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Abstract

Understanding speech in noise (SiN) is a complex task that recruits multiple cortical subsystems. 

There is a variance in individuals’ ability to understand SiN that cannot be explained by simple 

hearing profiles, which suggests that central factors may underlie the variance in SiN ability. Here, 

we elucidated a few cortical functions involved during a SiN task and their contributions to 

individual variance using both within- and across-subject approaches. Through our within-subject 

analysis of source-localized electroencephalography, we investigated how acoustic signal-to-noise 

ratio (SNR) alters cortical evoked responses to a target word across the speech recognition areas, 

finding stronger responses in left supramarginal gyrus (SMG, BA40 the dorsal lexicon area) with 

quieter noise. Through an individual differences approach, we found that listeners show different 

neural sensitivity to the background noise and target speech, reflected in the amplitude ratio of 

earlier auditory-cortical responses to speech and noise, named as an internal SNR. Listeners with 

better internal SNR showed better SiN performance. Further, we found that the post-speech time 

SMG activity explains a further amount of variance in SiN performance that is not accounted for 

by internal SNR. This result demonstrates that at least two cortical processes contribute to SiN 

performance independently: pre-target time processing to attenuate neural representation of 

background noise and post-target time processing to extract information from speech sounds.
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1. Introduction

Understanding speech in noise (SiN) is essential for communication in social settings. 

Young adult listeners with normal hearing are remarkably adept at this. Even in challenging 

SiN conditions where the speech and noise have the same intensity (i.e., 0 dB signal-to-noise 

ratio: SNR) and overlapped frequency components, they often recognize nearly 90% of 

sentences correctly (Ohlenforst et al., 2017; Plomp and Mimpen, 1979). This suggests a 

surprising capacity of the auditory system to cope with noise. However, the ability to 

understand SiN degrades severely with increased background noise level (Ohlenforst et al., 

2017), hearing loss (Harris and Swenson, 1990), and/or aging (Goossens et al., 2017; 

Nabelek, 1988).

Recent studies show that normal-hearing listeners show large individual differences in SiN 

performance (Liberman et al., 2016). The premise of this study is that by linking this 

variable ability for SiN perception to variation in cortical activity, we may be able to 

understand the neural mechanisms by which humans accomplish this ability, and this may 

shape our understanding of how best to remediate hearing loss.

Two broad neural mechanisms might give rise to better or worse SiN performance. First, 

listeners may vary in neural processing that separates the target auditory object from the 

mixture of sounds (i.e., similar to external selection processes in Strauss and Francis 

(2017)). Auditory scene analysis (Bregman, 1999) processes, when occurring in parallel 

with auditory selective attention (Shinn-Cunningham, 2020), can inhibit the neural 

representation of competing sounds and enhance the neural response to attended input. This 

process has been conceptualized as a form of sensory gain control (Hillyard et al., 1998) or 

neural filtering (Obleser and Erb, 2020). Its effectiveness is often quantified as attentional 

modulation index (AMI), the amplitude ratio of evoked responses to background noise and 

target (Dai and Shinn-Cunningham, 2016; O’Sullivan et al., 2019), or the degree of neural 

phase-locking to the attended speech (Etard and Reichenbach, 2019; Mesgarani and Chang, 

2012; Viswanathan et al., 2019). A successful sensory gain control, indicated by a positive 

AMI, during a SiN task will unmask the target speech from maskers, which will enhance the 

effective SNR in the central auditory pathway (e.g., the primary and secondary auditory 

cortices in the superior temporal plane: STP and the posterior superior temporal gyrus: 

STG).

Second, listeners might vary in neural processes for the prompt extraction of information 

from a speech signal (i.e., similar to internal selection processes in Strauss and Francis 

(2017). An inherent challenge in recognizing speech (e.g., a spoken word) is the mapping 

between the incoming speech cues and higher-level units like words and meaning while 

speech unfolds rapidly over time [for review, see Weber and Scharenborg (2012), Dahan and 

Magnuson (2006), and Davis (2016) with references therein]. In quiet listening conditions, 
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average young normal-hearing listeners activate a range of lexical candidates immediately at 

the onset of the auditory stimulus (i.e., shown by works using eye-movements in the visual 

world paradigm: (Allopenna et al., 1998; Dahan and Gareth Gaskell, 2007; Magnuson et al., 

2007). For example, after hearing the/ba/at the onset of bakery, listeners will immediately 

consider a range of words like bacon, bathe, or base, at both phonological and semantic 

levels. However, such rapid lexical processing develops slowly in children (Rigler et al., 

2015); continuous differences in lexical processing are linked to differences in language 

ability (McMurray et al., 2010); and they differ in listeners with hearing loss or deteriorated 

acoustic-cue encoding (McMurray et al., 2019). These facts suggest that there can be 

individual differences in the prompt lexical processing even for clean speech signals.

It is as yet unclear the degree to which variation in SiN performance is related to variation in 

both processes (particularly in combination).

1.1. Assessing individual differences in speech unmasking

Individual differences in the speech unmasking pathway may arise from 1) the fidelity of 

encoding supra-threshold acoustic features and 2) cognitive control of the domain-general 

attentional network. Auditory scene analysis relies on the supra-threshold acoustic features 

that provide binding cues for auditory grouping (Darwin, 1997). These include the spectra 

(Lee et al., 2013), location (Frey et al., 2014; Goldberg et al., 2014), temporal coherence 

(Moore, 1990; Shamma et al., 2013; Teki et al., 2011), rhythm (Calderone et al., 2014; 

Golumbic et al., 2013; Herrmann et al., 2016; Obleser and Kayser, 2019), and timing 

(Lange, 2009) of the figure and ground. The fidelity of encoding such supra-threshold 

acoustic features may affect the separation of target speech from background noise. 

Supporting this idea, previous studies have correlated the fidelity of supra-threshold acoustic 

cue coding to SiN understanding (Anderson and Kraus, 2010; Anderson et al., 2013; Holmes 

and Griffiths, 2019; Hornickel et al., 2009; Liberman et al., 2016; Parbery-Clark et al., 2009; 

Song et al., 2011).

Individual differences also exist in how strongly selective attention modulates cortical 

evoked responses to sounds (Choi et al., 2014). This suggests there may be a correlation 

between top-down selective attention efficacy and SiN performance. Indeed, (Strait and 

Kraus, 2011) reported that reaction time during a selective attention task predicts SiN 

performance. Similarly, studies suggest that poor cognitive control of executive attentional 

network predicts auditory selective attention performance (Bressler et al., 2017; Dai et al., 

2018), though this has not been extended to SiN.

We can obtain a measure of the overall function of these bottom-up and top-down neural 

processing for speech unmasking by quantifying the amplitude ratio of early cortical 

auditory evoked responses to noise and target speech (similarly to the AMI concept). Here 

we use the N1/P2 event-related potential (ERP) components which occur with 100–300 ms 

latency. Previous studies showed that such ERP components are strongly modulated by 

selective attention but only when auditory objects are successfully segregated (Choi et al., 

2013; Choi et al., 2014; Kong et al., 2015). Since those early cortical ERP components 

originate from multiple regions across Heschl’s gyrus (i.e., the primary auditory cortex) and 

its surrounding areas (e.g., posterior superior temporal gyrus) (Čeponien et al., 1998), an 

Kim et al. Page 3

Neuroimage. Author manuscript; available in PMC 2021 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



efficient and collective way of indexing the neural efficiency in speech unmasking is using a 

scalp electroencephalographical (EEG) potential at the vertex [e.g., “Cz” of the international 

10–10 system for EEG electrode montage: Koessler et al. (2009) within a limited time-

window (e.g., 100–300 ms range after the stimulus onset].

1.2. Assessing individual differences in mapping speech to words and meaning

To assess individual differences related to the second neural mechanism – the downstream 

speech information processing – we must assess a larger range of cortical regions above the 

auditory brainstem and cortex. Current models of speech processing suggest two distinct 

cortical networks (i.e., dorsal and ventral stream) that are used in parallel (Gow, 2012; 

Hickok and Poeppel, 2007; Myers et al., 2009; Scott and Johnsrude, 2003). The ventral 

stream pathway including anterior STG and middle temporal gyrus (MTG) integrates 

speech-acoustic and semantic information progressively over time for the sound-to-meaning 

mapping (Davis and Johnsrude, 2003). The dorsal stream pathway comprising 

supramarginal gyrus (SMG, also known as tempo-parietal junction or TPJ) and pre- / post-

central gyri mediates the mapping between sound and articulation (Rauschecker and Scott, 

2009), while inferior frontal gyrus (IFG) interacts with both pathways for lexical decision-

making processes (Gow, 2012).

Studies have compared cortical responses in these areas to spoken words against 

acoustically-matching non-word sounds. These highlight the SMG/TPJ, MTG, and IFG in 

the left hemisphere as three regions that tend to exhibit more activity for words than pseudo-

words (Davis and Gaskell, 2009; Taylor et al., 2013). The dual-lexicon model suggested by 

Gow (2012) confirms the importance of those three regions by referring to left SMG and 

MTG as dorsal and ventral lexicons that communicate with left IFG for lexical decision 

making. While both SMG and MTG exhibit explicitly lexical representations, they may take 

complementary roles consistent with the dual stream pathway model (Gow, 2012; Hickok 

and Poeppel, 2007). Thus, the type of task (e.g., whether subjects are asked to make a 

phonological or semantic judgment) may influence the relative dominance between SMG 

and MTG activities during speech recognition.

Supporting the idea of broad cortical regions contributing to individual differences in speech 

processing, fMRI studies showed that SNR changes alter the level of neural activities across 

frontal, central, and temporo-parietal regions (Du et al., 2016; Vaden et al., 2015; Wong et 

al., 2009; Zekveld et al., 2006), while Du et al. (2016) reported the correlation between 

activities in fronto-central regions and speech recognition performance. However, these 

correlations could reflect earlier variation in speech unmasking – if auditory/attentional 

unmasking mechanisms are less efficient, then they could lead to differences in how strongly 

later regions (IFG, SMG, etc.) must work to recognize words or complete the task. Thus, it 

is crucial to evaluate both mechanisms simultaneously to isolate a potential role for later 

processes.

In addition to testing the loci of activities, it is also important to test the relative timing of 

activity in these pathways during speech processing. Functionally, studies using eye-

movements in the Visual World Paradigm (VWP) have extensively characterized the time 

course of word recognition in both quiet (Allopenna et al., 1998; Dahan and Gareth Gaskell, 
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2007; Magnuson et al., 2007) and under challenging conditions such as noise or signal 

degradation (Ben-David et al., 2011; Brouwer and Bradlow, 2016; Huettig and Altmann, 

2005; McMurray et al., 2017; McQueen and Huettig, 2012). Most VWP data show that, in 

quiet, the maximum lexical competition occurs at ~400 ms after the onset. These studies also 

report delayed processing under challenging conditions, but such delays do not exceed 250 

ms even under the most severe degradation. This timing information can guide us when we 

interpret the functional implication of neural activity within certain regions; if the latency of 

neural activity is larger than ~400 ms, such activity may be less likely related to the online 

word recognition.

However, the timing of cortical activity within each pathway and the way this may be 

moderated by challenging listening conditions are largely unknown. This is true both within 

isolated regions (e.g., SMG or MTG) and across activation of broader regions (e.g., frontal 

lobe). This is because most of the work on speech in noise perception has been conducted 

with fMRI (Du et al., 2014, 2016; Wong et al., 2009; Wong et al., 2008) which has a poor 

temporal resolution. One study has examined evoked responses across speech processing 

regions using source localized EEG (Bidelman and Howell, 2016). This suggests an early 

response at roughly 100 ms post-stimulus in IFG. However, this study used non-sense 

syllables that cannot reveal lexical processes.

1.3. The present study

The central aim of this study is to investigate the simultaneous contributions of both speech 

unmasking and speech recognition processes to the individual differences in SiN 

understanding. Our main question is whether the early-stage speech unmasking and later-

stage recognition processes independently predict SiN performance, or whether the latter 

variable is dependent on the former. We attempted to answer this question through the 

combination of within- and across-subject analyses using both sensor- and source-space 

evoked responses in an EEG paradigm.

Subjects performed a SiN noise task in which they heard isolated consonant-vowel-

consonant (CVC) English words and selected which of four orthographically presented 

words matched the auditory stimuli. Noise began 1 second before the speech. Two noise 

conditions were used: a low SNR (−3 dB) or hard condition, and high SNR (+ 3 dB) or easy 

condition. EEG was recorded from 64 electrodes while subjects performed this task, using 

both source- and sensor-space analyses to quantify cortical activity.

Speech unmasking and speech recognition can be distinguished by the 1) timing and 2) 

regional differences of neural activities evoked by both noise and target speech. Thus, we 

used a trial structure comprised of clearly separated events (i.e., fixed onsets of background 

noise and target speech) while observing time-locked neural responses to such events with 

EEG. The degree of speech unmasking was quantified as the amplitude ratio of evoked 

responses to the onsets of noise and target speech measured at a vertex scalp electrode (the 

key scalp location for evoked responses from early auditory processes), henceforth referred 

to as internal SNR. Although the concept of internal SNR is similar to the attentional 

modulation index (Dai and Shinn-Cunningham, 2016; O’Sullivan et al., 2019), we named 
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the index rather phenomenologically to avoid limiting the mechanism underlying the index 

to selective attention.

The effectiveness of later speech recognition processing was quantified by measuring the 

amplitude of evoked responses within target cortical regions. As we described, prior work 

has implicated a number of such regions. However, it is unclear which may be relevant for 

our specific task. Thus, we take a data-driven approach first by asking which post-auditory 

regions show greater activity in the higher SNR (easier) listening condition. This would be 

suggestive of a region that conducts downstream analyses once the target speech is 

unmasked. We looked into two regions-of-interest (ROIs): left SMG and IFG. As reviewed 

above, those regions activate more strongly for speech than pseudo-speech sounds; we did 

not consider MTG (the ventral lexicon) as our task was single CVC word identification 

(matched to an orthographic response). In this task, phonological discrimination (indicating 

the dorsal stream), rather than semantic processing, is essential.

Having quantified the contributions of each pathway, we then conducted both timing and 

individual differences analyses to determine their relative contribution to SiN performance.

2. Material and methods

2.1. Participants

Twenty-six subjects between 19 and 31 years of age (mean = 22.42 years, SD = 2.97 years; 

median = 21.5 years; 8 (31%) male) were recruited from a population of students at the 

University of Iowa. All subjects were native speakers of American English, with normal 

hearing thresholds no worse than 20 dB HL at any frequency, tested in octaves from 250 to 

8000 Hz. Written informed consent was obtained, and all work has been carried out in 

accordance with the Code of Ethics of the World Medical Association (Declaration of 

Helsinki). All study procedures were reviewed and approved by the University of Iowa 

Institutional Review Board.

2.2. Task design and procedures

We aimed to simultaneously measure SiN performance and cortical neural activity in a short 

(15 minute) experimental session. Sessions were kept short to avoid confounding individual 

differences in irrelevant psychological factors – fatigue, level or engagement –with 

individual differences in performance and processing.

Each trial (Fig. 1) began with the presentation of a fixation cross (‘+’) on the screen. 

Listeners were asked to fix their gaze on this throughout the trial to minimize eye-movement 

artifacts. Next, they heard the cue phrase “check the word.” This enabled listeners to predict 

the timing of next acoustic event (the noise onset). After 700 ms of silence, the multi-talker 

babble noise began and continued for 2 seconds. Babble-noise excerpts were extracted from 

an original five-minute-long eight-talker babble noise from the Revised SPIN Test (a 

compact disc published by Auditec, Inc., St. Louis, Missouri). We used 8-talker babble 

because it provides relatively stationary spectro-temporal characteristics compared to fewer-

speaker babbles, while it still provides both temporal and spectral cues for speech 

unmasking. One second after the noise onset, the target word was heard. Finally, 100 ms 
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after the composite auditory stimulus (noise + word) offset, four written choices appeared on 

the screen. The response options differed either in the initial or the final consonant (e.g., for 

target word ban, options were than, van, ban, and pan; for target word hiss, options included 

hit, hip, hiss, hitch). Subjects pressed a button on a keypad to indicate their choice, and no 

feedback was given. The next trial began 1 second after the button press.

Choice options were displayed after the offset of sounds to prevent the occurrence of visual, 

pre-motor, and motor artifacts during the sounds, from which we extracted neural activities. 

The timing and intervals of auditory stimuli (i.e., cue phrase, noise, and target) were 

designed to derive well-distinct cortical evoked responses to the onsets of background noise 

and target word.

Since we were particularly interested in SMG and IFG regions that are involved in 

phonological and lexical processing (Gow, 2012; Hickok and Poeppel, 2007), we used 

naturally spoken words, rather than non-sense speech tokens used by prior EEG studies 

(Bidelman and Howell, 2016; Parbery-Clark et al., 2009). Target words consisted of hundred 

monosyllabic CVC words from the California Consonant Test (Owens and Schubert, 1977), 

spoken by a male speaker with a General American accent.

Target words were always presented at 65 dB SPL. In each trial, the RMS level of noise was 

chosen randomly between 68 and 62 dB SPL to yield either −3 or + 3dB SNR (referred to as 

“low SNR” and “high SNR,” respectively). We fixed the target word-level between the two 

SNR conditions to prevent potential acoustic-level effects on the target word-evoked 

responses. Fifty words were presented at each SNR condition. The number of items in each 

of the three phonetic categories – affricate & fricative, plosive, and sonorant – was balanced 

within each SNR condition and matched between conditions (See Table A.1 in Appendix). 

−3 dB SNR was chosen from pilot experiments to emulate a condition yielding a mid-point 

performance (~65% correct) in the possible accuracy range (i.e., 25 – 100%), at which 

listening effort and individual differences in performance may be maximized (Ohlenforst et 

al., 2017). Thus, the SiN performance at −3 dB SNR condition was used as the dependent 

variable for the later correlational analysis in this study. + 3 dB SNR was chosen to emulate 

a less noisy condition from which the downstream speech recognition process will be 

measured for the correlational analysis.

The task was implemented using the Psychtoolbox 3 package (Brainard, 1997; Pelli, 1997) 

for Matlab (R2016b, The Mathworks). Participants were tested in a sound-treated, 

electrically shielded booth with a single loudspeaker (model #LOFT40, JBL) positioned at a 

0° azimuth angle at a distance of 1.2 m. A computer monitor was located 0.5m in front of 

the subject at eye level. The auditory stimuli were presented at the same levels for all 

subjects.

2.3. EEG acquisition and preprocessing

Scalp electrical activity (EEG) was recorded during the SiN task using the BioSemi 

ActiveTwo system at a 2048 Hz sampling rate. Sixty-four active electrodes were placed 

according to the international 10–20 configuration. Trigger signals were sent from Matlab 

(R2016b, The Math-works) to the BioSemi ActiView acquisition software. The recorded 
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EEG data from each channel were bandpass filtered from 1 to 50 Hz using a 2048-point 

zero-phase FIR filter. Epochs were extracted from −500 ms to 3 s relative to stimulus onset. 

After baseline correction using the average voltage between −200 and 0 ms, epochs were 

down-sampled to 256 Hz. No re-referencing was done for the sensor-space analysis, as the 

data from the BioSemi ActiveTwo system is referenced to the Common Mode voltage 

(https://www.biosemi.com/faq/cms&drl.htm). EEG data were re-referenced to the all-

channel average before the source-space analysis.

Since we were interested in the speech-evoked responses from frontal brain regions, we 

opted for a non-modifying approach to eye blink rejection: Trials that were contaminated by 

an eye blink artifact were rejected based on the voltage value of the Fp1 electrode (bandpass 

filtered between 1 and 20 Hz). Each subject’s rejection threshold was chosen by visual 

inspections on the distribution of maximum voltage at Fp1 across trials, as suggested by 

Luck (2014). Rejection thresholds ranged from 35 to 120 μV (mean 62.7 μV, standard 

deviation 23.7 μV). After rejecting bad trials, averages for each electrode were calculated for 

the two conditions to extract evoked potentials. For analysis of speech-evoked responses, we 

repeated baseline correction using the average signal in the 300 ms preceding the word 

onset.

2.4. Sensor-space analysis

We performed sensor-space ERP analysis to investigate the effect of acoustic SNR on the 

representation of noise and speech in the auditory cortex and its individual differences. The 

other purpose of the sensor-space analysis was to ensure the quality of data in a more 

familiar form before running source-space analyses.

Cortical evoked responses time-locked to the target and noise were examined and compared 

between high- and low-SNR conditions. EEG data were bandpass filtered from 2 to 7 Hz to 

capture 3 – 5 Hz bands in which auditory N1 and P2 components fall. We used a zero-phase 

128-point (at 256-Hz sampling rate) FIR filter that has symmetric non-causal impulse 

responses. The zero-phase filter was chosen to avoid delays in “true” transient neural 

responses (see Figure 13 in de Cheveigne et al. (2019)). ERP envelopes were obtained by 

applying the Hilbert transform to the bandpass-filtered ERPs and taking the absolute value. 

Mean activity levels were jackknifed prior to testing to assess the variance with clean ERP 

waveforms. In this approach, the relevant neural factors were computed for all subjects but 

one. This was repeated leaving out each subject in turn. Peak amplitude was found from 

each jackknifed (i.e., leave-one-out grand average) ERP envelope within a 50 – 400ms time 

window following each of the noise and target-word onset. Then, “internal SNR” was 

defined as the amplitude ratio of target word-evoked ERP envelope peak to noise-evoked 

ERP envelope peak in dB scale (Eq. (1)). We computed this index expecting to quantify a 

“neural” form of an individual’s speech unmasking ability. The internal SNR is different for 

each subject, and is separate from the fixed external, or acoustic, SNR (here, ± 3 dB).

Internal SNR = 20 log10
Target − evoked potential amplitude
Noise − evoked potential amplitude (1)
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The resulting statistics were adjusted for jackknifing to reflect the fact that each data point 

reflects N-1 subjects (Luck, 2014).

We did not have a hypothesis on which specific ERP component best predicts an 

individual’s speech unmasking ability. Rather, we intended to quantify the overall amplitude 

across the canonical auditory ERP components (i.e., P1, N1, or P2) using the ERP envelope.

Like we did not rely on a single ERP component for the Internal SNR computation, we did 

not hypothesize that a single cortical region would reflect cortical processes for speech 

unmasking. Rather, we believed that scalp electrodes at the central front site would capture 

composite responses from multiple auditory-related regions, including both left and right 

Heschl’s gyri and superior temporal gyri. Thus, the internal SNR computation has been done 

in the sensor space.

2.5. Source analysis

The source-space analysis was based on minimum norm estimation (Gramfort et al., 2013; 

Gramfort et al., 2014) as a form of multiple sparse priors (Friston et al., 2008). After co-

registration of average electrode positions to the reconstructed average head model MRI, the 

forward solution (a linear operator that transforms source-space signals to sensor space) was 

computed using a single-compartment boundary-element model (Hämäläinen, 1989). We 

used FreeSurfer’s “fsaverage” template brain and head model (Fischl et al., 1999). The 

cortical current distribution was estimated assuming that the orientation of the source is 

perpendicular to the cortical mesh. EEG data were re-referenced to the all-channel average. 

Then across-channel EEG noise covariance, computed for each subject, was used to 

calculate the inverse operators. A noise-normalization procedure was used to obtain dynamic 

statistical parametric maps (dSPMs) as z-scores (Dale et al., 2000). The inverse solution 

with a regularization parameter of 1/32 estimated the source-space time courses of event-

related activity at each of 10,242 cortical voxels per hemisphere.

Following the whole-brain source estimation, we extracted representative source time 

courses from ROIs. In the present study, two predetermined ROIs were used based on the 

literature review (e.g., Davis (2016); Gow (2012)): (1) left SMG, and (2) left pars 

opercularis and pars triangularis of IFG. Destrieux Atlas of cortical parcellation (Fischl et 

al., 2004) was used to predetermine ROIs anatomically.

Since we did not have individual structural MRI head models, it was not ideal for taking the 

summed activity (mean or median) for all the voxels within ROIs. This is because individual 

difference in functional and anatomical structure of the brain may result in spatial blurring 

since current densities across adjacent voxels can overlap each other. Instead, representative 

voxels were identified within each ROI, for each SNR condition. We used a combination of 

previously-described methods to select voxels of interest that were used in fMRI studies 

(Tong et al., 2016). The voxel selection was performed in a particular sequence described 

below.

• From each voxel in an ROI, reconstructed source time courses were averaged 

across subjects.
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• Voxels exhibiting greater-than-median max amplitude over the time period after 

the target word onset were selected using the grand-average source time courses 

in each ROI.

• A matrix of cross-correlation coefficients was obtained using the source time 

courses in remaining voxels, quantifying between-voxel similarities.

• The most representative voxel was determined based on the maximum mean 

correlation coefficient.

For the downstream statistical analyses, temporal envelopes were extracted from the within-

ROI source time courses. This was done by applying a bandpass filter, then calculating the 

absolute value of the Hilbert transform. The source time course envelopes at different ROIs 

were based on slightly different frequency ranges: 2–7 Hz for SMG and 1–5 Hz for IFG. 

This was to reflect the differences between temporal and frontal lobes in their dominant 

neural oscillations which create evoked activities through phase coherence (Giraud and 

Poeppel, 2012).

2.6. Statistical approaches

Once the temporal envelope of the source time course from the most representative voxel 

was obtained for each SNR condition, mean activity levels were compared between the two 

SNR conditions using paired t-tests. Here, we also used a jackknifing approach, and test 

statistics were adjusted to account for the fact that each data-point represents N-1 

participants. Finally, to identify timepoints that showed a significant difference between 

SNR conditions while addressing multiple comparison problem, the cluster-based 

permutation tests were conducted (Maris and Oostenveld, 2007).

In order to identify predictors of SiN performance, sensor and source space indices of 

activity were used in correlation/regression analysis with SiN performance (accuracy) as the 

dependent variable, and the peak magnitudes of the ERP envelopes from ROIs, and internal 

SNR as the predictor variables. The peak magnitudes of the ERP envelopes were obtained 

over timepoints that showed a significant difference between high and low SNR conditions 

identified in the ROI-based source analysis described above. After calculating the correlation 

between SiN performance and these predictors, a joint contribution was tested using linear 

regression analysis to simultaneously examine bottom-up and compensatory related SiN 

performance to three factors.

3. Results

Our analysis started by examining the effect of SNR on task performance (accuracy and 

reaction time). This was intended to document that noise manipulation had the expected 

effect. Next, we examined the effect of SNR on both the magnitude and timing of neural 

activity. This was done first in the sensor-space, using the auditory N1/P2 components and 

ERP envelopes to examine primary auditory pathways. Next, this was done in the source-

space to examine the compensatory role of IFG, to evaluate whether IFG effects were early 

enough to play a role in speech perception, and to test hypotheses about SMG. Finally, we 

turn to our primary analysis: a regression testing the unique contributions of each pathway to 
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individual differences in SiN performance. Original raw and processed data of the present 

study are available at Mendeley Data (http://dx.doi.org/10.17632/jyvythkz5y.2).

3.1. SiN performance

There was a large variance in performance among participants. This was observed in both 

the high SNR condition (accuracy: mean = 80.6%, SD = 7.8%; reaction time: mean = 1.5 s, 

SD = 0.3 s) and the low SNR condition (accuracy: mean = 68.2%, SD = 8.9%; reaction time: 

mean = 1.7 s, SD = 0.4 s) where the chance level of accuracy was 25%. The paired t-tests 

were performed on the rationalized arcsine units. There was a significant effect of SNR on 

both accuracy (t(25) = 7.00, p < 0.001) and reaction time (t(25) = −3.97, p < 0.001) (Fig. 2 

A). Reaction time and accuracy were correlated in the high SNR condition (Fig. 2 B, r = 

−0.50, p = 0.0090), but not in the low SNR condition (Fig. 2C, r = −0.19, p = 0.34). Results 

from further analyses on the accuracy variance across phonetic categories are shown in Table 

A.1 in the Appendix section.

As a whole, these results validate that the SNR manipulation was sufficient to create 

differences in speech perception. The negative correlation between the accuracy and reaction 

time may demonstrate the redundancy between individual differences of accuracy and 

difficulty.

3.2. Auditory evoked activity in the sensor space: at the noise and speech onsets

We next examined the peak amplitudes of evoked activity at both noise and target-word 

onsets using the ERP envelopes. This was done to estimate the contribution of primary 

auditory pathways and the effect of noise. These measures were compared between high- 

and low-SNR conditions using paired t-tests.

At the noise onset, as expected, the low SNR condition exhibited significantly larger peak 

envelope amplitude (i.e., at ~0.2s after noise onset: See Fig. 3. t(25) = −3.95, p < 0.001 from 

paired t-test). At the word onset, we saw larger peak envelope amplitude in the high SNR 

condition (t(25) = 2.37, p = 0.026) (1.2 – 1.3s in Fig. 3). Then we calculated the internal 

SNR, the amplitude ratio of the noise and target-word related ERP envelope peaks, and saw 

a greater internal SNR in the high SNR condition (t(25) = 2.53, p = 0.018).

The topographical layout of SNR effects is shown in Fig. 3 (top panels) at the time of the 

peak in envelopes for both noise- and word-evoked response. T-values from paired t-tests on 

peak envelope amplitudes at all electrodes between SNR conditions were also represented in 

topographies. These show a broad-based effect that is roughly centered at frontal-central 

channels for both the noise onset and speech onset. This justifies our use of frontal-central 

channels for sensor-space analyses. The significant difference in auditory ERP envelopes 

according to the noise level supports our use of the internal SNR as an index of individual 

ability to modulate representations of target speech relative to noise in the regression 

analysis.
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3.3. The effect of SNR on cortical activity

Next, we conducted parallel analyses in source space to assess cortical activity through 

speech processing regions. We converted sensor-space EEG signals to whole-brain source 

time courses to localize the effects of SNR on evoked responses within targeted ROIs. 

Within left SMG, the cluster-based permutation test (Maris and Oostenveld, 2007) revealed 

that the high SNR condition evokes significantly greater activity than the low SNR condition 

from 270 to 340 ms (p = 0.0020) (Fig. 4 A left). High-SNR peak amplitude is found at 309 

ms. Such a significant SNR effect was not found in the left IFG. The maximum magnitude 

of the grand average low-SNR evoked response (dSPM) is at 770 ms (Fig. 4 B left). Source 

time courses in the right SMG and IFG are shown in Fig. 4 A and B (the right panels) for 

visual comparisons.

Single time-point evoked-current estimates are shown for the peak SMG activity time (i.e., 

309 ms, Fig. 4C) and IFG peak time (770 ms, Fig. 4 D) on the whole left-hemisphere 

cortical surface. At 309 ms, post-hoc paired t-tests on all the left-hemisphere voxels reveal 

an area near left SMG that shows greater evoked responses in the high SNR condition. This 

supports a significant role for SMG in SiN processing in this task. In contrast, at 770 ms, no 

voxel was found within IFG that shows significant differences between high- vs. low-SNR 

conditions. This confirms our timecourse analyses of IFG, suggesting it does not play a large 

role and that the trend that was observed is not broadly seen across voxels.

The webMAUS (Kisler et al., 2017) was used to identify the boundaries between the first 

and second and the second and third phonemes in each of the 100 stimuli to demonstrate the 

timing of SMG activity compared to the timing of phonological events. A histogram of these 

acoustic time points is shown in Fig. 5. This confirms that the peak of evoked activation in 

SMG (i.e., ~309 ms, denoted by a dashed vertical line) occurs before the end of target 

words.

3.4. Individual differences in internal SNR predict SiN performance

To address our primary research question, which was to evaluate the simultaneous 

contribution of speech unmasking and recognition processes to SiN performance, we 

conducted a linear regression analysis in which internal SNR and SMG activation were used 

as independent variables. SiN performance in the low SNR condition was used as the 

dependent variable. We extracted the internal SNR from the low SNR and the SMG activity 

from the high SNR condition, as we expected that the internal SNR captures how well 

listeners unmask speech from the noisy background while the SMG activity reflects the 

processing of relatively clean speech signal. As expected, those two metrics extracted from 

different trials did not show a correlation (r = −0.040, p = 0.86, the left panel of Fig. 6 D). 

Both internal SNR (t(23) = 3.35, p = 0.0030) and SMG activity (t(23) = 2.29, p = 0.031) 

were significant predictors of SiN performance in low SNR condition (Fig. 6 A). The linear 

combination of those predictors accounted for a large proportion of the variance (r = 0.64, p 
= 0.00043, Fig. 6 B). However, both internal SNR (t(23) = 1.04, p = 0.31) and SMG activity 

(t(23) = 0.17, p = 0.87) did not explain the variance in SiN performance in high SNR 

condition.

Kim et al. Page 12

Neuroimage. Author manuscript; available in PMC 2021 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6C and D show results from post-hoc correlational analyses. Internal SNR showed a 

significant correlation with accuracy in low SNR, while SMG activation did not (despite its 

significant contribution to the model). There was no correlation between internal SNR and 

SMG activation, as described above. A semi-partial correlation between SMG activation and 

the residual of accuracy after regressing out internal SNR was significant, which confirmed 

that the SMG activation accounted for an extra amount of variance in SiN performance in 

low SNR (the right panel of Fig. 6 D). This suggests that in order to identify the contribution 

of downstream recognition areas like SMG, models must account for the contribution of 

earlier upstream speech-unmasking processes.

To visualize the contribution of internal SNR to SiN performance, Fig. 6 E showed evoked 

response differences between good and poor performers (based on a median split on the low-

SNR condition accuracy). This reveals dramatic differences in the magnitude of noise onset-

related potentials: despite the same physical noise level for each group, good performers 

exhibited less strong evoked response to noise onset, measured by the envelope peak 

magnitude within N1-P2 time range in the frontal-central channels (t(24) = −2.60, p = 0.016, 

two-sample t-test). In contrast, the word-evoked ERP envelope did not show a significant 

difference between the two groups (t(24) = 0.21, p = 0.84). This suggests that the neural 

mechanism underlying the internal SNR variance is the suppression of noise (rather than the 

enhancement of the target). The ERP envelopes to the cue phrase were investigated as a 

control condition and showed no difference between the two groups (t(24) = −0.38, p = 

0.71), suggesting that the effect was directly related to the speech task (Fig. A.1).

4. Discussion

We investigated the neural correlates of SiN performance in young normal-hearing adults. 

Previous correlational studies focused on the contributions of either acoustic encoding 

fidelity (Anderson and Kraus, 2010; Anderson et al., 2013; Holmes and Griffiths, 2019; 

Hornickel et al., 2009; Liberman et al., 2016; Parbery-Clark et al., 2009; Song et al., 2011) 

or the degree of speech/language network recruitment (Du et al., 2016) to the SiN 

performance. However, the relative importance of each process has remained unclear. We 

showed that 1) how well the listener suppresses background noise before hearing the target 

speech and 2) how strongly the listener recruits temporo-parietal network while the speech 

signal is received contribute to the SiN performance independently. Combining those two 

factors explained about 40% of the variance in SiN performance.

Our results have both theoretical and clinical implications. Theoretically, our individual 

difference approach revealed at least two neural subsystems involve during SiN processing: 

sensory gain control and post-auditory speech recognition processing. Clinically, our results 

suggest that a relatively short (~15 minutes) SiN-EEG paradigm can assess crucial neural 

processes for SiN understanding.

4.1. Internal SNR: a measure of pre-speech processing for speech unmasking

The first among the two crucial processes – how well the listener suppresses background 

noise – was indexed as “internal SNR,” the ratio of noiseto target word-evoked cortical 

responses. This process can be understood as a pre-target cortical activity, appearing as an 
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enhanced neural representation of the target sound (the speech) and suppressed neural 

representation of ignored stimuli (the noise).

4.2. What is the source of variation in the internal SNR?

Such responses could reflect auditory selective attention, which shows a similar pattern in 

previous studies (Hillyard et al., 1973; Hillyard et al., 1998; Mesgarani and Chang, 2012). In 

the present study, good performers showed significantly weaker noise-evoked responses at 

frontal-central channels (around Cz), compared with poor performers, approximately 200 ms 

after the noise onset (Fig. 6 E). Decreased auditory responses to background noise in good 

performers are compatible with the presence of a sensory gain control mechanism (Hillyard 

et al., 1998) which may happen in multiple sub-regions in STP and posterior STG. The 

variation in the sensory gain control may originate from multiple factors. It may reflect the 

acuity of encoding spectro-temporal acoustic cues from speech and noise or grouping of 

such acoustic cues for auditory object formation (Moore, 1990; Shamma et al., 2013; Teki et 

al., 2011). How robustly the low-frequency neural oscillations (e.g., theta and delta) are 

phase-locked to the acoustic temporal structure of the stimuli (Etard and Reichenbach, 2019) 

may also contribute to the variation, as the neural phase-locking relies on the encoding of 

acoustic cues (Ding et al., 2014) and the prediction of temporal structure in speech rhythm 

(Ding et al., 2016). Since our experiment provided fixed timing of noise and target word 

onsets, the neural phase-locking based on predicted timing (See Fig. 1 of (Arnal and Giraud, 

2012)) could occur and contribute to the internal SNR. Indeed, studies show that neural 

entrainment to the speech rhythm is one of the possible mechanisms underlying cocktail 

party listening (Golumbic et al., 2013). Studies about the relationship between musical 

ability and speech in noise performance also revealed that the sensitivity to “rhythm” 

exhibits the strongest correlation with SiN performance among different aspects of musical 

abilities (Yates et al., 2019).

The fact that evoked activity at the noise onset dominantly contributed to internal SNR 

makes it difficult to interpret that the internal SNR is driven by a “grouping” mechanism. To 

test whether the ERP amplitude to noise onset is driven by inherent differences in subjects, 

we observed ERPs to a more neutral event “check the word.” See Fig. 7 for the comparison 

between good vs. poor performers at their evoked responses to the carrier phrase “check the 

word,” which did not exhibit significant differences. This result may imply that the 

individual differences in internal SNR may not be driven by individuals’ inherent differences 

in auditory evoked potentials.

The variation may also reflect endogenous mechanisms for active suppression of 

background sounds along with neural enhancement of foreground sounds (Shinn-

Cunningham and Best, 2008). It was not our goal to disentangle the sources of variation in 

sensory gain control. Rather, we aimed to quantify the effectiveness of sensory gain control 

by our unique trial structure that enables clear distinction of evoked responses to noise and 

target speech, and test how the internal SNR predicts later speech processes and behavioral 

accuracy. In this regard, we found a significant correlation between accuracy and the relative 

magnitude of the word- and noise-evoked potentials.
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4.3. Evoked amplitude in SMG: the neural marker of effective and prompt lexical 
processing

While the computation of internal SNR was pre-specified, we had an open plan for 

extracting a representative neural factor to capture post-auditory speech recognition. To 

explore such neural markers, we added a 6-dB higher SNR condition and asked which 

region or regions showed increased activity within a reasonable (200 – 500 ms) time range. 

We investigated two ROIs: left SMG and left IFG. As left SMG showed increased evoked 

response to target speech in the less noisy condition at ~300 ms after the target onset, the 

peak evoked amplitude in left SMG measured in the high SNR condition was used as the 

second independent variable in the regression analysis.

4.4. Functional interpretation of SMG activity

Previous studies have suggested that spoken-word recognition occurs via a process of 

dynamic lexical competition as speech unfolds over time. The VWP studies reported that, 

for many words, this competition maximizes around 3–400 ms after word onset (Farris-

Trimble and McMurray, 2013; Huettig and Altmann, 2005). In significantly challenging 

conditions (high noise), however, lexical processing can be delayed about 250 ms until most 

of the word has been heard (Farris-Trimble et al., 2014; McMurray et al., 2017), which may 

minimize competition. The latency of SMG activity that lied between the second and the 

third phonemes (see Fig. 5) in the high SNR condition aligns well with the timing of lexical 

competition found from the VWP studies, which may suggest that the SMG activity makes a 

neural substrate of immediate lexical access (Farris-Trimble et al., 2014; McMurray et al., 

2017), consistent with Gow (2012). This immediacy was observed when speech sounds were 

relatively clean (high SNR), and it does not appear in previous EEG studies using non-word 

synthesized phonemes (Bidelman and Dexter, 2015; Bidelman and Howell, 2016).

After the contribution of speech unmasking (i.e., internal SNR) is regressed out, the SMG 

evoked amplitude in the cleaner condition predicted the residual of SiN performance (the 

right panel of Fig. 6 D). This indicates that changes in SMG activity may be an independent 

factor predicting speech recognition performance, rather than the outcome of pre-speech 

sensory gain control processing.

It can be seen surprising that the overall level of activity is much lower within SMG while 

the performance in the low SNR condition is still much above the chance level. One 

potential interpretation is, only when they are clearly heard, spoken words recruit “time-

locked” online lexical processes that recruit SMG. When sounds are ambiguous (e.g., due to 

background noise), such “time-locked” activity weakens while the speech recognition routes 

through an alternative pathway, reflecting a different cognitive strategy. If such an alternative 

cognitive strategy for a poorer SNR condition works, accuracy can be preserved while the 

neural processing to achieve the performance is largely altered.

4.5. Limitation of the current study

In the present paper, we exhibited evoked responses only. Although our results demonstrated 

how this simple and traditional EEG analysis successfully predicted SiN performance, future 
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studies may pursue further understanding of SiN mechanisms by adopting extended analyses 

such as induced oscillation (e.g., Choi et al. (2020)) and connectivity analyses.

Our correlational result is limited to young normal-hearing listeners where variance does not 

come from hearing deterioration and aging. This study does not predict how much of the 

variance can be explained by the combination of internal SNR and SMG activity in the 

population with larger age ranges. For example, Tune et al. (2020) reported that no 

correlation is found between neural attention filters and behavioral success in a large cohort 

of aged listeners, although other studies revealed neural factors contributing to speech-in-

noise performance (Decruy et al., 2019; Presacco et al., 2019).

We chose −3 dB as the main SNR from which the dependent variable for the regression 

analysis was extracted. Although we claim that the −3 dB SNR provides the most 

representative condition where the individual difference in performance is maximized, we do 

not claim that our main findings can be generalized to other SNR conditions.

The speech-rhythm entrainment hypothesis can be more directly tested using continuous 

speech stimuli (sentences) using established temporal response function methods introduced 

by recent papers (Ding and Simon, 2012; Lalor and Foxe, 2010; Vanthornhout et al., 2018)

Even for normal-hearing listeners, ERPs are strongly determined by sensation level. It would 

make sense to as a control include an audiogram-based predictor (such as a pure-tone 

average) in the model you use to predict speech intelligibility. However, in this study, 

subjects were “screened” for “normal hearing” (i.e., = < 20 dB HL across tested frequencies: 

250Hz to 8000Hz), but their thresholds were not measured. Our future study will further 

investigate peripheral factors contributing to the individual differences in cortical process 

and speech-in-noise accuracy.

4.6. Methodological advances and justifications for source time course analysis

Our approach to identifying a single voxel within an ROI deserves a particular discussion. 

Identification of the representative voxel of an ROI is a problem common to EEG source 

analysis, fMRI, and other functional brain imaging studies. Many relevant neuroimaging 

analysis approaches have been described, including univariate, multivariate, and machine 

learning; however, most of these are intended for the identification of regions of interest or 

functional connections from a whole-brain map. Drawbacks of this type of whole-brain 

analysis include the need for strict multiple comparisons correction and, therefore, decreased 

statistical power. Using strong a priori hypotheses to generate regions of interest allowed us 

to circumvent these issues, but still requires identification of representative voxels within our 

regions of interest. Favored approaches generally require the identification of peak activity 

within an ROI (Tong et al., 2016). However, to avoid assuming that choosing peak activity 

implies, we opted instead to choose the voxel with the maximum average correlation to 

every other voxel within the ROI. In the present study, we chose not to constrain the location 

of the voxel of interest within an ROI for each condition. Because our anatomic resolution is 

unlikely to be at the voxel level, we elected to choose a different representative voxel for 

each condition, unconstrained by the location of the representative voxel from other 

conditions.
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5. Conclusion

We found that better speech unmasking in good performers modulated the ratio of cortical 

evoked responses to the background noise and target sound, which effectively changed SNR 

internally, resulting in better performance. We also found that clean, intelligible speech 

elicits early processing at SMG, which explained an extra amount of variance in SiN 

performance. These findings may collectively form a neural substrate of individual 

differences in SiN understanding ability; the variance in SiN perception may be a matter of 

both primary processes that extract the signal from noise and later speech recognition 

processes to extract lexical information from speech signals promptly.
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Appendix

We further looked into the SNR effect on accuracy in three phonetic categories: “affricate 

and fricative,” “plosive,” and “sonorant.” As shown in Table A.1, affricates and fricatives 

had the lowest mean accuracy (67.4% in the + 3dB SNR condition, 52.9% in the −3dB SNR) 

with ~30 (in % correct) standard deviation across participants. Sonorants had the highest 

accuracy and smaller standard deviation across participants. Importantly, the following table 

also shows that the number of items in each phonetic category matched well between 

conditions in our study.

In order to demonstrate the cortical map in Fig. 4C more clearly, a larger size figure is 

attached (Fig. A.1). It is observed that the dominant activity is found across SMG and 

inferior post-central sulcus, which is just underneath the SMG if we imagine the original 

folded brain structure. About 40% of the area remains in the anatomical SMG boundary.

Table A.1

Target Consonant SNR: +3dB SNR: −3dB

Accuracy (%) Number of Items Accuracy (%) Number of Items

Affricate & Fricative 67.4 (std 27.4) 17 (34%) 52.9 (std 31.6) 16 (32%)

Plosive 83.6 (std 25.0) 16 (32%) 70.2 (std 25.9) 17 (34%)

Sonorant 89.6 (std 16.0) 17 (32%) 81.9 (std 20.4) 17 (34%)
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Fig. A.1. 
Cortical activity at 309ms after target word onset in the high SNR condition. A dominant 

activity is found across supramarginal gyrus and inferior post-central sulcus.
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Fig. 1. 
Trial and stimulus structure. Every trial starts with the cue phrase “check the word.” A target 

word starts 1 second after the noise onset. Four choices are given after the word ends; 

subjects select the correct answer with a keypad. No feedback is given. The noise level is 

manipulated to create high (+ 3 dB) and low (−3 dB) SNR conditions. Subjects complete 50 

trials for each condition.
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Fig. 2. 
Behavioral results. A. Summary of behavioral performance for the two conditions (+ 3 and 

−3 dB SNR). Boxes denote the 25th – 75th percentile range; the horizontal bars in the center 

denote the median; the ranges are indicated by vertical dashed lines. Solid lines connect 

points for the same subject in different conditions. The bottom boundary line of the accuracy 

panel represents chance-level performance (i.e., 25%). B. Average accuracy as a function of 

reaction time in + 3 dB SNR condition. C. Average accuracy and reaction time in −3 dB 

SNR condition.
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Fig. 3. 
Sensor-level event-related potential (ERP) with the topographical layout and cortical maps. 

The time course of the auditory ERP and its envelope, with the standard error of the mean (± 

1 SEM) at the peak amplitude (red color: + 3 dB SNR, blue color: −3 dB SNR). Thin 

colored lines are grand-average ERP waveforms averaged across front-central channels 

(FC1, FCz, FC2, C1, Cz, and C2: denoted as block dots in the electrode position legend on 

top of the waveforms). Thick colored lines are their temporal envelopes. Gray lines are 

grand-average waveforms at other electrodes. Asterisks represent significant differences in 

the amplitude between + 3 and −3 dB SNR conditions (paired t-test). Top panels show peak 

P2 amplitudes of all electrodes in topographical layouts. The t-values from paired t-tests 

between two SNR conditions are also shown as topographies.
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Fig. 4. 
Region-of-interest (ROI) based source analysis. A and B. The time course of the evoked 

source activity and its envelope, with the standard error of the mean (± 1 SEM), obtained at 

representative voxels for two ROIs in the left hemisphere (“LH”): supramarginal gyrus 

(SMG), and the pars opercularis and triangularis of the inferior frontal gyrus (IFG), 

respectively, in each SNR condition (red color: + 3 dB SNR, blue color: −3 dB SNR). The 

time courses in the corresponding regions in the right hemisphere (“RH”) are also shown for 

visual comparisons. Asterisks show the timing of a significant difference between + 3 and 

−3 dB SNR conditions (cluster-based permutation test, p = 0.0020) at the left SMG. C and 
D. Whole-brain maps showing statistical contrasts (t-values obtained from post-hoc paired t-
tests between the two SNR conditions) of source activation at each voxel at the peak 

timepoint of the grand-average source time course of each ROI. Across all the panels, dSPM 

stands for dynamic statistical parametric maps, a noise-normalized source current strength in 

ratio (z-scores) (Dale et al., 2000).
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Fig. 5. 
Top and second panel show histograms of boundaries between phonemes of each stimulus. 

The third panel shows superimposed temporal envelopes extracted from waveforms of the 

100 words.
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Fig. 6. 
Individual differences in speech-in-noise processing. A. Regression coefficients and their 

standard errors. B. A scatter plot showing the relationship between predicted and measured 

accuracy in −3 dB SNR condition. C. Post-hoc correlation analyses: Raw correlations 

between each independent variable and the dependent variable. D. Left: Relationship 

between independent variables shows no correlation between internal SNR and evoked 

source current at the left supramarginal gyrus (SMG). Right: Semi-partial correlation 

between SMG evoked source current and the residual of accuracy after regressing out 

internal SNR. E. The time course of the auditory event-related potential and its envelope, 

with the standard error of the mean (± 1 SEM) at the peak magnitude in −3 dB SNR 

condition (red color: good performers, blue color: poor performers). An asterisk shows a 

significant difference in the magnitude between two groups (two-sample t-test).
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Fig. 7. 
ERPs evoked by the carrier phrase “check the word” compared between listeners with good 

and poor performance in the low SNR condition. Colored lines represent ERPs averaged 

over front central electrodes. Gray lines represent ERPs at all other electrodes.
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