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Weighting sequence variants based 
on their annotation increases the power 
of genome‑wide association studies in dairy 
cattle
Zexi Cai*  , Bernt Guldbrandtsen, Mogens Sandø Lund and Goutam Sahana

Abstract 

Background:  Genome-wide association studies (GWAS) are widely used to identify regions of the genome that 
harbor genetic determinants of quantitative traits. However, the multiple-testing burden from scanning tens of 
millions of whole-genome sequence variants reduces the power to identify associated variants, especially if sample 
size is limited. In addition, factors such as inaccuracy of imputation, complex linkage disequilibrium structures, and 
multiple closely-located causal variants may result in an identified causative mutation not being the most significant 
single nucleotide polymorphism in a particular genomic region. Therefore, the use of information from different 
sources, particularly variant annotations, was proposed to enhance the fine-mapping of causal variants. Here, we 
tested whether applying significance thresholds based on variant annotation categories increases the power of GWAS 
compared with a flat Bonferroni multiple-testing correction.

Results:  Whole-genome sequence variants in dairy cattle were categorized according to type and predicted impact. 
Then, GWAS between markers and 17 quantitative traits were analyzed for enrichment for association of each annota-
tion category. By using annotation categories that were determined with the variants effect predictor software and 
datasets indicating regions of open chromatin, “low impact” variants were found to be highly enriched. Moreover, 
when the variants annotated as “modifier” and not located at open chromatin regions were further classified into dif-
ferent types of potential regulatory elements, the high impact variants, moderate impact variants, variants located in 
the 3′ and 5′ untranslated regions, and variants located in potential non-coding RNA regions exhibited relatively more 
enrichment. In contrast, a similar study on human GWAS data reported that enrichment of association signals was 
highest with high impact variants. We observed an increase in power when these variant category-based significance 
thresholds were applied for GWAS results on stature in Nordic Holstein cattle, as more candidate genes from previous 
large GWAS meta-analysis for cattle stature were confirmed.

Conclusions:  Use of variant category-based genome-wide significance thresholds can marginally increase the power 
to detect the candidate genes in cattle. With the continued improvements in annotation of the bovine genome, we 
anticipate that the growing usefulness of variant category-based significance thresholds will be demonstrated.
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publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Cattle is one of the most important domestic animals 
in human history. Both breeding programs and genetic 
studies in cattle depend largely on the availability of a 

reliable cattle reference genome [1] and reference popu-
lations [2]. In addition, genome-wide association studies 
(GWAS) have identified valuable links between genetic 
variants and variations in complex traits [3, 4]. For 
example, numerous GWAS have been conducted in cat-
tle to investigate production traits such as milk yield [5, 
6], milk composition [7], and mastitis [8–10]. However, 
GWAS alone cannot distinguish causative variants from 
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variants which are in perfect, or near-perfect, linkage dis-
equilibrium (LD) with them.

To address this problem, additional information from 
independent sources are needed. For example, gene 
expression data have facilitated the identification of 
candidate genes from GWAS data [11], and expression 
quantitative trait loci (eQTL) data [12, 13] have helped 
map causative variants within regulatory regions. More 
recently, Brown et al. [14] proposed a ‘causal-variant evi-
dence mapping using nonparametric resampling’ (CaVE-
MaN) method to pinpoint causative mutations in eQTL 
studies. By integrating eQTL data with results from 
GWAS, genes with expression levels that are associated 
with complex traits due to pleiotropic effects (e.g., when 
both gene expression and trait variation are affected) can 
be identified [13]. However, large-scale eQTL studies can 
be expensive because they require generation of RNAseq 
data specific to the population under study, especially in 
the case of livestock species for which initiatives such as 
the GTEx [15] project in humans do not exist.

Due to many reasons, such as LD, inaccuracy of impu-
tation, random sampling errors, etc., the lead single 
nucleotide polymorphism (SNP) may not be the causa-
tive one [6]. Using additional information to prioritize 
variants within the QTL interval has become a popular 
strategy [16]. It was recently demonstrated that the use 
of a variant annotation tool [17] and its evolutionary con-
servation score [16] can help prioritize variants. In par-
ticular, variant annotation can be used across different 
studies without being tissue- or trait-specific. The power 
to identify associations between genetic variants and 
phenotypes may be further improved by using functional 
annotation information [18–20]. For example, Sveinb-
jornsson et al. [21] reported an increase in power for the 
detection of associations when an annotation enrich-
ment-based weighted Bonferroni adjustment was used to 
correct for family-wise error rate (FWER).

In this study, we implemented a previously proposed, 
category-based Bonferroni adjustment based on the 
enrichment (the probability of a causal variant being 
from a category divided by the probability of a non-
causal variant being from the same category) of variant 
annotations observed for association signals [21] that 
were obtained from a GWAS conducted in Nordic Hol-
stein cattle. This adjustment is based on the hypothesis 
that different types of variants have varying probabilities 
of being causal mutations, which means the enriched cat-
egories of variants could have lower thresholds estimated 
from their enrichment. The GWAS results for 17 quanti-
tative traits were used to extract the lead SNP along with 
other significant SNPs showing LD (r2 > 0.2) with the lead 
SNPs, as potential causal variants to estimate the enrich-
ment of each of the annotated variants’ categories. We 

make the hypothesis that the category-based significance 
threshold will increase the power of a GWAS study. We 
tested this hypothesis by performing an association study 
on stature in cattle and comparing the results with those 
of a previously reported large meta-analysis in cattle stat-
ure and genes reported for human height.

Methods
Phenotype and genotype data
Since, no animal experiments were performed in this 
study, approval from an ethics committee was not 
required.

Phenotypic records on 17 traits/indices for Nordic Hol-
stein cattle were obtained from a central national database 
(Nordic Cattle Genetic Evaluation (NAV), http://www.
nordi​cebv.info/). For details on the genetic evaluations 
performed for these 17 traits/indices in Nordic countries, 
see http://www.nordi​cebv.info/produ​ction​. The pheno-
typic values used in the association analysis included de-
regressed proofs that were derived for animals based on 
the effective daughter contributions of sires and maternal 
grandsires [22, 23], which were obtained from the NAV 
routine genetic evaluations by using the MiX99 software 
[24]. De-regressed proofs were available for 5373 sires 
(the total number of animals varying according to trait). 
A short description of the 17 traits/indices is presented in 
Additional file 1: Table S1.

An association study was performed by using imputed 
WGS data, as previously described by Iso-Touru et al. [5] 
and Wu et  al. [25]. A total of 4921 bulls were genotyped 
with versions 1 or 2 of the Illumina BovineSNP50 Bead-
Chip (54  k) system (Illumina, San Diego, CA, USA). The 
54 k genotypes were imputed to the WGS level by using a 
2-step approach [26]. First, all the animals were imputed to 
a high-density (HD) level, by using IMPUTE2 v2.3.1 and 
a multi-breed reference of 3383 animals (1222 Holsteins, 
1326 Nordic Red Dairy Cattle, and 835 Danish Jerseys), 
which had previously been genotyped with the Illumina 
Bovine HD BeadChip [27]. The distribution of imputation 
accuracies according to minor allele frequency is described 
in [25]. These imputed HD genotypes were imputed with 
Minimac2 [28] to the WGS level by using a multi-breed ref-
erence of a total of 1228 animals that included 1148 animals 
from Run4 of the 1000 Bull Genomes Project [2] (288 Hol-
stein, 56 Nordic Red Dairy cattle, 61 Jersey cattle, and 743 
cattle from other breeds [2]), and 80 animals from Aarhus 
University (23 Holsteins, 30 Nordic Red Dairy cattle, and 
27 Danish Jerseys). The 1000 Bull Genome Project data are 
described in Daetwyler et  al. [2] and the whole-genome 
sequence data from Aarhus University are described in 
Brøndum et al. [29]. A total of 22,751,039 bi-allelic variants 
were present in these imputed sequence data. After exclud-
ing SNPs with a minor allele frequency lower than 1%, 
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and SNPs that deviate from Hardy–Weinberg proportions 
(P < 1.0−6), 16,503,508 SNPs on 29 autosomes in Nordic 
Holstein cattle were retained for association analyses.

Methodology for the detection of multiple QTL
We performed a GWAS according to a previously 
described approach [6]. First, a single SNP GWAS analy-
sis was performed by using GCTA [30] for each chromo-
some as the first round. Next, SNPs were ranked based on 
their − log10 (P) values. The SNP with the highest − log10 
(P) value, referred to as the lead SNP, was identified for 
each chromosome. If the − log10 (P) value of the lead SNP 
exceeded 8.5 (a threshold value representing a 0.05 type 
I error-rate after Bonferroni correction for 16,503,508 
simultaneous tests, e.g., − log10 (P) ≈ 8.5), the SNP geno-
type dosage was fitted as a covariate, and rerun in asso-
ciation analyses for the same chromosome as a second 
round. If the result of this second round detected another 
SNP with a − log10 (P) value exceeding 8.5, and this 
SNP was also significant in the first round (e.g., − log10 
(P) > 8.5), we fitted it as another covariate, and then 
scanned the chromosome in a third round. This same pro-
cedure was repeated for each chromosome until no addi-
tional SNPs remained significant. A list of the lead SNPs 
identified in each round was compiled. In each round, we 
checked whether the lead SNP was the only significant 
SNP identified within ± 1 Mb of flanking region. If it was, 
the SNP was not considered as a lead SNP since it could 
represent a false positive or be mapped to a wrong loca-
tion in the genome. Details regarding the 17 traits and the 
GWAS results are in Additional file 1: Table S1.

GWAS for stature in Nordic Holstein cattle
Stature in cattle is measured from the top of the spine 
between the hips to the ground. In Denmark, this trait 
is measured in cm. We performed a GWAS for stat-
ure according to the method described above. However, 
first we removed extreme phenotypic records according 
to Tukey’s rules of quartiles ± 1.5 × interquartile range. 
The remaining 4832 phenotypic records were associated 
with 15,535,049 imputed SNPs. The number of markers 
used for association with stature differs from that used in 
the GWAS conducted for the 17 traits (described above) 
since the set of sires was not exactly the same in both 
analyses.

LD estimation and variant annotation
PLINK was used to estimate pairwise LD (r2) between 
lead SNPs and all the other SNPs on the same chromo-
some. All SNPs that had an r2 with the lead SNPs higher 
than 0.2 were extracted. The SNPs that were not signifi-
cant in the association study were discarded in order to 
generate a list of possible causal variants. These SNPs 

were annotated with the variants effect predictor (VEP) 
(version 92.0) software [17]. The variants were subse-
quently classified into annotation categories according to 
the impact for the consequence type predicted by VEP. 
When a SNP had multiple annotations, the annotation 
with the highest impact predicted by VEP was retained. 
Information on transposase-accessible chromatin, i.e. 
ATAC-seq peaks [31], as well as histone modifications, 
i.e. H3K27Ac and H3K4me3 peaks [32], were retrieved 
from previously published studies. The locations of the 
UTR regions were obtained from Ensembl [33]. The loca-
tions of predicted regulatory elements (RE) were also 
obtained from a previous study [34], while the locations 
of non-coding RNAs (ncRNAs) were retrieved from the 
RNAcentral database [35].

Assessment of category enrichment and category‑based 
Bonferroni correction
Methods to assess the enrichment of each category, the 
enrichment confidence intervals, and weighted Bon-
ferroni corrections were previously described [21]. 
We classified all the variants based on the VEP anno-
tation: (1) high impact variants (e.g., stop_gained, 
stop_lost, start_lost, frameshift, splice_acceptor, and 
splice_donor variants), (2) moderate impact vari-
ants (missense_variants), (3) low impact variants 
(synonymous, stop_retained, upstream_gene, down-
stream_gene and splice_region variants), and (4) other 
variants (including SNPs with a consequence predicted 
as “modifier”). In addition, we further classified other 
variants (annotated by VEP as “modifier”) using open 
chromatin (OC) information to two categories, which 
resulted in a total of five categories: (1) high impact 
variants, (2) moderate impact variants, (3) low impact 
variants, (4.1) OC variants (annotated by VEP as “mod-
ifer” and located at ATAC-seq peaks [31] or H3K27Ac 
and H3K4me3 peaks [32]), and (4.2) variants with no 
known function i.e. NKF variants (including SNPs with 
a consequence predicted as “modifier”, which were not 
located in OC). Finally, we further classified the NKF 
variants (category-4.2 above) into four categories lead-
ing to a total of eight categories. The four NKF cat-
egories were: (4.2.1) variants located within 5′ and 3′ 
untranslated regions (UTR), (4.2.2) variants located in 
predicted RE according to a recently proposed algo-
rithm based on conservation among mammals [34], 
(4.2.3) variants located within ncRNAs retrieved from 
the RNAcentral database [35], and (4.2.4) variants 
with no known information (NKI) predicted as “mod-
ifier” and not located in any of these first three types 
of sequence. First, we considered UTR, since these 
regions mediate the initiation and termination of trans-
lation. Next, we considered the experimental datasets 
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of accessible chromatin (ATAC-seq) [31] and active 
motifs (H3K27Ac and H3K4me3) [32]. Second, we con-
sidered RE for two reasons: (1) because promoters and 
transcription factor binding sites are near transcription 
start sites [36, 37], and regions proximal to genes tend 
to exhibit greater enrichment of significantly associ-
ated variants in GWAS [38]; and (2) predicted RE can 
potentially help identify causal mutations [34]. ncRNAs 
play a major role in gene expression regulation [39], 
although their specific functions are largely unknown 
[40]. The detailed classification of variants is in Addi-
tional file 1: Table S2.

According to Sveinbjornsson et  al. [21], we esti-
mated the probability of a causal variant being a par-
ticular annotation type (according to the five or eight 
categories that we established in this study) by using a 
maximum likelihood method. Accordingly, the enrich-
ment of an annotation category was estimated based on 
the probability of a causal variant being from a class, 
divided by its genomic frequency. The significance 
threshold for each annotation category was then esti-
mated based on a category-based Bonferroni correction 
threshold that was established based on enrichment of 
the annotation class. For example, for a total number of 
sequence variants tested (T), the number of variants in 
an annotation category C (TC), and enrichment of cat-
egory C (eC), cj is the category to which the jth sequence 
variant belongs with enrichment eCj, and the weight for 
the jth sequence variant is [21]:

where Pwtj and Pbc are weighted significance thresholds 
for the jth variant and Bonferroni corrected FWER, 
respectively.

Bootstrapping and confidence interval estimation 
for enrichment
Association signals (QTL) were resampled 100 times 
with replacement. For each resample, we estimated 
enrichment for annotation categories and calculated 
the averages and 95% confidence intervals. The code 
for bootstrapping procedure is included in the R code 
provided in Additional file  2 together with the code for 
enrichment estimation.

Results
GWAS for 17 traits in Nordic Holstein cattle
A total of 5373 animals with 16,503,508 imputed SNPs 
were subjected to GWAS for 17 traits. A previously 
described pipeline [6] was used to detect the ‘lead’ 

wj =
ecj

1
T

∑
C Tcec

,

Pwtj = Pbc × wj ,

variants that showed the highest association for each 
association signal. A total of 261 QTL (see Additional 
file 1: Table S1) were detected with a genome-wide asso-
ciation significance threshold of − log10(p) > 8.5. Signifi-
cant associations were observed for 16 of the 17 traits 
examined (see Additional file 1: Table S1). Due to long-
range LD in the bovine genome [5], sequence variants 
that were in LD with the lead SNPs (r2 > 0.2) and genome-
wide significant were identified as possibly causal. In 
total, 78,593 possibly causal variants on 29 autosomes 
were selected for further analysis.

Annotations for all possible causal variants
The variant effect predictor (VEP) software (version 92.0) 
[17] was used to predict the maximal consequence of 
the variants on the nearest genes (e.g., within 5-kb flank-
ing regions). A summary of the annotations obtained is 
in Fig.  1. Most of the annotated variants are intergenic 
variants or intron variants (Fig.  1a). Among the coding 
sequences, the most abundant variants are synonymous 
variants and missense variants (Fig.  1b). We also exam-
ined the distribution of annotations among the possible 
causal variants and the lead variants. The total number of 
variants in these two sets were equal to 78,593 and 261, 
respectively. The overall distributions of the annotations 
for these two groups (Fig. 1c–f, respectively) were similar 
to that of the entire set of variants (Fig.  1a, b). We also 
observed that no high impact variants (e.g., “stop gained” 
or “start lost” variants) were present among the lead 
SNPs identified.

Enriched annotations and annotation‑based significance 
thresholds based on VEP annotation
Based on the VEP-derived annotations, we classified all 
the annotation types obtained into four categories: (1) 
high impact variants, (2) moderate impact variants, (3) 
low impact variants, and (4) other variants. The other 
variants included SNPs that were annotated by VEP as 
intergenic variants, and those with a consequence pre-
dicted as “modifier”. A plot of category enrichment is in 
Fig.  2. In contrast with the results of previous GWAS 
that involved quantitative and binary phenotypes 
in humans [21], low impact variants were the most 
enriched (245-fold enrichment) category instead of the 
high impact variants (Table 1). The next most enriched 
category was the moderate impact variants, and these 
exhibited a fivefold enrichment (Table  1). We did not 
observe enrichment for high impact variants and ‘other 
variants’.

Incorporation of information of open chromatin
While an extensive dataset of DNase I hypersensi-
tivity sites (DHS) is available for the human genome 
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[21], such data are much more limited for the bovine 
genome. However, an assay for transposase-accessible 
chromatin with a high-throughput sequencing (ATAC-
seq) dataset for cattle was recently generated to explore 
accessible chromatin regions in the bovine genome 
[31]. In addition, a histone modification dataset (for 
H3K27Ac and H3K4me3) was created to mark active 
motifs across the bovine genome [32]. Therefore, in 
combination with VEP-derived annotations, we clas-
sified all the annotation types obtained into five cat-
egories: (1) high impact variants, (2) moderate impact 
variants, (3) low impact variants, (4) open chromatin 
(OC) variants, and (5) variants with no known function 
(NKF). The latter included variants that are not known 
to affect biological processes, including SNPs annotated 

by VEP as intergenic variants, and those with a conse-
quence predicted as “modifier” which were not located 
within OC regions. A plot of category enrichment is in 
Fig. 3. In contrast with the results of a previous GWAS 
that involved quantitative and binary phenotypes 
in humans [21], low impact variants were the most 
enriched (405-fold enrichment) category instead of the 
high impact variants. Moreover, in spite of a large vari-
ance in the interval of enrichment for the low impact 
variants, the lower boundary still represented a high 
level of enrichment (Table  2). The next most enriched 
category was the moderate impact variants, and these 
exhibited a fivefold enrichment, followed by the high 
impact variants that exhibited a fourfold enrichment. 
The lower boundary of the high impact variants was 

Fig. 1  VEP annotations for the variants examined in this study. a Overall distribution of VEP annotations for all variants. b Annotation distribution for 
the variants present in coding sequences of all variants (c), for possible causal variants from the LD analysis, d for possible causal variants in coding 
sequences from the LD analysis, e for lead variants, and f for lead variants in coding sequences
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not enriched and this category included only 19 vari-
ants (Table 2). Furthermore, enrichment was observed 
only for 2 of 100 replicates (with values of 177-fold and 
133-fold, respectively; (see Additional file 3: Table S3). 
Therefore, we did not consider that these high impact 
variants were true positives. Finally, the OC category 
exhibited a 2.5-fold enrichment. Based on these enrich-
ment values, a category-based significance threshold 
was calculated for each variant category (Table 2).

Incorporation of additional genomic information 
to address NKF variants
The enrichment observed for each of these eight cat-
egories (including sub-categories from ‘modifiers’) is 
provided in Table 3 and represented in Fig. 4. The most 
enriched variants were high impact variants (33.69-fold 
enrichment), which is similar to the enrichment profile 

of human variants reported in [21]. The moderate impact 
variants exhibited a 17.16-fold enrichment and the low 
impact variants exhibited a 7.30-fold enrichment. The 
ncRNA category exhibited a 22.70-fold enrichment, the 
UTR category exhibited a 16.64-fold enrichment, and the 
OC and RE categories exhibited 3.59-fold and 2.53-fold 
enrichments, respectively.

Variant annotation‑based significance thresholds in GWAS
To assess the power of using annotation category-based 
significance thresholds, we applied this approach to a 
GWAS conducted for stature in cattle and identified 35 
QTL on 21 chromosomes (see Additional file 4: Figure 
S1 and Additional file 3: Table S4). The number of sig-
nificant variants within each of the four, five and eight 
categories of classified annotations (as described above) 

Fig. 2  Enrichment of VEP and OC annotations for the four-category annotation system. Relative enrichments for four categories of variants. The 
error bars indicate the standard errors derived by bootstrapping. Enrichment is shown on the y-axis on a logarithmic scale

Table 1  Enrichment of four annotation categories and their category-based significance thresholds

The confidence interval for each degree of enrichment is the 95% confidence interval obtained from bootstrapping resampled QTL 100 times

*Indicates that the category-based significance was not calculated for this annotation class since there was no enrichment for this category

Category Number of possible causal 
variants

Enrichment Confidence interval Category-based 
significance threshold

High impact 19 0.017 − 0.00013 to 0.034 NA*

Moderate impact 391 4.40 3.84–4.96 6.88e−9

Low impact 799 245.45 236.44–254.45 3.84e−7

Other 102,214 0.89 0.88–0.89 NA*
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Fig. 3  Enrichment of VEP and OC annotations for the five-category annotation system. Relative enrichments for four categories of variants. The 
error bars indicate the standard errors derived by bootstrapping. Enrichment is shown on the y-axis on a logarithmic scale

Table 2  Enrichment of five annotation categories and their category-based significance thresholds

The confidence interval for each degree of enrichment is the 95% confidence interval obtained from bootstrapping resampled QTL 100 times

*Indicates that the category-based significance was not calculated for this annotation class since there was no enrichment for this category

Category Number of possible causal 
variants

Enrichment Confidence interval Category-based 
significance 
threshold

High impact 19 4.92 0.18–9.65 5.87e−9

Moderate impact 391 5.04 4.13–5.96 6.00e−9

Low impact 799 405.08 362.29–447.88 4.82e−7

Open chromatin 7227 2.49 2.33–2.65 2.96e−9

No known function 94,987 0.72 0.70–0.74 NA*

Table 3  Enrichment of eight variant categories and their category-based significance thresholds

The confidence interval for each degree of enrichment is the 95% confidence interval obtained from bootstrapping resampled QTL 100 times

*Indicates that the category-based significance was not calculated for this annotation class since there was no enrichment for this category

Category Number of possible causal 
variants

Enrichment Range of enrichment Significance 
threshold

High impact 19 33.69 16.85–50.54 1.02e−7

Moderate impact 391 17.16 13.56–20.75 5.20e−8

Low impact 799 7.30 4.74–9.87 2.21e−8

3′ and 5′ UTR​ 343 16.64 12.56–20.43 5.04e−8

Open chromatin 7152 3.59 3.30–3.89 1.09e−8

Regulatory elements 9520 2.53 2.33–2.73 7.65e−9

Non-coding RNAs 95 22.70 15.27–30.12 6.88e−8

No known information 85,104 0.53 0.51–0.55 NA*
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are in Tables  4, 5 and 6, respectively. When adjusted 
thresholds based on the four-category classifications 
were used in comparison with a flat Bonferroni mul-
tiple-testing correction across the tested variants, the 
total number of significant variants increased from 
58,539 to 58,992 (Table  4). Then, when we checked 
whether the additional genes that were identified 
with the category-based thresholds had been previ-
ously identified as candidate genes in a meta-analysis 
study on bovine stature [41], we found that TNNI2 and 
TCP11 were identified by the new significant variants 
(n = 453). Subsequently, when we checked for overlap 
between the newly identified genes and those from a 
previous study on human height [42], we detected five 
overlapping genes i.e. ANKRD52, DNMT1, SCN4A, 
TP53I13, and TCP11 that may be associated with cattle 
stature and human height.

When adjusted thresholds based on the five-category 
classifications were used versus a flat Bonferroni multi-
ple-testing correction across the tested variants, the total 
number of significant variants increased from 58,539 
to 58,993 (Table  5). The list of identified genes is simi-
lar to that obtained with the four-category classification 
threshold, except that one additional gene FBP1 was 
included. When adjusted thresholds based on the eight-
category classifications were used versus a flat Bonferroni 
multiple-testing correction across the tested variants, 

the total number of significant variants increased from 
58,539 to 61,191 (Table 6) and the newly identified vari-
ants (n = 2652) included TNNI2 and TCP11, as obtained 
by using the four- or five-category classification thresh-
olds. When we checked for overlap between these newly 
identified genes with the previous study on human height 
[42], in this case, we detected more genes i.e. GHR, 
THADA, RPS6KA1, TP53I13, TCP11, VGLL4, KCNJ12, 
PPP2R3A, GCKR, and ZBTB38 that may be potentially 
relevant for cattle stature and human height.

Fig. 4  Enrichment of VEP annotations and further classification of NKF variants into UTR, RE, and ncRNA in an eight-category annotation system. 
Relative enrichments for seven categories of variants are presented. Error bars indicate standard error values derived from bootstrapping. 
Enrichment is shown on the y-axis according to a logarithmic scale

Table 4  Comparison of  the  numbers of  significantly 
associated SNPs identified by  applying an  annotation 
category-based Bonferroni correction to  each annotation 
category

Category Number of significant variants

With conventional 
Bonferroni correction

With category-based 
Bonferroni correction

High impact 9 9

Moderate impact 208 234

Low impact 378 805

Other 57,944 57,944

Total 58,539 58,992
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Discussion
The goal of this study was to investigate whether cat-
egories of variants with different probabilities of being 
functional can be identified based on enrichment values 
obtained from categorization of GWAS results. When we 
classified all the variants on the basis of VEP annotation 
only, we observed a greater enrichment of “low impact” 
variants and a limited enrichment of “moderate impact” 
variants (Table 1). When we classified all the variants into 
five categories based on: (1) their impact predicted by 
VEP, (2) an ATAC-seq dataset indicating accessible chro-
matin regions [31], and (3) a histone modification dataset 
(involving H3K27Ac and H3K4me3) [32], we observed 
a greater enrichment of “low impact” variants and lim-
ited enrichment of “high impact”, “moderate impact”, 
and OC variants (Table  2). In contrast, when we classi-
fied the original GWAS variants into eight categories, a 
more than tenfold enrichment was observed for the “high 
impact”, “moderate impact”, UTR, and ncRNA categories 

(Table  3), whereas “low impact” variants, OC, and RE 
categories exhibited a limited enrichment. This variant 
enrichment profile differs from that reported in a study 
on human data [21], for which the enrichments observed 
were in line with the magnitude of the predicted conse-
quences of the variants. Thus, the variants with conse-
quences that were predicted to be more severe displayed 
a greater enrichment. One reason for this difference in 
results may be the inclusion of both quantitative traits 
(n = 96) and binary (disease) phenotypes (n = 123) in 
the human study [21] versus the use of only quantita-
tive traits (n = 17) in the bovine study. For complex dis-
ease traits, a loss-of-function variant can induce a disease 
state. Consequently, such variants have a higher prob-
ability of being causal for complex disease phenotypes. 
Economic traits in dairy cattle are generally quantitative 
traits that are affected by genetic variants in many genes, 
each gene having a small effect. Furthermore, in addition 
to loss-of-function and gain-of-function mutations, most 
of the causal mutations that underlie economic traits are 
likely to belong to regulatory variants which control the 
up- or down-regulation of genes. Among the categories 
of enriched variants that we identified in our study, most 
of them had a link with the regulation of gene expression, 
such as cis-regulatory elements (e.g., upstream gene vari-
ants, downstream gene variants, and UTR) [43] and ncR-
NAs [40]. These variants can alter translation efficiency, 
particularly the synonymous variants [44], UTR [45], and 
ncRNAs [40]. In addition, they can affect transcript splic-
ing, particularly the ncRNAs [40] and splice region vari-
ants. As a result, these variants can alter the functions of 
encoded proteins. A previous study demonstrated that 
regulatory elements are a major source of quantitative 
trait variation [46]. We go one step further and suggest 
that variants that affect both gene expression and protein 
translation (including translation efficiency and protein 
product stability) could be the source of quantitative trait 
variation.

Data from GWAS on stature in cattle were also used to 
check if an approach using an annotation category-based 
significance threshold can identify more associations 
than the use of a uniform Bonferroni multiple-testing 
correction threshold. A recent meta-analysis conducted 
in cattle [41] proposed a list of candidate genes that affect 
bovine stature. With the three annotation classification 
approaches that we used here, we identified two addi-
tional candidate genes, TNNI2 and TCP11. Furthermore, 
comparison between the new list of genes reported here 
and that from a previous GWAS conducted on human 
height [42] revealed five additional genes with the four-
category enrichment method, six additional genes with 
the five-category enrichment method, and ten addi-
tional genes with the eight-category enrichment method. 

Table 5  Comparison of  the  numbers of  significantly 
associated SNPs identified by  applying an  annotation 
category-based Bonferroni correction to  each annotation 
category

Category Number of significant variants

With conventional 
Bonferroni correction

With category-based 
Bonferroni correction

High impact 9 10

Moderate impact 208 226

Low impact 378 852

Open chromatin 3700 3661

No known function 54,244 54,244

Total 58,539 58,993

Table 6  Numbers of  significantly associated SNPs 
identified by  using different significance thresholds 
for each annotation category

Category Number of significant variants

Bonferroni 
correction

Category-based 
Bonferroni 
correction

High impact 9 11

Moderate impact 208 334

Low impact 378 507

3′ and 5′ UTR​ 194 296

Open chromatin 3657 4620

Regulatory elements 6621 7911

Non-coding RNAs 69 109

No known function 47,403 47,403

Total 58,539 61,191
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Several reasons can explain why our approaches detected 
only a fraction of the candidate genes reported in previ-
ous studies [41, 42]: (1) loss of power for NKF and NKI 
categories, since we mixed variants with different prob-
abilities due to lack of information for most variants; in 
this case, the enrichment estimation for NKF, NKI and 
unannotated variants that belong to another annotation 
category will be affected; (2) some of the causal variants 
reported in the meta-analysis study on bovine stature 
[41] and in the GWAS study on human height [42] do not 
segregate in the Nordic Holstein population; and (3) the 
relatively poor annotation of the bovine genome com-
pared with the human genome. Nevertheless, our find-
ings demonstrated that implementation of an annotation 
category-based significance threshold approach results in 
a larger number of high confidence candidate genes that 
include significant SNPs than the use of a flat Bonferroni 
multiple-testing significance threshold.

In this study, we observed distinct enrichments when 
two variant classification systems were used (e.g., 5 vs. 8 
categories of classification) although the same number 
of potential causal variants was present in each system. 
There are two possible explanations for this observa-
tion: (1) the number of traits included in the analysis was 
small, thereby resulting in the detection of a limited num-
ber of QTL, e.g. there were only 19 high impact poten-
tial causal variants; with resampling, the number of high 
impact potential causal variants can fluctuate between 
extremes, as observed for the different replicates (see 
Additional file 3: Table S3); and (2) the number of anno-
tation categories that were considered, and the underly-
ing genetic architecture of the traits, may be contributing 
factors, e.g. a larger distribution of the enrichment level 
was observed across the categories established in this 
study when the variants were categorized into eight 
classes instead of five (see Additional file 3: Table S5).

In our study, we achieved slightly higher power with the 
classification of variants into categories based on annota-
tions (Table 4 vs. Table 5 vs. Table 6). Further improve-
ments are expected as the knowledge on the function 
of different genomic features in cattle increases. There 
are more and more studies that report the functions of 
non-coding sequences. For example, long ncRNAs have 
been identified as key regulators of chromatin states [47], 
microRNAs have been shown to play key roles in animal 
development and physiology [48], and cis regulatory ele-
ments may be located in 5′ or 3′ UTR. In combination 
with trans-regulatory elements, these elements regulate 
the level of gene transcription [49, 50]. In a human study 
[21], NKF variants were categorized according to the 
presence or absence of overlap with DHS. The group of 
variants that overlapped with DHS was more enriched 
with GWAS hits than the group of variants that did not 

overlap with DHS. These results provide support for 
future efforts to classify NKF variants, especially in cat-
tle for which this information is not currently available. 
In our study, an ATAC-seq dataset [20] of accessible 
chromatin and a histone modification dataset (H3K27Ac 
and H3K4me3) [34] provided additional genomic infor-
mation. In spite of these additional data, the OC variant 
category was only moderately enriched (Tables 2, 3) but 
these datasets were each generated from a single tissue 
from a few individuals, which could have introduced 
errors. Alternatively, predicted regulatory elements could 
be used, although they may introduce noise and reduce 
the estimated degree of enrichment. In our study, the 
NKF variants were divided into five categories according 
to their relation to UTR, OC, predicted RE [34], ncRNAs 
[35], and NKI variants. We anticipate that as the func-
tional annotation of dairy cattle genomes improves, the 
power of this approach will increase.

Conclusions
Analysis of the results from GWAS conducted on 17 
quantitative traits in dairy cattle revealed high levels 
of enrichment for “high impact” variants, “moderate 
impact” variants, “low impact” variants, variants located 
in 3′ and 5′ UTR, and variants located in potential 
ncRNA regions. By setting category-based genome-wide 
significance thresholds based on these annotation enrich-
ment data, we were able to identify new candidate genes 
that affect stature in cattle. We anticipate that future 
improvements in the annotation of the bovine genome, 
will optimize the usefulness of this approach even more.
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