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Abstract: This article develops a probabilistic approach to a micromechanical model to calculate
the dynamic viscosity in self-compacting steel-fiber reinforced concrete (SCSFRC), which implies a
paradigm shift in the approach of the deterministic models used. It builds on a previous work by the
authors in which Bayesian analysis is applied to rheological micromechanical models in cement paste,
self-compacting mortar, and self-compacting concrete. As a consequence of the varied characteristics
of the particles in these suspensions (in terms of materials, shapes, size distributions, etc.), as well
as their random nature, it seems appropriate to study these systems with probabilistic models. The
Bayesian analysis, thorough Markov Chain Monte Carlo and Gibbs Sampling methods, allows the
conversion of parametric-deterministic models into parametric-probabilistic models, which results
in enrichment in engineering and science. The incorporation of steel fibers requires a new term in
the model to account for their effect on the dynamic viscosity of SCSFRC, and this new term is also
treated here with the Bayesian approach. The paper uses an extensive collection of experimental
data to obtain the probability density functions of the parameters for assessing the dynamic viscosity
in SCSFRC. The results obtained with these parameters’ distributions are much better than those
calculated with the theoretical values of the parameters, which indicates that Bayesian methods are
appropriated to respond to questions in complex systems with complex models.

Keywords: self-compacting steel-fiber reinforced concrete; dynamic viscosity; micromechanical
constitutive model; deterministic and probabilistic models; Bayesian analysis

1. Introduction

Understanding the rheological behavior of cementitious suspensions is essential for
new technological applications of concrete [1,2], such as pumping processes or digital man-
ufacturing [3–10], as well as to carry out specific numerical simulations [11–13]. Advanced
methods for the design of high-performance concrete [14–17] require knowing the values of
their main rheological parameters. Particularly, the dynamic viscosity of this type of cemen-
titious suspensions can be calculated from the experimental flow curve (shear stress–shear
rate) using a Bingham-type linear fit model or estimated with the Krieger and Dougherty
analytical equation [18] which correctly adjusts experimental rheological measurements
carried out on cement pastes [19,20]. Besides, this analytical model is the foundation of
advanced design methodologies for self-compacting concrete [14] and self-compacting
steel-fiber reinforced concrete [15,17].

The Krieger and Dougherty equation, see Equation (1), consists of three parameters
that have physical significance: The dynamic viscosity of the fluid phase, the maximum
packing fraction, and the intrinsic viscosity of the particles (disperse phase). The dynamic
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viscosity of the fluid phase can be measured with greater or lower precision depending
on the degree of complexity that it has in terms of being able to be considered in this
phase, again, as a suspension [21]. The shape and the size distribution of the particles are
the parameters on which the maximum packing fraction of the disperse solid phase, φm,
depends [19,22,23]. The intrinsic viscosity, [η], measures the individual effect of particles
on viscosity [19,22]. It is a parameter closely related to the characteristics of the aggregates
as well [24–26], i.e., the shape, the angularity, the roughness [27], and the circularity of the
particles [24,26].

η

η0
=

(
1 − φ

φm

)−[η] φm

(1)

where

η: Suspension’s dynamic viscosity.
η0: Fluid phase’s dynamic viscosity.
φ: Solid phase’s volume fraction.
φm: Maximum packing fraction of particles.
[η]: Intrinsic viscosity of the system.

Self-compacting steel-fiber reinforced concrete (SCSFRC) is more complex than self-
compacting concrete as a consequence of the inclusion of needle-shaped particles (steel
fibers) which interact with granular and powder materials, giving rise to a more hetero-
geneous cementitious suspension. This polydisperse system of particles in suspension
in a viscous homogeneous fluid phase makes it challenging to measure its rheological
behaviour. Thus, it is necessary to use analytical or semi-empirical models that offer a
good approximation of the rheological parameters of the suspension. If the Krieger and
Dougherty equation allows estimating the dynamic viscosity of a cementitious suspension,
such as cement paste or self-compacting mortar and concrete, other micromechanical mod-
els make it possible to predict the increase in dynamic viscosity produced by the addition
of steel fiber into concrete [15,22,28,29].

The uncertainty associated with the variability of the rheological behavior in this type
of cementitious suspension makes it interesting to convert this type of deterministic model
to a model with random variables. We performed this Bayesian analysis of Equation (1)
applied to cement paste, self-compacting mortar, and self-compacting concrete in a previous
paper [21].

Bayesian statistics is an alternative to classical statistics since it allows defining the
model parameters as random variables. In contrast, classical statistics would describe them
with fixed values [30]. Bayesian statistics combine existing information about a problem
and empirically observed data using probability guidelines, resulting in more reliable
estimations and predictions [31]. Besides, Bayesian methodology allows obtaining large
samples of the random variables (the parameters of the model) which can be considered
as probability density functions instead of getting the point estimates of the parameters,
which would be the object of classical statistics [30]. This fact supposes an enrichment
of the models by offering unambiguous probabilistic information on the parameters of
interest, which supposes a change of paradigm when proposing a model in engineering.

This article extends our work in [21] to SCSFRC, and its thesis consists in developing a
methodology for the probabilistic assessment of the dynamic viscosity of SCSFRC through
a micromechanical model. Thus, the purpose of the research is to apply a Bayesian method-
ology and enrich our model [15] by offering unambiguous probabilistic information on the
parameters of interest. Moreover, we want to transform the cited deterministic model [15]
into a probabilistic one with random variables. This topic falls at the core of rheology
applied to SCSFRC, so it is of utmost importance for the technology of fiber concrete.

In this case, one more phase is added: Steel fibers. Based on the mix design method-
ology for SCSFRC developed by De La Rosa et al. [15], and with the experimental data
obtained by Grünewald [32], a Bayesian analysis of the parameters of the constitutive
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models for estimating the dynamic viscosity of the suspension is done. We use the Krieger
and Dougherty equation [18], and the Ghanbari et al. model [22] with the simplification
proposed in [15]. Their parameters are considered here as random variables with their
probability density functions, and not as unique values within confidence intervals. To
our knowledge, this is the first time that this way of defining the parameters of a mi-
cromechanical model of phase suspension applied to the rheology of the SCSFRC has
been considered.

The structure of the article is as follows. Firstly, we explain the essentials of Bayesian
analysis, and how it facilitates the conversion of a deterministic model into a probabilistic
one. Next, the paper gives details about the procedure and methodology. The following sec-
tion describes the experimental data and the results. Finally, we draw the main conclusions
from the investigation.

2. Probabilistic and Bayesian Analysis of a Micromechanical Constitutive Model to
Calculate the Dynamic Viscosity in SCSFRC

Probabilistic network models are extensively used in engineering [33]. A key to
implementing them is the definition of multivariate random variables, for which the
Bayesian analysis provides a unique tool as it guarantees the existence of multivariate
density functions.

The parameters φm and [η] of the equation of Krieger and Dougherty, Equation (1),
which allows the prediction of the dynamic viscosity in cementitious suspensions, η, may
be expressed in probabilistic terms as a consequence of the inherent random nature of the
phenomenon. The same consequence can be drawn for the constitutive model of the fiber
to be used. The idea arises from the fact that the parameters of Equation (1) can be treated
as random variables, described by probability density functions, and not as a single value.
Thus, the conversion of both models into probabilistic ones through the Bayesian analysis
makes sense and is interesting for improving the assessment of the dynamic viscosity.

When we use frequentist statistics to calculate dynamic viscosity, it is considered a
random variable of a parametric family. Thus, the problem is simplified to estimate the
parameters of the equation. When Bayesian analysis is used, a set of parametric distribution
families is taken into account, considering their parameters as random variables [34],
thereby obtaining an extended family of mixtures that provides more freedom for the
calculation process.

2.1. Sources of Randomness in Self-Compacting Steel-Fiber Reinforced Concrete

Self-compacting steel-fiber reinforced concrete may be understood as a system com-
posed of several solid granular phases of one or various sizes (aggregates) with needle-
shaped particles (steel fibers), all of them in a continuous phase, the cement paste [22]. The
cement paste has an intrinsic random nature as a consequence of its colloidal behaviour
and the interaction with superplasticizer molecules [34].

Aggregates are three-dimensional particles of different sizes, with irregular and ran-
dom shapes, which influence the rheological properties of the cementitious suspensions of
which they are a part. Their morphological characteristics are described by various geo-
metric parameters related to dimensions, shape, angularity, surface roughness, etc. [35,36].
These parameters can be calculated through various techniques, such as digital image
processing [37] or photogrammetry [38,39]. Considering the granular skeleton of the self-
compacting concrete as a group of non-colloidal, rigid and polydisperse particles, the
dynamic viscosity of the system can be estimated using Equation (1). The parameter φm,
which depends on the shape and the size distribution of particles [19,22,23], acquires a
theoretical value of about 0.648 in a monodisperse rigid spherical system of particles (re-
gardless of its size). φm reaches a theoretical value of 0.744 in polydisperse systems, where
the space between particles can be filled efficiently [14,22]. Experimental data adjusted
with Equation (1) indicate that φm shows a decreasing trend with decreasing maximum
particle size, which is related to decreased polydispersity of the particles [27]. The intrinsic
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viscosity [η] is a measure of the individual effect of particles on viscosity [19,22]. It is a
parameter closely related to the characteristics of the aggregates [24–26], namely their shape,
angularity and roughness [27], as well as their circularity [24,26]. [η] is 2.5 for spherical
and rigid particles [22], but when the particles deviate from this shape, [η] reaches different
values [19,24,25,40,41]. Besides, the intrinsic viscosity appears to increase with decreasing
maximum particle size, the cause of this phenomenon being unknown [27], which is a new
source of randomness.

In SCSFRC the interactions between particles due to shear [22] have to be considered,
together with the overall sizes and shapes (the high concentration of aggregates, mainly,
and steel fibers). In Equation (1) [η] and φm depend on the shear rate, γ̇, and the value of
[η] φm is approximately constant if the assumption of rigid spheres is applied to aggregates
([η] φm ≈ 1.9 [22] or 2 [42,43]). The shear rate energy is also another source of randomness
in the suspension, as it happens in systems formed only by cement paste.

The volume fractions and the geometric shape of the fibers (even if they are in equiva-
lent proportions of diluted systems) are another component of uncertainty to the system,
since fibers interact with the aggregates, giving place to variations in the behavior of the
whole suspension. Fibers are considered as slender rigid solids whose translation and
rotation are conditioned by the resistance of the self-compacting viscous concrete matrix.
In the micromechanical models available in the scientific literature to predict the increase in
dynamic viscosity produced by the addition of steel fiber into concrete, the fiber content is
limited to a maximum volume fraction of 2% (to consider the diluted concentration hypoth-
esis) and a maximum aspect ratio equal to 85 (to fulfill the rigid solid hypothesis) [15,22].

Finally, these considerations must be taken into account when using the constitutive
equation that calculates the increase in dynamic viscosity of self-compacting concrete due
to the inclusion of the fiber.

2.2. Description of the Bayesian Methodology

The use of Bayesian methodology is well known [44–46] and has been widely described
in a previous work [21]. In short, Bayesian methods allow to combine the information
of the expert knowledge (which is subjective), given by the prior distribution, and the
information of the sample knowledge (which is the observation of reality), through Bayes’
theorem, obtaining the posterior distribution (which is the combined one).

To apply the Bayesian methodology to a probabilistic model it is necessary to follow
the next sequence [47]:

1. Choice of the likelihood family.
2. Choice of the prior distribution of the parameters:

• By means of an imaginary sample (consulting an expert to provide a virtual
sample representative of the prior knowledge).

• Through previous non-updated information (consulting the expert).
• Through our experimental data.

3. Obtaining data from the sample.
4. Calculation of the posterior distribution.
5. Through the combination of the posterior with the likelihood, the predictive distribu-

tion is obtained, which is the one we used.

Compared to frequentist statistics, Bayesian statistics have advantages such as ob-
taining better parameter estimations with small sample sizes, easy interpretation of the
results when calculating the probabilities of the parameters, the introduction of measures
of uncertainty, missing data and levels of variability [48].

2.3. Proposal of the Probabilistic Model and Bayesian Analysis of the Constitutive Model to
Calculate the Dynamic Viscosity in SCSFRC

The purpose of this research is to convert the model to calculate the dynamic viscosity
of SCSFRC into a parametric model using Bayesian analysis. The procedure considers
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SCSFRC as a heterogeneous material composed of fibers in suspension in a more or less
homogeneous granular fluid, which is the self-compacting matrix.

It is important to have good prior information, acquired using the experimental data
or through expert consultation (i.e., scientific literature). It is very important to discern the
quality of the information, especially if there is not enough data [47]. The Bayesian model to
be created (its network) will consider the randomness of the dynamic viscosity mean value,
and also the variability of the parameters. Proceeding this way, the parametric-deterministic
model can be converted into a parametric-probabilistic model through the open-source
software OpenBUGS [49]. This software incorporates a Bayesian inference program using
the Markov Chain Monte Carlo method (MCMC) and the Gibbs Sampling methodology,
a particular case of simulation algorithm of a Markov Chain. The software creates an
acyclic graph with the hierarchical dependence structure of variables and parameters, and
the posterior probability density functions of the parameters, together with the statistical
values of the probabilistic model.

Self-Compacting Steel-Fiber Reinforced Concrete Suspensions

Self-compacting steel-fiber reinforced concrete can be considered as a multi-phase
suspension composed of a heterogeneous phase (self-compacting concrete matrix) and
steel fibers in suspension. Equation (1) includes the solid phases (powder, fine and
coarse aggregate), and allows calculating the increase of the dynamic viscosity through
Equation (2) [14]:

η◦ =

(
1 −

φfa

φm fa

)−[η]fa φm fa
(

1 − φFA
φm FA

)−[η]FA φm FA (
1 − φCA

φm CA

)−[η]CA φm CA

(2)

where

η◦ = ηSCC
ηp

: Self-compacting concrete dimensionless viscosity.

ηSCC: Self-compacting concrete dynamic viscosity.
ηp: Cement paste dynamic viscosity.
φfa: Volume fraction of the powder phase.
φm fa: Particles’ maximum packing fraction of the powder phase.
[η]fa: Intrinsic viscosity taking into account the powder phase.
φFA: Volume fraction of the fine aggregate phase.
φm FA: Maximum packing fraction of the fine aggregate phase.
[η]FA: Intrinsic viscosity of the fine aggregate phase.
φCA: Volume fraction of the coarse aggregate phase.
φm CA: Maximum packing fraction of the coarse aggregate phase.
[η]CA: Intrinsic viscosity of the coarse aggregate phase.

In Equation (2), the parameters are treated as random variables which follow a proba-
bility density function of uniform type, within a range of maximum and minimum values.
This uninformative priors have been chosen in order to let the data make the adequate
corrections. These corrections can be seen in the posteriors when they separate from the uni-
form trend. We must note that when dependence exists, relatively small sizes are sufficient
to produce large changes in the posteriors, which justifies the selected uninformative priors.

Equation (2) calculates the mean value of the dynamic viscosity of SCC, which is
assumed to follow a normal probability density function, where the mean value is µ◦, and
the standard deviation value is σ. ε◦ is the residual value, which follows a normal family;
moreover, ε◦ includes a uniform function of density.

The syntax of the extended model of the Krieger and Dougherty equation in a statistical
format is:
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η◦ ∼ N [µ◦, ν] (3)

µ◦ =

(
1 −

φfa

φm fa

)−[η]fa φm fa
(

1 − φFA
φm FA

)−[η]FA φm FA (
1 − φCA

φm CA

)−[η]CA φm CA

(4)

φm fa ∼ U [φm fa min, φm fa max] (5)

φm FA ∼ U [φm FA min, φm FA max] (6)

φm CA ∼ U [φm CA min, φm CA max] (7)

[η]fa ∼ U
[
[η]fa min, [η]fa max

]
(8)

[η]FA ∼ U
[
[η]FA min, [η]FA max

]
(9)

[η]CA ∼ U
[
[η]CA min, [η]CA max

]
(10)

σ ∼ U [σmin, σmax] (11)

The incorporation of the steel fiber is taken into account by means of the model pro-
posed by De La Rosa et al. (Equation (12)) to design self-compacting steel-fiber reinforced
concrete [15]:

ηSCSFRC = ηp

(
1 −

φfa

φm fa

)−[η]fa φm fa
(

1 − φFA

φm FA

)−[η]FA φm FA (
1 − φCA

φm CA

)−[η]CA φm CA(
1 +

φ f

φλ

)
(12)

where

φλ =
3 ln(2λ)

π λ2 (13)

ηSCSFRC = ηSCC

(
1 +

φ f

φλ

)
(14)

In Equation (13), λ is the aspect ratio of the steel fiber. It is obtained from the simpli-
fication of the model of Ghanbari et al. [22]. The only factor that can be parametrized is
the number 3 which appears in both equations (the parameterization of this value will be
carried out in Section 4).

Thus, the syntax of the model of De La Rosa et al. (Equation (12)) [15] in a statistical
format is:

η◦ ∼ N [µ◦, ν] (15)

µ◦ =

(
1 −

φfa

φm fa

)−[η]fa φm fa
(

1 − φFA
φm FA

)−[η]FA φm FA (
1 − φCA

φm CA

)−[η]CA φm CA (
1 +

φ f

φλ

)
(16)

and Equations (6) to (12).

3. Materials and Methods

A set of 56 self-compacting steel-fiber reinforced concretes (SCSFRCs) from [32] has
been analyzed. The granular skeleton that SCSFRC is composed of rounded fine aggregate
(0.125–4 mm) and rounded coarse aggregate (4–8 mm and 4–16 mm). The steel fibers
are included in a φ f range of 0.003 to 0.02, and their λ value is between 46.3 and 85.7.
Rheological measurements of self-compacting steel-fiber reinforced concretes were done
using a coaxial cylindrical viscometer (BML–Viscometer). The procedure to calculate the
rheological parameters was the following: The rotation velocity of the outer cylinder of the
viscometer was increased up to its maximum value and, once it was reached, the velocity
was decreased [32].
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In Ghanbari et al. [22], the dynamic viscosity of the cement pastes was calculated
from data from the scientific literature on their composition [14,22,50,51] according to
Ghanbari et al. [22]. In Tables 1 and 2, the composition of each base SCC, ηSCC, ηp, λ, φ f
and ηSCSFRC are included. The self-compacting steel-fiber reinforced concretes studied are
derived from nine self-compacting matrices elaborated by Grünewald (Table 1) [32]. Table 2
shows the values of λ, φ f , and ηSCSFRC of the combinations of concretes developed in [32].

In the Bayesian analysis, a total of 11,000 iterations in every model were done, through
OpenBUGS, to obtain the samples of the variables (parameters of the deterministic models)
that are considered as their density functions.

Table 1. Composition of base SCC [32] (w: Water; SP LR and HR: Superplasticizers; fa: Fly ash; FA:
Fine aggregate, CA: Coarse aggregate).

CEM I 52.5 R CEM III 42.5 N w SP LR + SP HR fa FA CA ηSCC ηp
Denomination [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [Pa s] [Pa s]

OS1 249 155 172 2.58 + 1.58 142 913 682 69.2 0.404
OS2 263 149 181 2.88 + 1.44 173 876 655 59.4 0.413
OS3 249 149 171 2.59 + 2.12 146 1089 508 87.9 0.413
OS4 269 143 181 2.78 + 1.85 173 1045 487 56.0 0.413
OS5 0 335 155 2.10 + 1.26 168 1134 528 97.6 0.413
OS6 0 352 164 2.10 + 1.18 192 1089 508 81.0 0.422
OS7 0 367 173 2.17 + 1.09 217 1045 487 62.2 0.422
OS8 228 151 181 2.68 + 1.49 166 1100 467 71.3 0.395
OS9 246 164 188 2.73 + 1.31 180 1058 449 57.5 0.404

Table 2. λ, φ f and ηSCSFRC of SCSFRC. Test set-up of measurements with BML–Viscometer [32].

Denomination λ φ f ηSCSFRC [Pa s] Denomination λ φ f ηSCSFRC [Pa s]

OS1 80/30 78.5 0.008 167.8 OS5 80/30 78.5 0.005 195.8
OS1 80/60 BP 85.7 0.005 122.9 OS5 80/30 78.5 0.008 326.2
OS1 80/60 BP 85.7 0.008 125.0 OS5 80/60 BP 85.7 0.005 187.2

OS1 45/30 46.3 0.013 137.5 OS5 80/60 BP 85.7 0.008 261.8
OS1 80/30 78.5 0.005 116.8 OS5 45/30 46.3 0.013 245.3
OS1 45/30 46.3 0.010 109.9 OS5 45/30 46.3 0.015 280.3
OS2 80/30 78.5 0.008 171.1 OS6 80/30 78.5 0.008 266.8
OS2 80/30 78.5 0.010 223.2 OS6 80/30 78.5 0.010 344.2

OS2 80/60 BP 85.7 0.005 98.6 OS6 80/60 BP 85.7 0.005 182.8
OS2 80/60 BP 85.7 0.008 159.9 OS6 80/60 BP 85.7 0.008 301.8

OS2 45/30 46.3 0.018 262.0 OS6 45/30 46.3 0.015 211.5
OS2 45/30 46.3 0.015 144.3 OS6 45/30 46.3 0.018 265.0
OS3 80/30 78.5 0.005 143.1 OS7 80/30 78.5 0.008 209.1
OS3 80/30 78.5 0.008 199.3 OS7 80/30 78.5 0.010 306.1

OS3 80/60 BP 85.7 0.005 124.3 OS7 80/60 BP 85.7 0.008 224.8
OS3 80/60 BP 85.7 0.008 154.8 OS7 80/60 BP 85.7 0.010 233.1

OS3 45/30 46.3 0.015 237.0 OS7 65/40 64.9 0.013 206.1
OS3 45/30 46.3 0.018 279.3 OS7 45/30 46.3 0.015 157.1
OS4 80/30 78.5 0.010 245.3 OS7 45/30 46.3 0.018 204.4

OS4 80/60 BP 85.7 0.008 102.3 OS7 65/40 64.9 0.010 155.2
OS4 80/60 BP 85.7 0.010 199.7 OS8 80/30 78.5 0.003 80.8

OS4 45/30 46.3 0.018 145.7 OS8 80/30 78.5 0.005 141.4
OS4 65/40 64.9 0.015 221.1 OS8 65/20 64.3 0.005 98.8
OS4 80/30 78.5 0.008 156.5 OS8 65/20 64.3 0.008 210.1
OS4 45/30 46.3 0.015 117.5 OS9 80/30 78.5 0.005 92.2
OS4 45/30 46.3 0.020 176.1 OS9 80/30 78.5 0.008 162.4
OS4 65/40 64.9 0.013 182.2 OS9 65/20 64.3 0.005 120.7

OS9 65/20 64.3 0.008 177.3
OS9 65/20 64.3 0.010 142.6

The model analyzed is the one proposed by De La Rosa et al. to design SCSFRC [15],
see Equation (12). Function φλ, Equation (13), depends on the π number and the aspect
ratio of the steel fibers. Thus, the factor that can be parametrized is the number 3 (=δ,
i.e., the numerator of Equation (13)). It must be taken into account that the rest of the
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parameters of the model (φmj, [η]j), corresponding to Equation (2), also have been subjected
to Bayesian analysis to find their density functions.

4. Results and Discussion
4.1. Bayesian Analysis Model in Self-Compacting Steel-Fiber Reinforced Concrete

Firstly, it has been analyzed if the δ parameter approaches 3. For this purpose, we
use the experimental data of dynamic viscosity measured by Grünewald [32] in SCC, ηSCC
and SCSFRC, ηSCSFRC. The model and the parameter definition domains for the Bayesian
analysis, according to Equation (17), are:

ηSCSFRC
ηSCC

=

(
1 +

φ f

φλ

)
(17)

η� ∼ N [µ�, ν] (18)

µ� =

(
1 +

π λ2 φ f

δ ln(2λ)

)
(19)

δ ∼ U [0, 50] (20)

σ ∼ U [0, 400] (21)

where

η� = ηSCSFRC
ηSCC

: Non-dimensional viscosity of self-compacting steel-fiber reinforce concrete.

ηSCSFRC: Self-compacting steel-fiber concrete dimensionless viscosity.
ηSCC: Self-compacting concrete dynamic viscosity.
φf : Steel-fiber volume fraction.
λ: Steel-fiber aspect ratio.
δ: Parameter of the system when adding the steel fiber.

The upper value of the parameter δ (δ = 50) is selected to obtain a wide range of
calculations. Table 3 contains the statistics values of δ once the analysis of the model has
been done. Figure 1 represents the non-parametric density functions of the parameter δ
calculated with Equation (17) for different values of λ.

Table 3. Statistics of the parameter δ obtained for different aspect ratio values.

Aspect Ratio (λ) Parameter Mean Std. Dev. Percentage 2.5% Median Percentage 97.5%

46.3

δ

14.350 1.819 11.570 14.100 18.640
64.3 16.950 6.000 9.954 15.170 34.610
64.9 16.000 2.974 12.890 15.400 24.510
78.5 14.860 1.227 12.720 14.750 17.610
85.7 22.560 3.261 17.680 22.050 30.660

At this point, we have to keep in mind that the main objective is to evaluate the
feasibility of Equation (12) [15] to design SCSFRC. The material of the powder phase used
in the experimental investigation of Grünewald [32] is fly ash. Two uniform random
variables for [η]fa are considered as priors in order to analyze the model. The first, [η] f a ∼
U [4.30, 6.80], is obtained for cement pastes [21]. The second arises due to the sphericity of
the fine particles of fly ash, which implies that the minimum value of [η]fa must be reduced
from 4.30 to 2.50. Therefore, the widest range will be used in the analysis of the parameter
[η] f a, i.e., [η] f a ∼ U [2.50, 6.80].
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The parameters of Equations (15) and (16) of the model [15] in a statistical format are
defined in the following values:

φm fa ∼ U [0.550, 0.830]

φm FA ∼ U [0.550, 0.717]

φm CA ∼ U [0.550, 0.894]

[η]fa ∼ U [2.5, 6.8]

[η]FA ∼ U [2.5, 9.0]

[η]CA ∼ U [2.5, 9.0]

δ ∼ U [0, 40]

σ ∼ U [0, 400]

(a) (b)

(c) (d)

(e)

Figure 1. Probability density functions of δ for different values of λ (λ = 46.3 (a), 64.3 (b), 64.9 (c),
78.5 (d), and 85.7 (e)).

Figure 2 represents the hierarchy and dependence structure of the variables of the
Bayesian network of the model. Five different SCSFRCs have been studied, corresponding



Materials 2022, 15, 2763 10 of 18

to five aspect ratios, (λ = 46.3, 64.3, 64.9, 78.5, and 85.7). Table 4 includes the statistics values
obtained after the Bayesian analysis. Figures 3 and 4 represent the probability density
functions of the parameters for the phases of SCSFRC with λ = 78.5. The probability density
function of the exponent of the Krieger and Dougherty equation (φm i [η]i) for the phases of
SCSFRC is plotted in Figure 5. Finally, the bivariate histogram of the parameters φm i and
[η]i of the phases for the SCSFRC with λ = 78.5 is shown in Figure 6.
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Figure 2. Bayesian network graph of the De La Rosa et al. model [15] for SCSFRC (from the
investigation of Grünewald [32]).

Table 4. Statistics values of the parameters φm i, [η]i, and δi for SCSFRC.

Aspect Ratio (λ) Parameter Mean Std. Dev. Percentage 2.5% Median Percentage 97.5%

46.3

φm fa 0.637 0.048 0.555 0.638 0.713
[η]fa 3.811 0.954 2.558 3.636 6.120
φm FA 0.671 0.031 0.604 0.675 0.715
[η]FA 3.131 0.481 2.525 3.028 4.273
φm CA 0.726 0.099 0.560 0.729 0.886
[η]CA 5.237 1.241 2.863 5.207 7.672

δ 14.160 9.892 2.638 11.260 37.380

64.3

φm fa 0.633 0.048 0.554 0.633 0.713
[η]fa 4.603 1.221 2.612 4.572 6.680
φm FA 0.663 0.036 0.586 0.669 0.715
[η]FA 3.306 0.507 2.545 3.258 4.409
φm CA 0.723 0.099 0.559 0.722 0.885
[η]CA 5.424 1.785 2.649 5.338 8.723

δ 20.110 10.290 4.039 19.350 38.730

64.9

φm fa 0.638 0.048 0.555 0.641 0.714
[η]fa 3.509 0.923 2.527 3.218 5.966
φm FA 0.650 0.045 0.562 0.656 0.714
[η]FA 3.268 0.541 2.534 3.174 4.495
φm CA 0.726 0.100 0.559 0.730 0.886
[η]CA 5.333 1.806 2.624 5.113 8.689

δ 20.230 10.200 4.677 19.350 38.740

78.5

φm fa 0.633 0.048 0.554 0.633 0.713
[η]fa 5.007 0.810 3.419 4.987 6.531
φm FA 0.697 0.017 0.657 0.701 0.716
[η]FA 2.706 0.195 2.506 2.652 3.223
φm CA 0.736 0.096 0.563 0.742 0.887
[η]CA 3.407 0.696 2.533 3.261 5.104

δ 5.184 2.765 2.318 4.357 12.440

85.7

φm fa 0.623 0.048 0.553 0.618 0.711
[η]fa 5.928 0.731 3.974 6.105 6.770
φm FA 0.675 0.027 0.620 0.678 0.715
[η]FA 3.042 0.352 2.527 3.002 3.815
φm CA 0.733 0.098 0.562 0.737 0.887
[η]CA 4.002 0.871 2.615 3.936 5.860

δ 20.480 8.325 7.849 19.180 38.060
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In this case, the Bayesian analysis of the SCSFRC was done with three phases of the
Krieger and Dougherty equation (one powder phase plus two granular phases), and one
steel-fiber phase to verify the model of De La Rosa et al. [15]. The powder phase shows
similar values of φm fa for all the SCSFRC (≈0.63). However, the values of [η]fa are more
dispersed. If we observe the non-parametric density functions (Figure 3a), φm fa shows
a uniform density function in the same range of values, which is similar in the rest of
the SCSFRCs not represented (λ = 46.3, 64.3, 64.9, and 85.7). However, [η]fa (Figure 3b)
shows a probability density function with a peak which grows as the aspect ratio of the
fiber increases.

(a) (b)

(c) (d)

Figure 3. Probability density functions of φm and [η] for the powder phase ((a,b), respectively), and
fine granular phase ((c,d), respectively) in SCSFRC (λ = 78.5).

Regarding φm FA, the mean value is roughly 0.67; the same conclusion can be obtained
with [η]FA (≈3.0). Both non-parametric density functions (Figure 3c) show the same trend
probability peaks about the same values in every SCSFRC.

The mean values obtained for φm CA are 0.73 regardless of the specific type of SCSFRC.
The mean values calculated for [η]CA are approximately 5.0 except for those SCSFRC with
a higher aspect ratio of the fiber, which figures lower than 5.0. The non-parametric density
functions are approximately uniform for φm CA (Figure 4a) in every SCSFRC. As to [η]CA,
the density function shows a peak of different values depending on λ: The lower the aspect
ratio, the higher the value [η]CA with a maximum probability (Figure 4b).
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(a) (b)

(c)

Figure 4. Probability density functions of φm and [η] for the coarse granular phase ((a,b), respectively)
and δ parameter (c) in SCSFRC (λ = 78.5).

Comparing these results with those obtained for the analysis of SCC with respect to
the granular phases (fine and coarse aggregate), we realize that the values of the parameters
are very similar. This fact means that the Bayesian analysis in two and three phases for the
SCC offers approximately the same results and conclusions.

According to the results of the Bayesian analysis (Table 4), it is verified that the
parameter δ can acquire values much higher than 3, except for the fiber with λ = 78.5 (δ ≈ 5).
This trend is the same as that previously observed while fixing the ranges of δ (Table 3).
In Figure 4c we can observe the non-parametric density function of δ for a steel fiber
with λ = 78.5, which reaches a clear peak of probability. For the rest of the λ values, this
peak is not so clear, and the density functions are smoother but reach much higher values
than those for λ = 78.5. Probably, this is because Equation (13) is an approximation of the
contribution of the fiber in the effective stress tensor obtained by following the procedure
of Phan–Thien and Karihaloo [29], who derive the effective stress tensor, and the fiber
contributed stress from the slender body theory of Russel [29,52].

Figure 5 shows that the most probable value for the exponent of the Krieger and
Dougherty equation is different from the theoretical value of 1.9. This is true in all phases
except for the fine aggregate phase. The extension of the probability density function of the
powder and coarse aggregate phases represents the range that the exponent could acquire.
Finally, the bivariate histogram of the parameters φm i and [η]i of the phases of SCSFRC
(λ = 78.5) is represented in Figure 6.
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(a) (b)

(c)

Figure 5. Probability density functions of φm i [η]i ((a) powder phase; (b) fine granular phase; (c) coarse
granular phase) in SCSFRC (λ = 78.5).

(a) (b)

(c)

Figure 6. Bivariate histogram of φm i and [η]i ((a) powder phase; (b) fine granular phase; (c) coarse
granular phase) composing SCSFRC (λ = 78.5).
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4.2. Application of the Bayesian Analysis Results to the Experimental Data

The same process used for self-compacting mortar and self-compacting concrete [21]
was followed for SCSFRC. For this, the mean values of the parameters obtained in the
Bayesian analysis of the model to the data of Grünewald (Tables 5 and 6) [32] were applied.
After, the results obtained were compared with those calculated using the values of Abo-
Daheer et al. (φm f a = 0.524 for powder phase; φm FA = 0.63 for powder and fine aggregate
phase; φm CA = 0.74 for powder, fine and coarse aggregate phases; φm,i [η]i = 1.9) [14] and
Ghanbari et al. (δ = 3) [22].

Table 5. Experimental values, models’ values and estimated error for SCSFRC (Grünewald [32]:
Series OS1–OS4).

Denomination Experimental Bayesian Calculus Bayesian Calculus Theoretical Calculus Error with Bayesian Error with Bayesian Error with Theoretical
ηSCSFRC [Pa s] Equation (17), ηSCSFRC [Pa s] Equation (12), ηSCSFRC [Pa s] [14,22], ηSCSFRC [Pa s] Calculus Equation (17) [%] Calculus Equation (12) [%] Calculus [14,22] [%]

OS1 80/30 167.8 205.5 161.7 270.8 22.5 3.6 61.4
OS1 80/60 BP 122.9 139.3 108.8 217.1 13.4 11.5 76.6
OS1 80/60 BP 125.0 174.4 137.5 313.0 39.5 10.0 150.4

OS1 45/30 137.5 160.6 132.2 184.0 16.8 3.8 33.8
OS1 80/30 116.8 160.1 115.9 189.0 37.0 0.8 61.8
OS1 45/30 109.9 142.3 117.1 152.3 29.5 6.5 38.6

OS2 80/30 171.1 176.4 139.4 206.8 3.1 18.6 20.8
OS2 80/30 223.2 215.4 178.8 269.3 3.5 19.9 20.6

OS2 80/60 BP 98.6 119.6 91.3 165.7 21.3 7.4 68.1
OS2 80/60 BP 159.9 149.7 115.4 239.0 6.4 27.8 49.4

OS2 45/30 262.0 169.2 122.9 189.0 35.4 53.1 27.9
OS2 45/30 144.3 153.5 111.5 164.7 6.4 22.8 14.2

OS3 80/30 143.1 203.3 133.8 306.6 42.1 6.5 114.2
OS3 80/30 199.3 261.0 186.7 439.4 31.0 6.3 120.5

OS3 80/60 BP 124.3 177.0 132.4 352.2 42.4 6.6 183.3
OS3 80/60 BP 154.8 221.5 167.4 507.8 43.1 8.1 228.1

OS3 45/30 237.0 227.2 160.0 350.1 4.2 32.5 47.7
OS3 45/30 279.3 250.4 176.5 401.7 10.4 36.8 43.8

OS4 80/30 245.3 203.3 190.4 373.6 17.2 22.4 52.3
OS4 80/60 BP 102.3 141.1 126.2 331.5 37.9 23.3 224.1
OS4 80/60 BP 199.7 169.5 152.5 433.1 15.1 23.6 116.9

OS4 45/30 145.7 159.5 121.8 262.2 9.5 16.4 80.0
OS4 65/40 221.1 201.5 159.2 396.1 8.9 28.0 79.2
OS4 80/30 156.5 166.3 148.4 286.9 6.3 5.2 83.3
OS4 45/30 117.5 144.7 110.4 228.6 23.2 6.0 94.5
OS4 45/30 176.1 174.3 133.1 295.9 1.0 24.4 68.0
OS4 65/40 182.4 177.2 141.3 334.6 2.8 22.5 83.4

Table 6. Experimental values, models’ values, and estimated error for SCSFRC (Grünewald [32]):
Series OS5–OS9).

Denomination Experimental Bayesian Calculus Bayesian Calculus Theoretical Calculus Error with Bayesian Error with Bayesian Error with Theoretical
ηSCSFRC [Pa s] Equation (17), ηSCSFRC [Pa s] Equation (12), ηSCSFRC [Pa s] [14,22], ηSCSFRC [Pa s] Calculus Equation (17) [%] Calculus Equation (12) [%] Calculus [14,22] [%]

OS5 80/30 195.8 225.7 236.3 373.6 15.3 20.7 241.0
OS5 80/30 326.2 289.8 329.7 331.5 11.2 1.1 193.4

OS5 80/60 BP 187.2 196.5 273.3 433.1 5.0 46.0 309.8
OS5 80/60 BP 261.8 245.9 345.4 262.2 6.1 31.9 322.5

OS5 45/30 245.3 226.5 271.6 396.1 7.7 10.7 165.1
OS5 45/30 280.3 252.2 302.6 396.1 10.0 8.0 172.1

OS6 80/30 266.8 240.5 242.5 525.9 9.9 9.1 97.1
OS6 80/30 344.2 293.7 311.2 684.9 14.7 9.6 99.0

OS6 80/60 BP 182.8 163.1 185.4 421.5 10.8 1.4 130.6
OS6 80/60 BP 301.8 204.1 234.3 607.8 32.4 22.4 101.4

OS6 45/30 211.5 209.3 188.6 419.0 1.0 10.8 98.1
OS6 45/30 265.0 230.7 208.0 480.7 12.9 21.5 81.4

OS7 80/30 209.1 184.7 195.8 353.4 11.7 6.4 69.0
OS7 80/30 306.1 225.5 251.2 460.2 26.3 17.9 50.3

OS7 80/60 BP 224.8 156.7 179.0 408.4 30.3 20.4 81.7
OS7 80/60 BP 233.1 188.2 216.3 533.6 19.2 7.2 128.9

OS7 65/40 206.1 196.9 166.9 412.1 4.5 19.0 100.0
OS7 45/30 157.1 160.7 133.3 281.6 2.3 15.1 79.2
OS7 45/30 204.4 177.2 147.0 323.0 13.3 28.1 58.0
OS7 65/40 155.2 169.9 145.8 336.3 9.5 6.0 116.7

OS8 80/30 80.8 118.1 67.8 138.4 46.2 16.1 71.3
OS8 80/30 141.4 164.9 112.1 244.3 16.6 20.7 72.7
OS8 65/20 98.8 128.6 124.2 180.4 30.2 25.7 82.6
OS8 65/20 210.1 157.3 149.3 254.3 25.1 28.9 21.0

OS9 80/30 92.2 133.0 93.0 174.6 44.2 0.9 89.3
OS9 80/30 162.4 170.7 129.7 250.2 5.1 20.1 54.1
OS9 65/20 120.7 103.7 90.5 128.9 14.1 25.0 6.8
OS9 65/20 177.3 126.8 108.8 181.7 28.5 38.6 2.5
OS9 65/20 142.6 150.0 127.1 234.6 5.2 10.9 64.5

If we set an error of ≤25% between the experimental rheological measurements of
Grünewald [32], and the estimation made with the mean of the parameters calculated
with the Bayesian method, we obtain an excellent approximation of 80% of the global
data. However, if we set the typical parameters used in the Krieger and Dougherty
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model proposed by Abo-Daheer et al. [14] for the terms of the model of De La Rosa et al.
(Equation (12)) [15], and the parameter proposed by Ghanbari et al. [22] for the inclusion
of steel fiber in the mentioned model [15], we obtain an approximation of 11% of the global
data. Indeed, we obtain a good approximation of 70% of the global data if we use the
simplest model (Equation (17)).

5. Conclusions

This article extends the research on the transformation of deterministic models into
probabilistic models for the study of the dynamic viscosity in cementitious suspensions,
in this case applying the methodology to self-compacting steel fiber reinforced concrete
(SCSFRC). If the uncertainty associated with the nature, geometry and particle size distribu-
tion of cementitious suspensions already required considering the Krieger and Dougherty
equation with random variables (in terms of its parameters), the inclusion of steel fibers in
the system also advises using the Bayesian approach.

The Bayesian analysis was applied to a deterministic micromechanical model, which
calculates the dynamic viscosity of SCSFRC, to obtain the samples of the variables as
probability functions (density or distribution), which are the parameters of the deterministic
models. Through the open-source software OpenBUGS, which employs Markov Chain
Monte Carlo and Gibbs Sampling methods, the simulations were performed. An acyclic
graph describes the hierarchy and independence of variables and conditions the probability
density function of the parameters of the micromechanical model. The analysis attributes
the calculated distributions to all the causes that physically condition them, not just to a
single cause. The main results reached in this article are:

• The Bayesian methodology responds to questions in complex systems (fluid paste,
aggregates and rigid fibers) with complex models (Krieger and Dougherty equation
and De La Rosa et al. equation) about the probability of any parameter of those to
reach a specific value in the function of the type of material employed.

• This change of paradigm about the use of probabilistic models in this type of systems
can be useful for cementitious material designers, as well as for other engineering
models.

• When the values of the parameters calculated through the Bayesian analysis are
applied in the model, the approximation to the experimentally measured values of
dynamic viscosity in SCSFRC is better than the theoretical values suggested by the
scientific literature (calculations using the Bayesian mean values were better than
those made with the theoretical values, considerably decreasing the error).

These results indicate the usefulness of Bayesian analysis in obtaining better estimates
of the models used in engineering and science.
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Abbreviations

SCC Self-compacting concrete
SCSFRC Self-compacting steel-fiber reinforced concrete
i Number of nodes
j Number of phase of SCC
n Number of conditional probability density functions
N Normal probability density function
U Uniform probability density function
ε◦ Residual error for non-dimensional dynamic viscosity of SCC
δ Parameter of the system when adding the steel fiber
η Dynamic viscosity
ηSCC Dynamic viscosity of SCC
ηp Cement paste dynamic viscosity
η0 Fluid phase dynamic viscosity
η◦ Non–dimensional dynamic viscosity of SCC
η� = ηSCSFRC

ηSCC
: non-dimensional viscosity of SCSFRC

[η] Intrinsic viscosity
[η]CA Intrinsic viscosity of the coarse aggregate phase in SCC
[η]fa Intrinsic viscosity of the powder phase in SCC
[η]FA Intrinsic viscosity of the fine aggregate phase in SCC
λ Aspect ratio of steel fiber
µ◦ Mean value for non-dimensional dynamic viscosity of SCC
µ� Mean value for non-dimensional dynamic viscosity of SCSFRC
ν = 1

σ2 Auxiliar variable for the model of probability
πi Set of nodes Xi in G
σ Standard deviation of the sample
φf Volume fraction of steel fiber
φCA Coarse aggregate volume fraction
φfa Powder volume fraction
φFA Fine aggregate volume fraction
φm Maximum packing density of particles
φm CA Maximum packing density of particles in the coarse aggregate phase in SCSFRC
φm fa Maximum packing density of particles in the powder phase in SCSFRC
φm FA Maximum packing density of particles in the fine aggregate phase in SCSFRC
φλ Function which depends on the π number and the aspect ratio of the steel fiber
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