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Our visual system receives an enormous amount of information, but not all information
is retained. This is exemplified by the fact that subjects fail to detect large changes in a
visual scene, i.e., change-blindness. Current theories propose that our ability to detect
these changes is influenced by the gist or interpretation of an image. On the other hand,
stimulus-driven image features such as contrast energy dominate the representation in
early visual cortex (De Valois and De Valois, 1988; Boynton et al., 1999; Olman et al.,
2004; Mante and Carandini, 2005; Dumoulin et al., 2008). Here we investigated whether
contrast energy contributes to our ability to detect changes within a visual scene. We
compared the ability to detect changes in contrast energy together with changes to a
measure of the interpretation of an image. We used subjective important aspects of the
image as a measure of the interpretation of an image. We measured reaction times while
manipulating the contrast energy and subjective important properties using the change
blindness paradigm. Our results suggest that our ability to detect changes in a visual
scene is not only influenced by the subjective importance, but also by contrast energy.
Also, we find that contrast energy and subjective importance interact. We speculate that
contrast energy and subjective important properties are not independently represented
in the visual system. Thus, our results suggest that the information that is retained
of a visual scene is both influenced by stimulus-driven information as well as the
interpretation of a scene.

Keywords: change detection, contrast energy, subjective importance, natural images, scene perception

INTRODUCTION

Intuitively, our visual representation of the outside world appears to be highly detailed, however,
the change blindness paradigm highlights limitations of this visual representation (Rensink, 2000;
Martin et al., 2001). The change blindness paradigm reveals our inability to see changes in two
sequentially presented visual scenes when separated by a disruption like a saccade or a flicker
(for review see: Rensink, 2002; Simons and Ambinder, 2005). Without the disruption, the change
is often easy to detect. The disruption highlights the limits of our ability to retain and compare
information from one visual scene to the other (Simons and Rensink, 2005).
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Some changes in the visual scene are easier to detect than
others. Many change blindness studies focus on the notion that
changes made in parts of a scene that represent the general
interpretation of the image are detected faster (Rensink et al.,
1997; O’Regan et al., 1999; Shore and Klein, 2000; Stirk and
Underwood, 2007; Sampanes et al., 2008). Some studies refer to
the general interpretation as regions of high interest (Rensink
et al., 1997; O’Regan et al., 1999; Shore and Klein, 2000; Verma
and McOwan, 2010), where others refer to a semantic summary
of the scene (gist) that is related to our knowledge of the world
(Stirk and Underwood, 2007; Sampanes et al., 2008).

What causes these changes to be detected faster? In change
blindness, subjects have to compare two image representations.
Working memory is supposed to play an important role in this
comparison process. One interpretation is that parts of a scene
related to the general interpretation receive more attention, and
are therefore more likely to be encoded and compared (Simons
and Rensink, 2005). On the other hand, we know that the early
visual system, i.e., primary visual cortex, encodes stimulus-driven
image properties such as contrast energy (De Valois and De
Valois, 1988; Boynton et al., 1999; Olman et al., 2004; Mante and
Carandini, 2005; Dumoulin et al., 2008).

Some studies controlled for stimulus-driven image properties,
such as stimulus, size, brightness, color, and saliency (Rensink
et al., 1997; Kelley et al., 2003). These studies demonstrate that
the effect of change blindness survives matching stimulus-driven
properties. Yet, none of these studies considered contrast energy,
the most well known computation of the early visual system.
Contrast energy is not the same as saliency. Whereas contrast
energy is a component of saliency, saliency is influenced by many
other stimulus-driven properties. Previous change blindness
studies did not always account for differences in stimulus-driven
image properties (Verma and McOwan, 2010) and stimulus-
driven properties might contribute to change detection, such as
saliency or size of the change (Landman et al., 2003; Verma
and McOwan, 2010; Spotorno et al., 2013). We predict that if
change detection is founded on computations of the early visual
system, contrast energy would contribute to our ability to detect
changes.

Here, we ask whether contrast energy contributes to our
ability to detect changes in a visual scene. We focus on contrast
energy because this is one of the most well-described and most
fundamental computations in early visual cortex that lies at
the heart of visual computations (De Valois and De Valois,
1988). Furthermore, we compared change detection for these
stimulus-driven image properties with the subjective image
interpretation. Last, we investigated whether our subjective image
interpretation interacts with the stimulus-driven image property
contrast energy in our ability to detect changes to a visual scene.

To this aim, we measured reaction times (RTs) in a flicker-
task using the change-blindness paradigm (Rensink et al.,
1997); subjects indicated when and where they detected the
change between the images. We used images from the Berkeley
Segmentation Dataset and Benchmark database (Martin et al.,
2001). In this dataset, Martin et al. (2001) asked human observers
to identify the most important aspects of the image (Figure 1B).
We used these manually labeled aspects of the scene to define

and quantify our measure for the subjective image interpretation.
Using the combination of the natural images together with their
manually labeled images, we were able to measure the amount
of change that a manipulation to an image brings both to the
stimulus-driven and to the subjective image interpretation. We
manipulated the amount of change in subjective importance
(manually labeled aspects of the scene) and in the change of the
stimulus-driven image property contrast energy.

We found both significantly shorter RTs for manipulations
dominated by a change in subjective importance, as well as those
dominated by changes in contrast energy. Thus both subjective
importance and contrast energy contribute to the speed of change
detection. Furthermore, these two properties interacted: shortest
RTs were found when the changes both contained a large change
in contrast energy and in subjective importance. We show that
this interaction effect is not explained by statistical facilitation
alone, i.e., the faster RTs in the high-contrast/high-subjective
importance condition are not explained by the added benefit of
the presence of two independent properties (both contrast energy
and subjective importance). These results show that our ability to
detect changes in a visual scene is not only influenced by the high-
level image interpretation of the image, but is also influenced by
stimulus-driven image statistics such as contrast energy. Finally,
our results that the interaction effect cannot be explained by
statistical facilitation alone, suggest that the stimulus-driven and
subjectively important image properties are not independently
processed in the visual system, but interact with each other.

MATERIALS AND METHODS

Participants
In total, 60 subjects participated in the experiment (30 female,
age range = [18–39], mean age = 23.9, SD = 4.0). The total
number of 60 subjects was based on a power analysis informed
by previous literature (Verma and McOwan, 2010). All subjects
had normal or corrected-to-normal visual acuity. The study was
approved by the local Ethics Committee of the Utrecht University
and the experiments were carried out in accordance with the
Code of Ethics of the World Medical Association (Declaration
of Helsinki). All experiments were performed with the informed
written consent of the subjects. The duration of the experiment
was approximately 30 min. The subjects participated either for
course credits or a monetary reward.

Apparatus
The experiment was programmed in MatLab (MathWorks,
United States), using the Psychophysics Toolbox (Brainard, 1997;
Pelli, 1997). Stimuli were presented on a 21-inch CRT monitor
type LaCie-C22BW711 (60 Hz, 1024 × 768) using a Mac Pro 4.1
computer. The monitor was calibrated with a light meter type
Gossen Mavo-Monitor USB. The viewing distance was 57 cm,
which was maintained using a chin and forehead rest.

Stimuli
The images were taken from the ‘Berkeley Segmentation Dataset
and Benchmark’ database (Martin et al., 2001). We used a
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FIGURE 1 | Five example images (A) from the ‘Berkeley Segmentation
Dataset and Benchmark’ database (Martin et al., 2001). For all the images of
this database human observers manually identified the important aspects of
the image (B). Different observers drew the labels, and their task was to draw
lines on the image to highlight the parts of the image they considered to be
important for the representation of the scene. We used the average manually
labeled images of five observers as our definition of the subjective importance
of the image. The pixels of the manually labeled images have values between
0 (not labeled) and 1 (pixel labeled by all 5 observers).

selection of the grayscale images and we only used the images
that were in landscape orientation. Also, we did not include any
images where a human was present in the image. Using Adobe
Photoshop CS6 (Version 13.0, United States), we manipulated the
image content. We made a large set (502) of different changes to
the images, of which we selected 108 different changes, giving 108
independent image pairs in total to be used in the experiment.
To balance the different conditions, these 108 image pairs were
selected from the larger set of image pairs. These 108 images
were selected so every condition contained the same number of
images and the changes were not made in the central region of
the image; no changes were made to pixels with an eccentricity

smaller than 1.6◦ of visual angle. Furthermore, we selected the
images so there were no significant differences between the four
categories in terms of eccentricity of the changes, changes in
size, distance from the center, mean contrast, mean luminance
change and spatial frequency change of the manipulated area.
Also, multiple changes were made to the same image, but every
subject only saw one change associated with one image. Changes
to the images were for instance deletions of (part of) objects, or
changes only in textures. Figure 2 shows four example image
pairs. The arrows indicate where the manipulation to the image
was made. All stimuli were presented on a gray background.
The size of the images was 481 pixels × 321 pixels, extending
18.6◦ × 12.4◦ of visual angle.

Measure of Change in Contrast Energy
and Subjective Importance
The aim of the study was to investigate the role of the stimulus-
driven image property contrast energy and the subjective image
interpretation on our ability to detect changes in a visual
scene. We simultaneously measured the influence of both; for
every image manipulation we calculated how big the change in
contrast energy was and its corresponding change in subjective
importance. Where we investigated the individual role of both
properties, this also allowed us to measure the interaction effect of
contrast energy and subjective importance on change detection.

Calculation of Change in the Stimulus-Driven Image
Property Contrast
To compute the amount of contrast energy change that the
manipulation to an image brings, the first step was to calculate
the local contrast energy values, both of the original image and of
the manipulated image. For every pixel of the image we calculated
the local contrast energy inside a spatial window of neighboring
pixels. This spatial window is defined by a Gaussian weighting
function:

wi = exp−

(
(xi − xc)

2
+
(
yi − yc

)2

2 (σ)2

)
(1) (1)

where (xi, yi) is the location of the ith pixel and (xc, yc) is the
location of the pixel at the center of the image patch. σ is the
standard deviation of the Gaussian window and defines the size
of the spatial window. For the size of σ, we used 19.4 pixels, which
corresponds to 0.75◦ of visual angle.

The local contrast energy value is based on the Root-Mean-
Squared (RMS)-contrast (Pelli, 1997; Bex and Makous, 2002)
which is defined as the standard deviation of the luminance
intensities relative to the mean. The RMS-contrast is weighted by
the Gaussian function to obtain the local contrast energy value
per pixel:

local_contrast_energy =

√√√√ 1∑N
i=1 wi

N∑
i=1

wi
(Li − L)2

L2 (2) (2)

Where wi is the Gaussian weighting function. N is the number of
pixels in the spatial window. L is the mean luminance from the
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FIGURE 2 | Examples of image pairs that were used in the experiment. The original images were taken from the ‘Berkeley Segmentation Dataset and Benchmark’
database (Martin et al., 2001). The arrows indicate where the manipulation in the image was made (the arrows were not present in the actual experiment). For every
condition we show one example image pair (A–D). The conditions are based on the amount of change in contrast energy and subjective importance. The conditions
were balanced for changes in size, distance from the center, contrast, luminance and spatial frequency.

pixels inside the spatial window, and Li is the luminance of the
ith pixel.

Using the local contrast energy values per pixel, we computed
for every image pair the change in contrast energy between
the original image and the manipulated image. Figure 3 gives
an illustration of this procedure. To compute the amount of
local contrast energy change, we used the local contrast energy
values of the pixels that were changed in the image; the red line
represents this region. The difference between the mean local
contrast energy values from the original image and the mean local

contrast energy values from the manipulated image defined our
measure of contrast energy change.

Calculation of Change in Subjective Importance of
the Scene
For every image from the ‘Berkeley Segmentation Dataset and
Benchmark’ database (Martin et al., 2001), there are manually
labeled images available. In each manually labeled image, a
human observer drew lines on the image to highlight the parts of
the image they considered to be important for the representation
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FIGURE 3 | An illustration of the procedure of calculating the change in contrast energy and subjective importance. Two example images [taken from the ‘Berkeley
Segmentation Dataset and Benchmark’ database (Martin et al., 2001)] are shown with changes predominant in subjective importance (A) and contrast energy (B).
The red line represents the region manipulated to alter the image. From this region we calculated the difference in local contrast energy as well as the amount of
subjective importance.

of the scene. We used the average manual labeled image of 5
observers as our definition of subjective importance. In Figure 1
five examples of natural images (Figure 1A) are shown together
with the averaged manually labeled images (Figure 1B).

We used the averaged manually labeled images to calculate the
amount of change in subjective importance that a manipulation
brings to an image. The pixels of the manually labeled images
have values between 0 (not labeled) and 1 (pixel labeled by all
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5 observers). The amount of change in subjective importance
was calculated by summing the values of the pixels in the
averaged manually labeled images that were manipulated. The
computation is illustrated in Figure 3. The red line in Figure 3
represents the changed region. From this region we computed
how big the change in the manually labeled aspects of the
image was and this gives us our measure of change in subjective
importance from this region we also computed the amount of
change in contrast energy. Two example images are shown: one
in which the change is dominated by subjective importance
(Figure 3A) and one in which the change is dominated by
contrast energy (Figure 3B). The region was controlled for
changes in size, distance from the center, mean luminance and
mean contrast of the changed area and spatial frequency (see
below).

Conditions
Based on the changes in contrast energy and subjective
importance we defined four conditions based on the image-
pairs that are ‘low’ and ‘high’ in their differences for contrast
and subjective importance. The 108 image-pairs that we used in
the experiment were selected from a larger subset of images to
equally balance the four conditions. We balanced the conditions
for (i) the number of images per condition and (ii) changes in
size, distance from the center, mean contrast, mean luminance
change and spatial frequency change of the manipulated area.
We made a within subject design that compared high versus
low contrast energy and high versus low subjective importance.
Furthermore we also modeled the interaction between contrast
energy and subjective importance. The definition of ‘low’ and
‘high’ was based on the 50th percentile of the values for contrast
energy change and subjective importance change (median split).
We took the first 50th percentile of the changes for the condition
‘low’ and the second 50th percentile for the condition ‘high,’ both
for contrast energy as for subjective importance. Figure 4 shows
the histograms of the changes in contrast energy (Figure 4A)
and subjective importance (Figure 4B); the vertical black striped
line represents the 50th percentile. All the images below this

boundary-line are placed in the ‘low’ condition. The images above
the 50th percentile are placed in the ‘high’ condition. Figure 2
shows for every condition an example of an image pair.

The conditions were balanced for changes in size, distance
from the center, mean contrast, mean luminance change and
spatial frequency change of the manipulated area. The size of
the change was calculated as the number of pixels that were
changed in the original image. The distance from the center was
calculated as the eccentricity where the center of mass of the
change was. The mean contrast was calculated as the average
contrast of the manipulated area in the original image and the
manipulated image. The luminance change was the difference of
the mean luminance of the original image and the manipulated
image in the area that was changed. The change in spatial
frequency was calculated by the median of the subtracted spatial
frequency distributions (calculated by fast Fourier analysis of the
local image patch defined by the changed area) in the original
and the manipulated image. In Figure 2 the corresponding
values for the calculated changes are reported next to the image
pairs. No significant changes were found using an Anova to
test for group differences [changes in size: F(3,104) = 0.66,
p = 0.58, distance from the center: F(3,104) = 1.75, p = 0.16,
mean contrast: F(3,104) = 1.17, p = 0.33, maximum contrast
of both images F(3,104) = 1.07, p = 0.37, minimum contrast
of both images F(3,104) = 0.60, p = 0.61, mean luminance
difference: F(3,104)= 1.03, p= 0.38, spatial frequency difference
F(3,104) = 0.31, p = 0.81], or the Kruskal–Wallis test to test for
group differences [changes in size: H(3,104) = 2.76, p = 0.43,
distance from the center: H(3,104) = 5.01, p = 0.17, mean
contrast: H(3,104) = 4.18, p = 0.24, maximum contrast of
both images H(3,104) = 4.51, p = 0.21, minimum contrast
of both images H(3,104) = 1.84, p = 0.61, mean luminance
difference: H(3,104)= 4.19, p= 0.24, spatial frequency difference
H(3,104)= 1.5, p= 0.68].

We selected 108 different image pairs (i.e., 108 different
manipulations) from a larger subset of image pairs so that every
condition contained 27 of these image pairs. Some of the images
were used more than once, so different manipulations to the

FIGURE 4 | The distribution of local contrast energy change (A) and change in subjective importance (B) for all the image pairs. The vertical striped black line
indicates the 50th percentile used to define our four different conditions. Image pairs left of the 50th percentile were used in the ‘low’ condition, both for contrast
energy change and subjective importance change. Image pairs right to the 50th percentile were used in the ‘high’ conditions.
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images could be made. To make sure that every subject did not see
multiple manipulations to the same image, we made 6 different
subsets, in which every original image was only inserted once.
The subsets contained 36 different image pairs and the subsets
were balanced so that every condition contained 9 individual
image pairs. Every subset of images was presented to 10 subjects.
Apart from these image pairs that were used for the experiment,
we also used 4 trial image pairs. Every trial image pair was an
example from one of the 4 conditions. These trial image pairs
were used before the actual experiment began.

Design
For the change blindness experiment we used a flicker task
(Rensink et al., 1997). In the flicker task, an original image
was repeatedly alternated with a manipulated image, until the
observer noticed the change. The original and the manipulated
image were presented for 600 ms and were separated by a gray
screen that was presented for 100 ms. The separation with a gray
screen of approximately 80 ms prevents the observer from seeing
the change due to movement transients caused by the change
between the two images (Rensink et al., 1997). The maximum
duration of the experiment was 240 s. Subjects were instructed
to indicate when they saw the change by pressing the space bar.
After this response, the last presented image from the image pair
was presented again. At this image, the subjects indicated with
the mouse where they had noticed the change in the image. After
every trial the subject received feedback whether the change was
correctly detected. The answer was classified correctly when the
subject pointed within a small region (approximately 0.75◦ of
visual angle) of the change. The 36 different image pairs were
presented in a randomized order for every individual experiment.
The experiment started with four trial image pairs to make the
participants acquainted with the experiment, these trials were
excluded from the analysis.

Analysis
We measured the time from the onset of the stimulus to the time
at which the subject pressed the spacebar as the RT. Trials in
which the subject did not report to see a change (misses) or did
not report the change at the accurate location (false alarms) were
analyzed using repeated measures ANOVA (Figure 5). There
were no significant differences in the proportion of false alarms
[F(3,236)= 1.39, p= 0.25] and misses [F(3,236)= 1.62, p= 0.19]
in the different conditions, so these trials were excluded from the
analysis (61 out of 2160 trials).

We analyzed the RTs using a general linear model (GLM,
Matlab, Mathworks, United States). We used the GLM-approach
for the analysis on the RTs, since the distributions of the RTs
are skewed (non-normal). The non-normal distribution of
the RTs was confirmed using a Kolmogorov–Smirnov test
[D(2098) = 0.87, p << 0.001]. The GLM-approach allows
the use of a non-linear linking function to compensate for
the skewed RT-distributions. We used an inverse Gaussian
as a linking function in the GLM. The linking function
transformed the predicted variables of the GLM-model to
the non-normally distribution of the RTs. Using the GLM
approach we investigated the relation of the measured
RTs with contrast energy change, subjective importance
change and the interaction between the two using separate
regressors.

We further examined whether the interaction effect can
be explained by statistical facilitation alone, i.e., RTs can be
faster only because more than one property (contrast energy
or subjective importance) was present. For this, we compared
the race-model, which is the cumulative distribution functions
(CDF) of the high-contrast/low-subjective importance (RT1)
and low-contrast/high-subjective importance (RT2) conditions
with the CDF of the high-contrast/high-subjective importance
(RT1&2) condition. The upper bound of statistical facilitation was

FIGURE 5 | Proportion of detections (hits), detections in which subjects failed to indicate the correct location (false alarms) and the failure to detect the change
(misses) for the conditions based on contrast energy (CE) and subjective importance (SI). The averaged data are the mean from all subjects, and the error bars reflect
the 95% confidence interval. No significant differences were found.
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calculated using the race model inequality (Raab, 1962; Miller,
1982, 1986; Ulrich et al., 2007):

P (RT1&2 < t) ≤ P (RT1 < t)+ P (RT2 < t) (3) (3)

The race model inequality reflects the probability (P) that
an RT of the two-properties-condition (high-contrast/high-
subjective importance) is equal or less to the probability
of the cumulative RT distributions of the single-properties-
conditions (low-contrast/high-subjective importance and high-
contrast/low-subjective importance) at a given time t. Shorter
RTs for the condition high-contrast/high-subjective importance
compared to the race-model reflect a violation of the race-
model and show that the interaction effect cannot be explained
by statistical facilitation alone. Note that the race-model only
provides an upper bound of statistical facilitation, since the CDF
of the race-model sums to 2, whereas the CDFs of the single-
properties-conditions only sum to 1. Therefore, only positive
violations from the race-model are of interest.

Besides comparing the median RT difference between the
high-contrast/high-subjective importance and the race-model,
we also showed how the CDFs vary over different quantiles of
the RTs (10, 20, and up to 90 percentile). Comparing the RTs for
different quantiles showed the absolute difference in RTs between
the condition high-contrast/high-subjective importance and the
race-model at comparable points of the CDF. We bootstrapped
the CDFs over our subjects (using random samples of subjects)
to obtain the 95% confidence interval and the p-values to test for
a statistical violation of the race model for the different quantiles.
We corrected for multiple comparisons (number of tests = 9)
using the Bonferroni method (corrected p-value= 0.05/9).

RESULTS

We measured detection rate and RTs for the four different
conditions based on changes that are either low or high in

contrast energy (CE) and low or high in subjective importance
(SI).

The average detection rate for all changes in all image
conditions was 97%, i.e., all the changes to these images were
detected within the 240 s that the images were presented.
Figure 5 shows the proportion of detections (hits), detections
in which subjects failed to indicate the correct location (false
alarms) and failures to detect the change (misses). Since there
were no significant differences in the proportion of false alarms
and misses in the different conditions we excluded these trials
from the analysis. Thus only the trials in which the subjects
correctly detected the changes to the images were used for further
analysis.

We measured the time from the beginning of the stimulus,
until the time the subjects noticed the change and pressed
the spacebar as the RT. Figure 6A shows the median RTs per
condition, the error bars reflect the bootstrapped 95% confidence
intervals. The condition in which the manipulations to the
image were the most difficult to detect was the low-contrast/low-
subjective importance condition, i.e., in this condition the RT
was longest (median RT = 7.1 s). Comparing this to the
high-contrast/low-subjective importance condition, we see that
changes in the latter condition were detected faster (median
RT = 5.5 s, median decrease RT = 1.6 s). Comparing the
first condition to the low-contrast/high-subjective importance
condition, we also found a faster detection of the manipulations
(median RT = 5.3 s, median decrease RT = 1.8 s). Last, the
manipulations of the high-contrast/high-subjective importance
condition were detected fastest (median RT = 1.9 s, median
decrease RT = 5.2 s). These results indicate an effect both for
the amount of subjective importance change and the amount
of contrast energy change on the RT. A manipulation to an
image with a larger change in either contrast energy or subjective
importance to the image led to a faster detection of the
manipulation. The results also suggest an interaction effect for the
amount of contrast energy change and the amount of subjective

FIGURE 6 | (A) The median reaction times of all the correct detections for all subjects for the different image conditions. The striped line represents the median RT of
the race-model. The error bars reflect the bootstrapped 95% confidence interval. (B) The cumulative distributions of the correct responses for the different
conditions. We analyzed our results using a GLM approach, with the inverse Gaussian as a linking function. The striped lines are the fits to the data with an inverse
Gaussian function. Note that we only show the RTs up to the first 40 s of the experiment here, the entire RT-range is 0–240 s. We found significantly shorter reaction
times for both changes in contrast energy (CE) and subjective importance (SI). Furthermore, we found a significant interaction effect, i.e., reaction times were shorter
when changes affected both contrast energy and subjective importance. (C) The comparison of the CDF of the condition high-contrast/high-subjective importance
with the CDF of the race-model. The CDF of the race-model is the summed CDFs of the conditions high-contrast/low-subjective importance and
low-contrast/high-subjective importance. We found statistical significant shorter RTs for the condition high-contrast/high-subjective importance compared to the
race-model for the 10th to the 70th percentile. This indicates that the interaction effect cannot be explained by statistical facilitation alone.
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importance change. A manipulation that was both high in its
change for contrast energy and subjective importance resulted in
the fastest detection of the manipulation.

To quantify these observations, we performed a GLM-
analysis to compare the effects of contrast energy change,
subjective importance change and the interaction of the two
on the RTs. Since the distribution of RTs was skewed, we
did not use the canonical linking function that tests for
differences in the conditions based on their mean. Instead of
the canonical linking function, we used the inverse Gaussian
linking function to take into account the non-normal or
non-Gaussian distribution of the data. The differences of the
distributions are now based on the fit of the inverse Gaussian
distribution. Figure 6B shows the fits of the inverse Gaussian
function to the distribution of the data for the different
conditions. All fits had a variance explained R2 > 0.97. Using
the GLM analysis, we found a significant effect for the level
of contrast energy change: t(2095) = 9.92, p < < 0.001.
Where the number 2095 reflects the total amount of (correct)
RTs from all the subjects. Also, we found a significant effect
for the level of subjective importance change: t(2095) = 6.54,
p << 0.001. Furthermore, we found a significant effect for
the interaction of the amount of contrast energy change and
the amount of subjective importance change: t(2095) = 7.90,
p << 0.001. Thus, our ability to detect changes in a
visual scene is influenced by both the subjective image
interpretation and the stimulus-driven image properties, and
they interact.

Besides our analysis based on the four different conditions,
we repeated the analysis using a GLM with ranked values
for contrast energy and subjective importance. Using this
analysis we found a significant effect for both contrast energy
(p < 0.001) and the interaction of contrast energy and subjective
importance (p = 0.013). However, the effect for subjective
importance was not significant (p = 0.0578). This analysis
assumes a linear relationship between the values for contrast
energy and subjective importance, which is not likely the
case and we assume this is the reason why we don’t find a
significant effect for subjective importance using this analysis
method. Therefore, we believe that the split analysis is more
correct.

To further examine this interaction effect, we investigated
whether it can be explained by statistical facilitation alone.
We compared the CDF of the high-contrast/high-subjective
importance condition to the CDF of the race model (Figure 6C).
We compared the bootstrapped CDFs at different quantiles, from
the 10th to the 90th percentile. For the 10th to the 70th percentile
we found a statistically significant violation of the race model
(p < 0.001 for all significant percentiles, Bonferroni corrected for
multiple comparisons), with a maximum of 1 s difference in RT
that was unexplained by statistical facilitation.

DISCUSSION

In our study we used manually labeled images to investigate
the simultaneous effect of stimulus-driven and subjectively

important image properties on our ability to detect changes in
a visual scene. We measured RTs within a change blindness
task and compared RTs over four different conditions. The
conditions were based on the amount of change in the stimulus-
driven image property contrast energy and the amount of change
in the subjective image interpretation defined by the manual
labels.

Shorter RTs for High Change in
Subjective Importance
Analyzing the RTs for the different conditions, first, we found
a significant effect for subjective importance. RTs were shorter
for manipulations that have a larger change in their subjective
image interpretation. This measure of change was based on
the manually labeled aspects of the images, where people
indicated which parts represented the image most (Martin
et al., 2001). Our results are in line with previous change
blindness studies, which showed that changes made in parts
of a scene that were considered to be important for their
high-level image representation were detected earlier (Rensink
et al., 1997; O’Regan et al., 1999; Shore and Klein, 2000;
Stirk and Underwood, 2007; Sampanes et al., 2008; Verma and
McOwan, 2010). However, different notions of the high-level
image representation have been used in these studies. Some refer
to it as the gist; the general interpretation of a scene (Stirk and
Underwood, 2007; Sampanes et al., 2008), where others refer
to it as regions of high interest (Rensink et al., 1997; O’Regan
et al., 1999; Shore and Klein, 2000; Verma and McOwan, 2010).
Our study shows most resemblance to the studies that use the
notion of the high-level image interpretation as regions of high
interest.

Shorter RTs for High Contrast Energy
Change
We also found a significant effect for the amount of contrast
energy change on the RTs. Manipulations with a larger change
in contrast energy were detected earlier. Neurophysiological
data shows that the early visual cortex responds strongly
to changes in contrast energy (De Valois and De Valois,
1988; Boynton et al., 1999; Olman et al., 2004; Mante and
Carandini, 2005; Dumoulin et al., 2008). We speculate that
this preference of early visual cortex underlies the ability
to detect these changes. Alternatively, changes in contrast
energy might attract more (exogenous) attention. These two
explanations are not mutually exclusive and both or either
one may explain why changes in contrast might be detected
earlier.

Most change blindness studies do not account for effects
of stimulus-driven image statistics. Some studies did, but show
deviating results. Verma and McOwan (2010) and Spotorno
et al. (2013) found faster detection for changes in a region
with high salience whereas, Stirk and Underwood (2007) did
not. Contrast energy is not the same as saliency. Depending
on the definition, saliency is a complex combination of image
features such as variations in color, luminance and orientation
(Itti and Koch, 2000; Borji et al., 2013). Thus, depending on the
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definition, saliency will involve contrast-energy but also many
other stimulus-driven features. We focused on contrast energy as
it is well defined and a well-known computation of early visual
cortex. We show that contrast energy can lead to differences
in the detection of changes. This opens the door to investigate
other image properties and computations of the early visual
system that may potentially also contribute to change blindness,
such as orientation and spatial frequency (Hubel, 1982), spatial
coherence (Groen et al., 2012, 2013), and contour integration
(Field et al., 1993).

Interaction of Change in Contrast Energy
and Subjective Importance
Last, we found a significant interaction effect for the amount
of change in subjective importance and contrast energy change.
By using the combination of the manually labeled images
simultaneously with the inherent contrast energy of the images,
we were able to investigate not only the effect of stimulus-
driven and subjectively important image properties on the
change blindness paradigm. Most importantly, we were able to
simultaneously measure the effect of both because the levels
of contrast change and change in subjective importance were
independent in the images.

The interaction we find cannot be explained by the added
benefit of two independent observations (race-model). This
suggests that the stimulus-driven and subjectively important
image properties are not independently processed in the visual
system, but instead they facilitate each other. Perception does not
only rely on visual input but also on our knowledge of the world
(von Helmholtz, 1867). Contrast-energy is solely determined by
the visual input, whereas both visual input and our knowledge of
the world drive the subjective importance judgments. Therefore,
we speculate that this interaction suggests that, like perception,
change blindness also relies on visual input and our knowledge of
the world.

This interaction between contrast energy and subjective
importance may be implemented in different ways in the visual
system. For example, different theories propose that higher-
order areas feedback to lower-order areas and modulate their
responses according to the prior expectations about the visual
world (Mumford, 1992; Koch and Poggio, 1999; Rao and Ballard,
1999; Friston, 2005). We speculate that this neural interaction is
the origin of the behavioral interaction effect of the subjectively
important image representation and the stimulus-driven image
statistics.

CONCLUSION

While earlier studies on change blindness conclude that our
ability to detect changes in a visual scene is influenced by
the subjective image interpretation of the scene, we find
that this ability is also influenced by the stimulus-driven
image property contrast energy. Specifically, large changes in
subjective importance and contrast energy are both detected
faster than small changes in these properties. Moreover, these two
properties interact; image manipulations that strongly affect both
subjective importance and contrast energy are detected fastest,
and importantly, faster than expected based on the amount of
change of either property alone. We also found an interaction
effect; manipulations that were both high in their change of
subjective importance and contrast energy were detected earliest.
Presumably, these parts of an image are processed in greater
detail. The change blindness paradigm can be used to give more
insight in how stimulus-driven image statistics and subjective
image representations are processed in the visual system. Our
results suggest that they are not processed independently, but
instead interact in how they are represented in the visual system.
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