obtained from all participants. For UK Biobank, this research

has been conducted using the UK Biobank Resource project num-

ber 14105.

eQTL data
Local (cis) eQTL datasets for 53 tissue types were downloaded from

the FUSION website. These reference data were sourced from the

Genotype Tissue Expression (GTEx) Project v7 (n ¼ 48 tissue refer-

ence panels),31 the CommonMind Consortium (CMC) (n ¼ 2 tis-

sue reference panels),36 the Metabolic Syndrome in Men Study

(METSIM) (n ¼ 1 tissue reference panel),37 the Netherlands Twin

Registry (NTR) (n ¼ 1 tissue reference panel),38 and the Cardiovas-

cular Risk in Young Finns Study (YFS) (n ¼ 1 tissue reference

panel).39 Table S1 lists the study sources, number of participants,

and number of imputable genes for each tissue reference panel.

Tissue-specific TWAS analyses
WeperformedaTWASofmigraineusingFUSION,30whichcomputes

predictivemodels for eQTLs from reference data and tests the associ-

ation between predicted gene expression with a trait from GWAS

summary statistics. We conducted tissue-specific TWAS analyses us-

ing FUSION default settings and the three following data inputs:

(1) the above-mentioned GWAS summary statistics for migraine;

(2) FUSION gene expression predictive models for 53 reference tis-

sues; and (3) 1000 Genomes (European ancestry) Phase 3 data from

the 1000Genomes Project40 as a reference panel for linkage disequi-

librium (LD). Model weights for tissue-specific gene expression re-

gressed on SNPswere computed frombest linear unbiased predictor,

Bayesian sparse linear mixed model (BSLMM), least absolute

shrinkage and selection operator, and elastic net regression, as well

as from the model with the top associated SNP.

In total, we tested 260,598 gene-tissue-pairmodels (representing

26,434 unique genes across 53 tissue reference panels) for associa-

tions between imputed gene expression withmigraine susceptibil-

ity. Associations with a Bonferroni significance p value of less than

1.92 3 10�7 (¼0.05/260,598) were considered significant. Novel
2 Human Genetics and Genomics Advances 4, 100211, July 13, 2023
TWAS genes were defined as those located more than 1 Mb apart

from any previously identified migraine GWAS loci (i.e., no prior

GWAS SNPs within 1 Mb from the start or end of the gene).

Colocalization analyses
ToassesswhetherGWASSNPscolocalizedwitheQTLs,weconducted

a Bayesian colocalization analysis using the COLOCv3.2.1 software,

which is implemented in FUSION using marginal expression

weights, for Bonferroni-significant TWAS associations.41 Thus, we

tested the hypothesis that a single variant in each TWAS-significant

model was associated with both migraine (from the GWAS) and

imputed gene expression. A Bayesian posterior probability greater

than 0.9 was considered supporting evidence for colocalization.

Conditional and joint analyses
We performed conditional analyses to evaluate transcriptome-

wide associations after adjusting for SNP-level effects from

GWAS. We ran the COJO software program to adjust the GWAS

summary statistics (the meta-analyzed results from the GERA

and UK Biobank cohorts) by the most statistically significant risk

variants within 1 Mb of each TWAS gene.42 Using the marginal

TWAS associations from the single-tissue analysis, we conducted

a FUSION joint analysis for migraine-associated genes located on

the same chromosome region within each reference panel.

Tissue enrichment analyses
To identify tissues potentially relevant to migraine, we assigned the

53 tissue reference panels to 12 anatomical categories as per Strunz

et al. (2020)43: adipose (n ¼ 3 reference panels), brain (n ¼ 15), car-

diovascular (n ¼ 9), female reproductive (n ¼ 3), gastrointestinal

(n ¼ 7), gland (n ¼ 9), lung (n ¼ 1), skeletal muscle (n ¼ 1), skin

(n ¼ 2), spleen (n ¼ 1), tibial nerve (n ¼ 1), and transformed fibro-

blasts (n¼ 1). Table S1 lists the tissue reference panels and their cor-

responding anatomical categories used for this analysis. We calcu-

lated the frequency of Bonferroni-significant TWAS genes in each

category. However, we expect more Bonferroni-significant TWAS

genes from eQTL reference panels with more tissue donors and

more imputable genes. Therefore, to compare TWAS genes across

tissue types, we used the hypergeometric test to calculate the prob-

ability of observing at least as many TWAS-significant genes from all

the gene-tissue pairs that we tested in each anatomical category. We

also used the method of LD score regression applied to specifically

expressed genes (LDSC-SEG) to test for migraine heritability enrich-

ment near genes with the highest specific expression in a particular

tissue.44 The inputs for this analysis were the GWAS meta-analysis

summary statistics from the above-mentioned migraine studies,

and the ‘‘Multi_tissue_gene_expr’’ dataset (which included 205

cell types) from the LDSC-SEG authors’ website. We used a Bonfer-

roni-significance threshold for the number of cell types tested

(p < 0.05/205, or approximately 2.4 3 10�4).

Multi-tissue TWAS analysis
We carried forward the tissue-specific associations and performed

an omnibus test in FUSION for associations acrossmultiple tissues.

That is, TWAS associations from all 53 tissue reference panels were

jointly analyzed accounting for correlation between expression

weights across tissues. We applied two filters to the omnibus test

results to consider a multi-tissue gene expression test significant.

First, using a Bonferroni correction, we divided the family-wise er-

ror rate of 0.05 by the effective number of genes tested

(n ¼ 14,575), and retained genes with omnibus test p values less



Figure 1. Diagram summarizing the data-
sets, analyses, and results for this study
Datasets and analyses are shown in blue.
Summarized results are shown in orange.
than this value (p< 3.433 10�6); second we retained genes with a

minimum tissue-specific p value suggestive of a significant associ-

ation (p < 1 3 10�5) as described by Barbeira et al.29
Results

Tissue-specific TWAS analysis identified 45 gene-tissue

pairs associated with migraine

We found that 45 gene-tissue pairs reached the Bonferroni

significance threshold for their associations between

imputed gene expression with migraine susceptibility (Ta-

ble 1, Figure 2). One gene-tissue pair (MRVI1 [MIM:

604673] in the CMC.BRAIN.RNASEQ_SPLICING panel)

was associated with migraine according to three separate

models (two elastic net models and the BSLMM). These 45

gene-tissue pairs were represented by 26 unique genes across
Human Genetics and Gen
26 tissue reference panels. Importantly,

3 of the 26uniquegenesdidnot overlap

previously identified migraine GWAS

loci (KTN1-AS1 on chromosome 14

[no MIM number available], PNKP

[MIM: 605610] on chromosome 19,

and VAT1 [MIM: 604631] on chromo-

some 17).

Furthermore, 17 genes were Bonfer-

roni significant in only one tissue

reference panel each, and nine were

Bonferroni significant in more than

one tissue reference panel. These

included UFL1 (MIM: 613372; eight

panels: subcutaneous adipose, tibial

artery, pancreas, tibial nerve, stomach,

spleen, whole blood, and brain–cere-

bellum); TJP2 (MIM: 607709; five

panels: gastroesophageal junction,

esophageal muscularis, spleen, and

whole blood from two studies); RP1-

257A7.5 (no MIM number available;

three panels: aortic, coronary, and

tibial artery); and six genes significant

in two panels each (FXN [MIM:

606829], LRP1 [MIM: 107770],

PHACTR1 [OMIM: 608723], STAT6

[MIM: 601512], TMEM194A [MIM:

616496], and TSPAN2 [MIM: 6131

33]) (Table 1). Increased predicted

expression was associated with

increased migraine susceptibility for

32 of the Bonferroni-significant gene-

tissue pairs (e.g., LRP1-tibial artery;

z¼ 10.9), and with decreased migraine
susceptibility for the other 13 Bonferroni-significant tests

(e.g., SUGCT [MIM: 609187] aortic artery; z ¼ �6.85).

In addition, we tested sex-specific TWAS associations us-

ing sex-specific GWAS summary statistics and tissue refer-

ence panels, that is, GWAS summary statistics from

women for TWAS of ovary, uterus, and vagina eQTLs;

and GWAS summary statistics from men for TWAS of pros-

tate and testis eQTLs. None of the sex-specific tests reached

the Bonferroni significance level that we applied to the

main analysis (p < 1.92 3 10�7). Marginally significant as-

sociations (p < 1 3 10�5) are reported in Table S2.

Importance of brain, cardiovascular, and

gastrointestinal tissues in migraine susceptibility

Across the 53 tissue reference panels, the greatest number

of Bonferroni-significant gene-tissue pairs was observed
omics Advances 4, 100211, July 13, 2023 3



Table 1. TWAS analysis of migraine identified 45 Bonferroni-significant gene-tissue pairs

Gene CHR Tissue reference panel
Source of tissue
reference panel TWAS.Z TWAS.P TWAS.P.Conditional COLOC.PP4

C12orf4 12 Artery_Tibial GTEx 7.31 2.75 3 10�13 8.95 3 10�01 1

CCND2 12 Artery_Tibial GTEx 7.33 2.23 3 10�13 7.60 3 10�01 1

FAM189A2 9 Small_Intestine_Terminal_Ileum GTEx �5.35 8.94 3 10�8 9.60 3 10�01 0.05

FXN 9 Muscle_Skeletal GTEx 6.2 5.61 3 10�10 1.80 3 10�01 0.8

FXN 9 NTR.BLOOD.RNAARR NTR 5.5 3.83 3 10�08 9.69 3 10�02 0.89

GJA1 6 Artery_Tibial GTEx 5.87 4.46 3 10�09 3.63 3 10�01 1

HBCBP 12 Adrenal_Gland GTEx 6.15 7.77 3 10�10 2.06 3 10�01 0.07

KIAA0776 6 NTR.BLOOD.RNAARR NTR 9.45 3.55 3 10�21 9.99 3 10�01 0.02

KTN1-AS1a 14 Cells_Transformed_fibroblasts GTEx 5.49 4.08 3 10�08 6.65 3 10�04b 0.15

LRP1 12 Artery_Tibial GTEx 10.9 1.22 3 1027 8.68 3 10�01 1

LRP1 12 Skin_Sun_Exposed_Lower_leg GTEx 8.4 4.51 3 10�17 2.67 3 10�01 0.97

MEF2D 1 Artery_Tibial GTEx 5.97 2.44 3 10�09 2.61 3 10�01 0.9

MRVI1c 11 CMC.BRAIN.RNASEQ_SPLICING CMC 6.81 1.01 3 10�11 9.27 3 10�02 0.97

MRVI1d 11 CMC.BRAIN.RNASEQ_SPLICING CMC �6.65 2.88 3 10�11 2.74 3 10�01 1

MRVI1e 11 CMC.BRAIN.RNASEQ_SPLICING CMC 5.64 1.68 3 10�8 9.31 3 10�01 0.95

NXPH4 12 METSIM.ADIPOSE.RNASEQ METSIM 6.15 7.86 3 10�10 1.83 3 10�1 0.63

PHACTR1 6 Artery_Aorta GTEx 8.8 1.42 3 10�18 2.76 3 10�01 1

PHACTR1 6 Artery_Tibial GTEx 8.34 7.15 3 10�17 3.10 3 10�01 1

PNKPa 19 CMC.BRAIN.RNASEQ CMC �5.23 1.70 3 10�07 2.34 3 10�01 0.99

RP11-264C15.2 9 Testis GTEx �5.51 3.67 3 10�08 5.79 3 10�01 0.42

RP1-257A7.5 6 Artery_Aorta GTEx 8.67 4.48 3 10�18 7.76 3 10�01 1

RP1-257A7.5 6 Artery_Coronary GTEx 6.94 3.92 3 10�12 9.97 3 10�03b 0.04

RP1-257A7.5 6 Artery_Tibial GTEx 8.67 4.48 3 10�18 7.76 3 10�01 1

RP5-1115A15.1 1 Cells_EBV-transformed_lymphocytes GTEx �5.51 3.49 3 10�08 3.90 3 10�01 0.79

SLC45A1 1 CMC.BRAIN.RNASEQ CMC 6.54 6.03 3 10�11 7.99 3 10�01 1

STAT6 12 CMC.BRAIN.RNASEQ CMC �6.28 3.35 3 10�10 2.06 3 10�01 0.03

STAT6 12 METSIM.ADIPOSE.RNASEQ METSIM 6.08 1.22 3 10�09 6.26 3 10�01 0.58

SUGCT 7 Artery_Aorta GTEx �6.85 7.38 3 10�12 8.24 3 10�01 1

TAF5 10 Brain_Frontal_Cortex_BA9 GTEx �5.65 1.61 3 10�08 3.85 3 10�04b 0.16

TJP2 9 Esophagus_Gastroesophageal_Junction GTEx 6.22 4.87 3 10�10 1.86 3 10�01 0.79

TJP2 9 Esophagus_Muscularis GTEx 6.16 7.18 3 10�10 1.92 3 10�01 0.76

TJP2 9 NTR.BLOOD.RNAARR NTR �5.72 1.05 3 10�08 8.47 3 10�01 0.06

TJP2 9 Spleen GTEx �5.5 3.80 3 10�08 7.23 3 10�01 0.99

TJP2 9 YFS.BLOOD.RNAARR YFS �5.28 1.30 3 10�07 8.76 3 10�01 0.08

TMEM194A 12 Heart_Atrial_Appendage GTEx �5.76 8.45 3 10�09 9.34 3 10�02 0.16

TMEM194A 12 Muscle_Skeletal GTEx �5.25 1.56 3 10�07 2.10 3 10�01 0.4

TSPAN2 1 Artery_Aorta GTEx 7.39 1.46 3 10�13 8.16 3 10�01 0.99

TSPAN2 1 Artery_Tibial GTEx 6.17 6.70 3 10�10 3.24 3 10�01 0.97

UFL1 6 Adipose_Subcutaneous GTEx 9.85 7.13 3 10�23 9.98 3 10�01 0.42

UFL1 6 Artery_Tibial GTEx 9.85 7.13 3 10�23 9.98 3 10�01 0.42

(Continued on next page)
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Table 1. Continued

Gene CHR Tissue reference panel
Source of tissue
reference panel TWAS.Z TWAS.P TWAS.P.Conditional COLOC.PP4

UFL1 6 Brain_Cerebellum GTEx 6.72 1.79 3 10�11 6.42 3 10�01 0.97

UFL1 6 Nerve_Tibial GTEx 7.91 2.49 3 10�15 4.38 3 10�01 0

UFL1 6 Pancreas GTEx 7.92 2.47 3 10�15 4.11 3 10�01 0.03

UFL1 6 Spleen GTEx 7.81 5.80 3 10�15 8.40 3 10�01 0.89

UFL1 6 Stomach GTEx 7.91 2.66 3 10�15 5.96 3 10�01 0.34

UFL1 6 Whole_Blood GTEx 7.08 1.40 3 10�12 8.36 3 10�01 0.28

VAT1a 17 Artery_Coronary GTEx �5.32 1.06 3 10�07 3.02 3 10�02b 0.27

Chr, chromosome; COLOC.PP4, posterior probability of the hypothesis for a shared causal variant for bothmigraine and gene expression (colocalization); TWAS.P,
TWAS p value; TWAS.P.Conditional, TWAS p value conditional on the top GWAS SNP within 1 Mb of the gene; TWAS.Z, TWAS z-score.
aThese genes are novel, with no prior reported GWAS SNP within 1 Mb.
bNominally significant p values (p < 0.05) for TWAS associations conditional on GWAS loci.
cFrom the elastic net model with eQTL ¼ rs1863244.
dFrom the BSLMM with eQTL ¼ rs4442541.
eFrom the elastic net model with eQTL ¼ rs11042902.
for the GTEx tibial artery dataset (9 gene-tissue pairs) fol-

lowed by the GTEx aorta dataset (4 gene-tissue pairs), the

CMC RNA sequencing (RNA-seq) brain dataset (3 gene-tis-

sue pairs), the NTR RNA array peripheral blood array data-

set (3 gene-tissue pairs), and 4 panels with two significant

TWAS genes (GTEx coronary artery, skeletal muscle, and

spleen datasets, and the METSIM adipose RNA-seq dataset)

(Table 1). To identify tissues potentially relevant to

migraine, we assigned tissue reference panels to anatom-

ical categories as listed above in the Methods (Table S1).

In the tissue-specific TWAS results, cardiovascular tissues

represented the highest proportion of the 45 Bonferroni-

significant genes (22 genes [48.9%]), followed by brain tis-

sues (6 genes [13.3%]), and gastrointestinal tissues (4 genes

[8.9%]) (Figure 3). The p values from the hypergeometric

tests accounting for the number of gene-tissue pairs tested

per anatomical category were 2.36 3 10�6, 0.77, and 0.93

for cardiovascular, brain, and gastrointestinal tissues,

respectively (Table S3). Therefore, while we do not rule

out the importance of brain- and gastrointestinal-specific

gene expression for migraine, only cardiovascular tissues

had an outsized number of TWAS associations, suggesting

the importance of these tissues in migraine susceptibility.

For LDSC-SEG, none of the reference cell types demon-

strated enrichment for migraine GWAS heritability after

multiple testing correction. Table S4 displays the complete

results from LDSC-SEG, including marginally enriched cell

types (p < 0.05).

Colocalization and conditional analyses provide

additional support for migraine TWAS associations

To assess whether common genetic variants underly

eQTL and GWAS associations with migraine, we con-

ducted a colocalization analysis for Bonferroni-signifi-

cant gene-tissue pairs. We found that 18 (40%) of the

Bonferroni-significant gene-tissue pairs had a colocalized

variant associated with both migraine risk (from GWAS)

and predicted gene expression based on our TWAS results
Hu
(Tables 1 and S5). Of the three TWAS associations that

we identified in genes outside of known GWAS loci, colo-

calized GWAS and eQTL associations were evident at

PNKP in the CMC RNA-seq brain panel (posterior

probability ¼ 0.988).

To identify TWAS signals for migraine independent of

GWAS risk variants, we repeated the FUSION analysis

with GWAS summary statistics conditioned on the top

GWAS SNP in each of the 45 Bonferroni-significant gene-

tissue pairs. We found that four gene-tissue pairs reached

nominal significance (p < 0.05): KTN1-AS1 (above-

mentioned novel migraine gene) in GTEx-transformed

fibroblast cells, RP1-257A7.5 in GTEx coronary artery,

TAF5 (MIM: 601787) in GTEx brain frontal cortex (BA9),

and VAT1 in GTEx coronary artery (Table 1). Furthermore,

we assessed joint TWAS associations in tissue reference

panels with more than one Bonferroni-significant gene

on the same chromosome region (Table S6). Of the five

pairwise joint models including eight unique genes, all

the associations were attenuated below the TWAS signifi-

cance level, but retained marginal significance (p < 0.05).

All eight of these genes (PHACTR1, RP1-257A7.5, FXN,

TJP2, C12orf4, CCND2,NXPH4, and STAT6) are nearby pre-

viously identified GWAS loci for migraine.19–21

Multi-tissue TWAS identified nine migraine genes

outside of known GWAS loci

The multi-tissue TWAS using the omnibus test in FUSION

revealed 40 genes for which imputed expression was associ-

ated with migraine susceptibility (Bonferroni p < 0.05/

14,575 effective gene tests approximately 3.43 3 10�6 and

minimum tissue-specific p < 1 3 10�5) (Table 2). Of these

40 genes, 9 (22.5%) were located outside of the known

GWAS migraine-associated loci: ATF5 (MIM: 606398),

CNTNAP1 (MIM: 602346), KTN1-AS1, NEIL1 (MIM:

608844), NEK4 (MIM: 601959), NNT (MIM: 607878),

PNKP, RUFY2 (MIM: 610328), and TUBG2 (MIM: 605785).

In addition, 13 of the 40 multi-tissue associated genes
man Genetics and Genomics Advances 4, 100211, July 13, 2023 5



Figure 2. Miami plot of genome and tran-
scriptome-wide associations with migraine
The top figure is the TWAS Manhattan plot
for the tissue-specific analysis using infor-
mation from all 53 tissues. Each point corre-
sponds with an association test between
predicted gene expression with migraine
risk. The bottom figure is the Manhattan
plot corresponding with the GWAS meta-
analysis combining results from GERA and
the UK Biobank, where each dot corre-
sponds with an association test for an SNP
withmigraine risk. Blue labels indicate colo-
calized eQTL and GWAS signals in tissue-
specific models. Red lines indicate the Bon-
ferroni significance levels for GWAS
(p < 5 3 10�8) and tissue-specific TWAS
(p < 1.92 3 10�7), respectively.
were also associated withmigraine in tissue-specific models,

including 2 located outside of previously describedmigraine

risk loci (KTN1-AS1 and PNKP).
Discussion

Integrating GWAS summary statistics with pre-specified

models for tissue-specific gene expression, we identified

53 genes associated with migraine susceptibility (13 from

the tissue-specific analysis alone, 27 from the multi-tissue

analysis alone, and 13 from both analyses). Of these 53,

10 were novel to the extent they did not overlap known

migraine risk loci from GWAS (ATF5, CNTNAP1, KTN1-

AS1, NEIL1, NEK4, NNT, PNKP, RUFY2, TUBG2, and

VAT1). We also highlighted the importance of cardiovascu-

lar, brain, and gastrointestinal tissues in migraine etiology.

A recent, large GWAS meta-analysis of migraine, using

PrediXcan to assess TWAS associations, identified 206

genes that were significant after Bonferroni correction.19

Of the 53 TWAS genes that we identified in the current

study (across single-tissue and multi-tissue analyses), 21

were outside of the genomic regions previously identified

from PrediXcan (Table S7). These included nine of the

ten genes that did not overlap known GWAS loci. As for

the 10th gene, NEK4, which we detected from the multi-

tissue test, Hautakangas et al.19 reported PrediXcan associ-

ations for GLT8D1, less than 65 kb away on the same

(negative) strand, from spleen and transverse colon tissue

panels.

Interestingly, KTN-AS1 and VAT1 were associated with

migraine after conditioning on the lead GWAS SNP in

the respective gene regions, and PNKP indicated a colocal-

ized genetic variant for both migraine risk and modified

gene expression. KTN1-AS1 (KTN1 antisense RNA 1) is a

long non-coding RNA gene that has been associated with

cell cycle regulation and tumorigenesis,45 as well as acute

pancreatitis.46 PNKP (polynucleotide kinase 30-phospha-
6 Human Genetics and Genomics Advances 4, 100211, July 13, 2023
tase) encodes a protein that repairs DNA damage from

ionizing radiation and oxidative stress.47 Mutations in

PNKP have been associated with ataxia with oculomotor

apraxia,48 microcephaly, and severe seizures and can result

in severe neurological disease.49,50 VAT1 (vesicle amine

transport 1) encodes a synaptic vesicle protein51 and has

been reported as a pathogenic factor in a variety of tumors

in the brain or spinal cord, including glioblastoma and gli-

omas.52–54 Future investigations could confirm the role of

these genes in migraine pathogenesis and determine their

precise role in migraine susceptibility.

Among the novelmigraine-associated genes identified in

this study, we also identified CNTNAP1, TUBG2, and

RUFY2, all expressed predominantly in the brain.

CNTNAP1, or contactin associated protein 1, is an essential

component of the paranodal junctions and may be the

signaling subunit of contactin, enabling recruitment and

activation of intracellular signaling pathways in neurons.

Mutations in CNTNAP1 led to defects in neuronal develop-

ment55 and have been associated with severe congenital

hypomyelinating neuropathy.56 TUBG2, or tubulin

gamma 2, has been involved in microtubule cytoskeleton

organization and mitotic sister chromatid segregation

and cell growth.57 Interestingly, genomic deletions in

CNTNAP1 and TUBG2 correlate with the under-expression

of those genes in pediatric pilocytic astrocytoma, a rare

childhood brain tumor.58 RUFY2, or RUN and FYVE

domain containing 2, has been involved in the regulation

of endocytosis, human glioblastoma multiforme,59 and

beta-amyloid precursor protein secretion associated with

late-onset Alzheimer disease.60 Those findings are consis-

tent with our tissue-specific TWAS results, which provide

evidence of the importance of brain tissues in migraine

susceptibility.

Another gene implicated in our migraine TWAS was

NNT, which encodes an integral protein of the inner

mitochondrial membrane, nicotinamide nucleotide

transhydrogenase. Importantly, NNT is broadly expressed



Figure 3. Bonferroni-significant TWAS genes by anatomical
category
In the tissue-specific TWAS, 45 gene-tissue associations with
migraine were Bonferroni-significant. To compare these TWAS as-
sociations by anatomical category, eQTL reference tissues were
grouped where appropriate (see Table S1). No genes were Bonfer-
roni significant for migraine in female reproductive or lung tissue
panels. The asterisk indicates categories with a hypergeometric test
p value of <0.05 accounting for the number of gene-tissue pairs
tested per category.
in the heart and adrenal gland and has been implicated in

free radical detoxification. Mutations in NNT have been

shown to cause familial glucocorticoid deficiency.61

Recently, misfolded NNT protein was found in the

amygdalae of elderly, cognitively impaired subjects,62

suggesting that NNT could play a key role in the neuro-

pathologic feature of Alzheimer disease and many other

neurodegenerative disorders. Another gene implicated

in our migraine TWAS was NEK4 (NIMA related kinase

4), encoding a serine/threonine protein kinase required

for normal entry into replicative senescence, and

involved in cell-cycle arrest in response to double-

stranded DNA damage.63 This gene also plays a role in

maintaining cilium integrity, and defects have been asso-

ciated with ciliopathies.64 Finally, NEK4 has been associ-

ated with bipolar disorder in GWAS65 and TWAS.66 Our

study also identified ATF5 as a novel migraine-associated

gene. ATF5 (activating transcription factor 5) promotes

normal cell survival and proliferation67–70 and modulates

growth and differentiation of neural progenitor cells dur-

ing murine brain development,69,71–75 and expression

has been associated with higher tumor grade and reduced

patient survival for glioma.67,69,76–79 Future studies will

determine how these identified genes contribute to

migraine susceptibility.

Using joint-conditional analysis, we attempted to differ-

entiate causal versus non-causal genes for chromosomes

with multiple TWAS associations, potentially attributable

to gene co-regulation.26 For example, we identified two

marginally associated TWAS genes on chromosome

6p24.1 using the GTEx aorta and tibial artery references,

PHACTR1 and RP1-257A7.5, which span previously identi-
Hu
fied migraine GWAS risk loci. While PHACTR1 and RP1-

257A7.5 are only 572 Kb apart, PHACTR1 has been shown

to regulate the actin cytoskeleton and endothelial cell sur-

vival,80 and its RNA has outsized expression in the brain81;

in contrast, RP1-257A7.5 is a long non-coding RNA that

has not been characterized yet. Therefore, PHACTR1 has

greater a priori evidence of involvement in migraine sus-

ceptibility compared with RP1-257A7.5.

We recognize potential limitations of our study. First, in

the current study gene expression is predicted, not

measured, so the reported TWAS associations cannot be

considered causal and should be interpreted cautiously.26

As a corollary, our TWAS reference panels model gene

expression on cis-eQTLs, which only explain approxi-

mately 10% of the variance in genetically predicted expres-

sion.26,82 Second, our method of testing all gene-tissue as-

sociations could produce spurious results in tissues not

related to migraine.26 Although migraine is primarily a

brain disorder, the location of migraine initiation is un-

known83; therefore, we could not prioritize any of the 13

brain reference tissues either a priori or from our LDSC-

SEG analysis. In addition, given previous evidence impli-

cating cardiovascular and gastrointestinal tissues in

migraine susceptibility,19,84,85 we tested models across all

tissues to compare the frequency of TWAS genes by

anatomical category. Moreover, we aggregated all the

tissue-specific associations in FUSION’s omnibus test, as

recommended to decrease the likelihood of this potential

bias.26 Third, model weights from GTEx Version 8 were

published on the FUSION website shortly after we

completed our main analysis using GTEx Version 7

weights. Version 8 includes 49% more RNA-seq samples

from 33% more tissue donors compared with Version 7,

as well as splicing eQTLs.86 Despite these limitations, our

study is based on results from a large GWAS meta-analysis

on more than 26,000 migraine cases, enabling causal-gene

prioritization for migraine. Although a larger GWAS meta-

analysis was recently published with 102,000 migraine

cases,19 our current study used GERA data from KPNC

members with migraine ascertained from the electronic

health record system and our previously validated

migraine probability algorithm.87 Therefore, our current

study represents an independent and valuable discovery

cohort for TWAS candidate genes. A general strength of

TWAS is that is prioritizes effects of predicted gene

expression, not just SNPs. Further, in this study, we

conducted multi-tissue TWAS analysis, which enables

increased statistical precision compared with single-tissue

approaches.29,88,89

In conclusion, we identified 53 genes associated with

migraine susceptibility, of which 10 did not overlap with

known migraine risk loci. Our study also highlighted the

important contributions of brain, cardiovascular, and

gastrointestinal tissues inmigraine susceptibility, consistent

with previous work. Therefore, the expression of

genes associated with migraine seems not to be restricted

to brain tissues, as could be expected for this syndromic
man Genetics and Genomics Advances 4, 100211, July 13, 2023 7



Table 2. Multi-tissue omnibus test of migraine identified 40 genes meeting criteria for statistical significance

Gene NUM.REF MIN.TWAS.P NUM.REF.PRUNED OMNIBUS.P CHR P0 P1

AC007405.2 6 3.98 3 10�6 6 1.16 3 10�6 2 171568961 171571077

ANKDD1B 20 3.50 3 10�6 18 2.60 3 10�12 5 74907284 74967671

ARL3 18 4.75 3 10�6 17 8.79 3 10�62 10 104433488 104474164

ATF5a 20 2.79 3 10�6 20 1.02 3 10�19 19 50433021 50437192

C12orf4 3 2.75 3 10�13 3 2.97 3 10�15 12 4596894 4647674

CCND2 5 2.23 3 10�13 5 5.78 3 10�11 12 4382938 4414516

CNNM2 5 1.63 3 10�6 5 2.70 3 10�7 10 104678050 104849978

CNTNAP1a 25 2.44 3 10�7 16 1.81 3 10�91 17 40835936 40851832

DLST 5 7.46 3 10�7 5 5.41 3 10�8 14 75348593 75370450

FAM189A2 12 8.94 3 10�8 12 2.34 3 10�7 9 71939488 72007371

FXN 6 5.61 3 10�10 6 1.31 3 10�23 9 71650175 71715094

INA 4 4.52 3 10�6 4 2.73 3 10�6 10 105036920 105050108

INHBE 3 7.28 3 10�7 3 2.76 3 10�6 12 57846106 57853063

INPP5B 49 2.36 3 10�6 31 2.74 3 10�31 1 38326764 38412729

KTN1-AS1a 19 4.08 3 10�8 15 2.26 3 10�42 14 55965996 56046828

LRP1 4 1.22 3 10�27 4 1.90 3 10�30 12 57522276 57607134

MLXIPL 22 2.13 3 10�6 18 6.29 3 10�91 7 73007524 73038873

MRVI1 25 1.01 3 10�11 24 2.10 3 10�10 11 10594638 10715535

MSL3P1 27 5.30 3 10�6 24 3.64 3 10�22 2 234774083 234777090

MTMR3 48 2.35 3 10�6 32 1.41 3 10�151 22 30279144 30426855

NEIL1a 19 6.00 3 10�6 18 1.63 3 10�13 15 75639296 75647550

NEK4a 30 7.62 3 10�6 14 7.46 3 10�8 3 52744800 52804965

NNTa 31 6.62 3 10�6 28 4.28 3 10�50 5 43602794 43707507

NT5C2 16 4.68 3 10�7 15 2.45 3 10�112 10 104850368 104953056

NXPH4 3 7.86 3 10�10 3 3.66 3 10�10 12 57610578 57620232

PHACTR1 13 1.42 3 10�18 13 3.17 3 10�14 6 12717893 13288645

PIP4K2C 8 3.29 3 10�6 8 7.15 3 10�11 12 57984957 57997198

PNKPa 10 1.70 3 10�7 9 3.06 3 10�6 19 50364461 50371166

POC5 36 3.50 3 10�6 24 2.98 3 10�142 5 74969949 75013313

RBBP8 7 3.72 3 10�6 7 1.91 3 10�7 18 20378224 20606451

RERE 22 1.17 3 10�6 14 3.35 3 10�10 1 8412457 8877702

RP11-724N1.1 12 2.16 3 10�6 9 2.64 3 10�15 10 104674342 104675161

RP11-739L10.1 5 2.65 3 10�6 5 5.97 3 10�10 18 20279444 20513727

RUFY2a 26 8.24 3 10�6 16 1.75 3 10�21 10 70100864 70167051

SFXN2 25 4.22 3 10�7 17 6.27 3 10�188 10 104474295 104503249

STAT6 10 3.35 3 10�10 9 6.46 3 10�14 12 57489260 57525922

TJP2 22 4.87 3 10�10 20 2.13 3 10�14 9 71736224 71870124

TMEM194A 16 8.45 3 10�9 16 6.51 3 10�10 12 57449426 57481846

TUBG2a 42 1.85 3 10�6 17 1.18 3 10�11 17 40811323 40819024

UTP11L 15 5.20 3 10�6 14 1.10 3 10�6 1 38474930 38490496

CHR, chromosome; MIN.TWAS.P, minimum p value from tissue-specific models; NUM.REF, number of tissue reference panels tested for each gene;
NUM.REF.PRUNED, number of tissue reference panels tested for each gene after pruning for highly LD-correlated genes; OMNIBUS.P, p value from the omnibus
test; P0, start of gene (hg19); P1, end of gene (hg19).
aThese gene are novel, with no prior reported GWAS SNP within 1 Mb.
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neurological disease, and the processes underlyingmigraine

pathology seem to be systemic as observed for other dis-

eases.43 Identifying which biological processes are geneti-

cally influenced and in which tissue is important for under-

standingmigraine etiology and developing novel therapies.

Data and code availability

The combined European ancestry (GERA andUKB)meta-

analysis GWAS summary statistics for migraine will

be made available through the NHGRI-EBI GWAS Cata-

log (https://www.ebi.ac.uk/gwas/downloads/summary-

statistics).

The GERA genotype data are available upon applica-

tion to the KP Research Bank (https://researchbank.

kaiserpermanente.org/).

FUSION models trained on the GTEx version 7 data are

available here: http://gusevlab.org/projects/fusion/.

Gene expression and eQTL data are freely available at

https://gtexportal.org/home/datasets.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.xhgg.2023.100211.
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