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Abstract: Frequent and accurate inspections of industrial components and equipment are essential
because failures can cause unscheduled downtimes, massive material, and financial losses or even
endanger workers. In the mining industry, belt idlers or rollers are examples of such critical
components. Although there are many precise laboratory techniques to assess the condition of
a roller, companies still have trouble implementing a reliable and scalable procedure to inspect their
field assets. This article enumerates and discusses the existing roller inspection techniques and
presents a novel approach based on an Unmanned Aerial Vehicle (UAV) integrated with a thermal
imaging camera. Our preliminary results indicate that using a signal processing technique, we are
able to identify roller failures automatically. We also proposed and implemented a back-end platform
that enables field and cloud connectivity with enterprise systems. Finally, we have also cataloged the
anomalies detected during the extensive field tests in order to build a structured dataset that will
allow for future experimentation.

Keywords: conveyor belt; idler rollers; thermography; UAV inspection; computer vision; maintenance

1. Introduction

The mining industry needs to transport large amounts of raw material. In addition to the iconic
haul trucks, Belt Conveyor System (BCS) are one of mining’s most effective workhorses. In the
bulk port where we conduct our study, more than 120 km of BCS are installed, demanding frequent
inspection and maintenance due to their heavy use. A roller is the component used to support the
belt which carries the material. Even though it is easy to assess the condition of one single roller, the
task becomes grueling when more than two hundred thousand rollers spread over an area of almost
500 hectares need inspection. Furthermore, the effectiveness of the inspection relies completely on the
inspector’s capabilities.

These facts combined increase the likelihood of inadequate inspections that may lead to future
failures, production losses and damaged infrastructure. In this paper, we describe the implementation
and field validation of the sensing and back-end modules of our solution. Using a teleoperated
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Unmanned Aerial Vehicle (UAV) equipped with a thermographic camera and offline signal processing
techniques, the inspection procedure has been greatly improved, with quantifiable benefits in terms of
precision, mobility, and productivity.

While the results of our extensive field-trials in the bulk port demonstrate that the concept
works, we also discuss the main setbacks and conditions that affect the accuracy of the thermographic
inspection in uncontrolled industrial environments; in summary, our main contributions are:

• The implementation and test of an UAV-based thermographic inspection procedure for belt
conveyor rollers;

• A discussion about several factors influencing thermographic inspection of rollers;
• The creation of a labeled dataset of thermal images for supervised machine learning studies;
• A review of the main techniques to monitor conveyor belt rollers.

The rest of this paper is structured as follows: Section 2 introduces the challenges that mining
companies face inspecting conveyor belt systems. Section 3 describes the failure mode of rollers,
discuss the main techniques to monitor their condition and automated mechanisms of roller’s
identification. Section 4 presents the layers and tiers of our proposed solution. Section 5 describes the
field experiments, the challenges in real environments and discusses the results. Section 6 concludes
the paper and outlines future work and research directions.

2. Problem Statement

BCS are extensively used for bulk material handling in different industries, particularly in mining.
Ports are generally at the end of the mining process chain and rely on this equipment to transport a
significant amount of material throughout different areas that include unloading points, stockyards
and ship loaders.

Maintenance inspections are regularly performed on the different components of the BCS to
ensure a safe and high-availability operation of this critical equipment. A small part of the components,
like rolls, pulleys, take-up system, and driver unit are grouped in the head or the tail of the Belt
Conveyor (BC), facilitating the installation of automated inspection systems. However, most of the
components are dispersed over the extent of the conveyor system, making it harder to monitor or
inspect them.

One of these components is the roller, responsible for supporting the belt and the transported
material. The number of rollers is proportional to the extension of the BC. The conveyor configuration
may vary, but a conventional BC has an idler with three carrying rollers spaced at roughly 1 meter.
It means 3000 rollers per kilometer of conveyor requiring individual condition monitoring. At the
bulk port where we conduct our study, the monitoring of more than 120 km of BCS is performed
without instruments, with sensitive inspections, relying only on the experience of the maintenance
team. The inspector walks on both sides of each BC and checks every roller for locked and damaged
parts or abnormal noises. The current practice has several disadvantages, such as the poor quality of
the inspection, the intensive use of skilled labor, and health and safety concerns related to hazardous
environments.

If the quality of the inspection is questionable, the consequences of an undetected defective
roller are unpredictable. There may be no damage to the BC until the roller’s eventual replacement,
but it may also overheat and set the belt on fire. In extreme circumstances, the fire may spread to
other equipment in the port, what is a dangerous situation entailing high financial losses. Figure 1
demonstrates examples of defective rollers with different consequences.
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(a) Roller Seizure (b) Shaved Rubber (c) Bearing Failure

(d) Sheered Idler holder (e) Roller on Fire (f) Damaged Rollers

Figure 1. Rollers failures and its consequences: (a) Roller seizure that shaves the rubber of the BC,
as demonstrated on (b). (c) A bearing failure affecting only the central roller. (d) Another bearing
failure, this time, also affecting the idler holder. (e) An impact roller on fire and (f) rollers damaged by
this event.

3. Background and Related Work

3.1. Roller Structure and Failure Detection

The rollers are rotating machinery composed by two bearings mounted on a stationary shaft
encased by a cylindrical surface (referred as cladding or shell) [1]. While a few defects affect the roller’s
shell, the majority of them are related to the bearings.

As any rotating machinery, the rollers can be monitored by assessing the bearings’ condition
based on three signals:

I. Acoustic: Depending on the construction materials and internal characteristics, the bearing has
specific acoustic emissions [2]. Despite the difficulty to isolate and process the frequencies of
interest, an increase in amplitude or disturbances in the roller’s sound signature can indicate
incipient bearing failure, emphasizing the predictive behavior of this signal [3].

II. Thermal: When the roller is rotating, there is friction between its internal parts. A malfunction
on the bearing increases the friction and so the temperature. Different thresholds can be used to
evaluate the failure stage, but a 5 ◦C increase in comparison to adjacent bearings is already an
indication of an early stage malfunction [4] or an uneven roller that wears faster.

III. Vibration: Changes in the natural vibration frequencies evidence the malfunctions in the
bearings. As with the acoustic signal, it is not trivial to isolate and process frequencies to
diagnose failures based on vibration, but several techniques can be used [3]. It is also possible to
classify the defect according to the vibration [5].

Next section discusses how the available techniques use at least one of the discussed signals to
monitor the condition of conveyor belt rollers.
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3.2. Condition Monitoring Techniques

Current techniques employ acoustic, thermal and vibration signals to assess the condition of the
rollers. However, they differ on the type of the sensors used and how they are positioned (embedded
in the roller, in the frame of the BCS or externally to the BCS). Figure 2 presents a diagram to classify
the main solutions available.

Figure 2. Sensor position and main techniques to monitor the condition of conveyor belt rollers.

The first group of solutions [6–9] encloses different types of sensors in the roller to capture thermal,
vibration, and acoustic signals. The roller becomes an Industrial IoT device, with built-in ability to
measure, classify and report abnormal conditions. However, all existing rollers must be replaced by
smart models to achieve a fully continuously monitored BC, which it is not trivial due to the enormous
amount of rollers in operations. Commercial solutions [10] are already available though.

The second group of solutions in Figure 2 is based on Fixed Sensors installed in the frame of the
BCS. Li et al. [11] propose the installation of accelerometers to capture the vibration, Wavelet Packet
Decomposition to isolate and identify the defective roller and Support Vector Machine to classify the
failure. Similarly, Tan et al. [12] use neural networks and classifiers to recognize different failure types
based on vibration signal. In turn, Jiang and Cao [2] capture acoustic signal with microphones and use
Wavelet Transform to detect faulty behavior in rollers.

This kind of solution still uses a large number of sensors, proportional to the extension of the BC.
An alternative is the use of Distributed Optical Fiber Sensing (DOFS), where an optical fiber cable act
both as sensor and transmission media [13]. Two main optical fiber sensing principles can be used to
monitor the rollers:

I. Distributed Temperature Sensing (DTS), which is based on Raman Optical Time-Domain
Reflectometry (OTDR) principle [14]. Using this technique, Hu et al. [15] achieved a spatial
resolution of 3 m with the uncertainty of 2 ◦C in a 10 km installation in an underground coal
mine. The authors reported the meticulous calibration to insulate external factors in temperature
measurement as the main drawback. Raman OTDR technology is still receiving improvements
[16] and several commercial systems are based on it [17–19].

II. Distributed Acoustic Sensing (DAS) that is based on Rayleigh Coherent Optical-Time Domain
Reflectometry (C-OTDR) principle [20] and relatively recent when compared to other DOFS
technologies for roller’s condition monitoring [21]. There is ongoing research [22] and
advanced-stage field tests [23], both with promising results. However, the launch of
commercial solutions still depends on the ability to isolate and extract the condition from
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the frequencies issued by the bearings [24], since BCS and the environment where they operate
are intrinsically noisy.

The third and last group of solutions presented in Figure 2 refers to Mobile Sensor Structures. One
option is to have a sensor structure dedicated to a single BC, yielding a nearly continuous monitoring.
An example is the work of [25], where the authors created a robot that moves inside the frame of the
BC and capture infrared thermal images to assess the temperature of the rollers. The main drawback is
that mandatory adaptations to the BC are generally not feasible.

Another possibility is having a detachable and independent sensor structure transported by
different carriers, like ground robots [26], cable or rail drones, UAVs [26,27], and even human inspectors.
This design adds flexibility and may also reduce costs, because a single sensor structure can be used to
monitor multiple BCS. The obvious downside is the sequential (batch) monitoring. Other shortcomings
are related to the carriers themselves. Human inspectors are slow, walking at 1.4 m/s [28]. Ground
robots may face difficulties climbing ladders and accessing unpaved paths, while UAVs have indoor
flying limitations.

Based on the discussed methods, we understand that the use of built-in sensors is not ideal for
existing operations, due to the retrofitting requirements of more than 200,000 rollers in the port of the
study case. Similarly, the use of fixed sensors, yet possible, is unfeasible to the extension of more than
120 km. DOFS is very promising, but the challenging calibration is the main weakness. As discussed
above, mobile sensor structures also have their own handicaps, but they can be seen as a transition
from manual inspection to online monitoring provided by built-in or fixed sensors.

Thus, we chose the UAV as a carrier, since it is: (i) not affected by terrain conditions; (ii) can fly
at high speeds, which can reduce the inspection time and; (iii) are appropriate to be used in open
areas, like the stockyards, where the greater extension of the BCs is located. To obtain the condition
of the roller we chose the thermal signal. There are commercial thermal cameras for UAV and this
signal is simpler to capture from a UAV when compared to acoustic and vibration signals, even though
extracting relevant information is not trivial, as better discussed in Section 5.

To the best of our knowledge and disregarding patents [26,27], this is the first industrial-scale
application of aerial thermography for rollers’ inspection. Other works linking thermography and
UAV are focused on diverse applications, like crop management [29,30], power line [31,32] monitoring,
and solar power plants inspection [33–35]. The works of [36,37] are examples of applications that use
drones and machine learning algorithms to aid inspection processes. Next, we present the details and
components of our solution.

4. Proposed Solution

As demonstrated in the Figure 3, the solution is split into two layers: Sensing Platform and
Back-end Platform. The former is composed of three tiers to capture the current state of the rollers
and report defective conditions to Back-end Communication Platform. In turn, this layer enables the
connectivity with systems in the organization and visualization tools (Figure 4), enabling the use of
rollers’ condition information, particularly by the Maintenance System. The following subsections
describe the tiers of each layer.

Figure 3. Main parts of the proposed solution to inspect conveyor belt rollers.
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4.1. Sensing Platform

4.1.1. Data Capture

This tier is responsible to provide the data used by remaining tiers of the solution. Our sensing
platform follows the Mobile Sensor Structure approach, where we use a DJI Inspire I (UAV) to carry a
DJI Zenmuse XT thermal camera. The UAV has a maximum autonomy of 18 min, a range of 5 km in
interference-free environments and can maintain stable flights at the maximum speed of 21.9 m/s with
wind speeds up to 10 m/s. In ideal situations, flying at 9 m/s, the UAV is able to inspect both sides of
a 1.5 km BC in just 5.5 min, while an inspector walking at 1.4 m/s and spending merely 2 s to check
each roller would take 5.6 h, almost a full day of work.

The DJI Zenmuse XT thermographic camera has a resolution of 640 × 512, a 19 mm lens and
frame-rate of 9 Hz, enabling the capture of at least one frame each meter in a flight at 9 m/s. Moreover,
it weighs 270 g, has a Field of View (FOV) of 32◦ × 26◦, Instantaneous Field of View (IFOV) of 0.895 mr,
and features uncooled VOx microbolometers sensible to a spectral range from 7.5 to 13.5 µm [38] that
can be classified as Long-Wavelength Infrared (LWIR), ideal to measure temperatures from −20 ◦C to
650 ◦C.

Current local laws governing the use of UAVs do not allow fully autonomous flight. Therefore,
a pilot must control the drone. The pilot is also responsible for taking photos and recording videos.
These data are stored in the drone’s memory card and transferred to a computer after the flights.
In future work, we will investigate the streaming of images and thermal information to the computer
during the flight to enable online data processing.

4.1.2. Assess Roller’s Condition

The first step is to find the bearings of the rollers in the images, which are the regions of interest.
Next, we acquire radiometric data of each pixel inside this region and transform the image in a matrix
of temperature values. Following, these regions are processed to extract the temperature of the roller
and check its condition. This tier employs different image processing algorithms to this end. Each step
of the method is better discussed in a real situation in the Section 5.1.3.

4.1.3. Roller Identification

In this tier, Global Navigation Satellite System (GNSS) data stored in the image with a precision
of 0.5 m in the vertical and 2.5 m in the horizontal are corrected using Differential Global Navigation
Satellite System (DGNSS) data provided by base stations located in the port. Drone’s position is
then compared with known georeferencing data of the BCs. With the distance of the UAV to the BC,
altitude and longitudinal position, it is possible to obtain the position of a defective roller in the image.
However, the integration and processing of each of this information is still under development and is
not the scope of this paper to detail it.

4.2. Back-end Platform

4.2.1. Middleware

The middleware tier is important to enable the connectivity between the Sensing Platform
and Back-end Systems that consume information about the inspection. We focused on providing
information to the Computerized Maintenance Management System (CMMS), since it is the most
important system for maintenance planning, but this layer can be used as a bridge between the Sensing
Platform and any system demanding rollers’ condition information. Such capability is possible due to
the adoption of a Service Oriented Architecture (SOA) approach and an Enterprise Service Bus (ESB)
to decouple the publisher (Sensing Platform) from the receiver (virtually any system).

As demonstrated in Figure 4, the middleware tier has two main roles: connectivity and protocol
conversion. In the first role, it is used as a secure gateway between the corporative and external
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networks (4G, WiFi, etc.), where the Sensing Platform is connected to. We used Azure’s API
Management [39] to expose a REST [40] API available through the Internet (cloud), so any request to
this API is forwarded to the ESB in the corporative network through a VPN link.

Figure 4. Middleware connectivity and protocol translation.

The second role is protocol translation. The ESB already exposes webservices using Simple
Object Access Protocol (SOAP) [41] to report defects in the CMMS. The middleware is used to convert
Representational State Transfer (REST) requests (lightweight and ideal for mobile solutions) to SOAP.

4.2.2. Back-end Systems

Information about defects is important to several systems within the organization, so the platform
must report them as soon as they are identified on the field. Due to the criticality of the CMMS, we
used it as an example of a back-end system demanding accurate information.

The CMMS globally used by the company is the SAP Plant Maintenance (PM). This system
is responsible for managing the maintenance routine, including preventive and corrective work.
The maintenance module is fully integrated with remaining modules of the Enterprise Resource
Planning (ERP). This kind of integration streamlines company’s processes, but it also demands reliable
information. The current practice, based on sensitive inspections, has two drawbacks regarding
reliability: the quality of the inspection itself, since no instruments are used, and the manual input
of inspection outcomes in the CMMS by inspectors. Types mismatch, the incompleteness of fault
information, and inaccurate position of a defective roller are common.

Such occurrences can lead to rework in the maintenance routine. The defects reported by the
inspectors are registered as maintenance notifications. Then, a maintenance planning team schedule
and assign the work to an execution team, responsible to fix the problem, generally replacing the
defective roller. If this group does not have the precise position of the defect, they will waste time
re-checking rollers in the region reported or will simply cancel the work order, leading to human
overhead and risks of not replacing a roller. Since such situations are real, a robust integration between
the Sensing Platform and the CMMS is required.

5. Experiments and Results

The field tests of our proposal were performed in a bulk port. We conducted tests at different
times and on several BC to cover as many diverse situations as possible. The yellow dashed areas in
Figure 5 represents the different locations where the tests were performed. Using the Sensing Platform,
we captured 722 images represented as red dots in the image. After collecting this image database, we
developed an algorithm in MATLAB to handle the computer vision tasks.
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Figure 5. Overview of the test area with the Sensing Platform.

5.1. Basic Premises

To improve the accuracy in failure identification using thermography, some assumptions must be
observed. Parameters like distance from the sensor to the rollers, sensor’s field of view, BC’s operation
condition, camera’s characteristics, and production rate of the BCS at the moment of the inspection
strongly influence in the measured temperature.

5.1.1. Distance from the Camera to the Rollers

The distance from the camera to the object can hide elevated temperature values due to two
factors. The first one is the influence of the atmospheric transmittance, but this factor can be adjusted
in the camera’s parameters to minimize the error. The second one is that larger areas are represented
by a smaller number of pixels as the distance to the object increases, therefore, the temperature values
are locally equalized.

The Figure 6 presents two images captured with the sensing platform at 11 m and 3 m. Both were
captured in an interval inferior to 2 minutes, under the same operating conditions, emissivity of 0.85
and with the parameter of the camera distance to the object configured to match the actual distance.
In the first image (Figure 6a) the maximum temperature value identified was 47.9 ◦C while the second
image (Figure 6b) presents the maximum temperature of 63.3 ◦C. Despite the difference of 15.4 ◦C
between the images, both detected the maximum temperature at the same point. The discrepancy can
be explained by the image resolution, which is different at each distance. At 3 m, the camera resolution
is approximately 22 pixels/cm2, while at 11 m this value decreases to roughly 1 pixel/cm2, meaning
that the mean temperature of 22 pixels previously showed is now represented as a single pixel.

(a) Distance 11 m from roller (b) Distance 3 m from roller

Figure 6. Distance influence in temperature measurement: (a) The photo was taken from 11 m,
resulting in an image resolution of 1 pixels/cm2. (b) Same roller with an image taken 3 m away and a
22 pixels/cm2 image resolution. Both values for resolution are approximations.
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It is clear that a constant distance should be adopted during the thermographic inspection to
avoid significant variations in the measured temperature. The UAV also needs to fly at a safe distance
(5 m at minimum) from the BC to be able to safely react to unexpected wind direction changes. At this
distance, a thermal camera with the resolution of 640 x 512 pixels and FOV of 32◦ × 26◦ (as the one
employed in the tests) produce images with Measurement Field of View (MFOV) of 22.4 mm, which is
sufficient to obtain reliable temperature measurements, since the roller has 203 mm of diameter.

Besides the distance, the UAV must also keep a fixed altitude to ensure a proper visualization
of the central and lateral rollers. As the camera has a vertical FOV of 26◦, at the distance of 5 m the
vertical field of view will be of 2.3 m. It means that the UAV should keep an altitude of 2 m from the
base of the BC. Under such conditions, the line of sight of the camera coincides with the superior part
of the central roller, also positioned 2 m above the ground, an excellent condition of both central and
lateral rollers.

During the experimental flights, the pilot kept the UAV at a distance of 5 m from the belt conveyor
and at a height of 2 m from the belt conveyor base. By setting these distance parameters, we ensure
that there are no significant variations in the measurement field of view. Therefore, temperature values
measured throughout the flight do not need to be normalized.

These empirical tests aim to determine the optimum distance, height, and emissivity for
the detection of defective rollers. Without this definition of distance parameters, there would
be inconsistency in temperature values measured on different flights on the same belt conveyor.
By adopting this strategy, in future work, we will be able to evaluate the evolution of roller operating
temperatures over time and develop machine learning algorithms that can predict defects before they
actually happen.

5.1.2. Operation Condition and Production Rate

The thermographic inspection is based on the principle that the temperature rises according to the
friction of defective parts of the roller, what only occurs while the BC is under operation. The rollers
start to rotate when they are pulled by the conveyor belt, which is put in motion by driving rolls
commanded by electrical motors generally positioned in the tail of BC [42,43]. If the BC is operating
without any load, the temperature values can also be strongly affected. The nominal rates of the
studied BCs are 8000 t/h or 16,000 t/h and the presence of this load at this rate significantly impact the
rollers, particularly the defective ones.

The Figure 7 presents the operation rate of one of the studied BC from 10:59 to 15:59 in the same
day of Figure 6. During the assessed interval, the operation rate dropped significantly and immediately
returned to the previous rate. In other time slots, as from 12:08 to 12:59, it operated at a rate with
a standard deviation of 345.2 t/h, which is a small variation value to an iron ore operation. It also
operated unloaded in different intervals, and 20 min was the maximum time it operated under this
condition. Due to specific conditions on some BCs, like the slope of the belt conveyor and height,
sometimes the inspector on the field does not know if the inspected equipment is operating with
load or not. If the inspector collects the data while the BC is unloaded, as in one of the intervals
demonstrated in Figure 7, the temperature values are unrealistic and real defects can be overlooked.
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Figure 7. This chart shows how transport rate of one conveyor belt line can drop instantaneously and
then recover the previous value of rate.

5.1.3. Roller Failure Identification

A breakdown of a roller is not a big issue itself, but the consequences can be catastrophic. Fires,
rips on the belt, and even work accidents are possible effects of a roller failure. Thus, while assessing
rollers’ condition, false-negative detections should be minimized. In contrast, a false-positive detection
does not have material and labor risks, but increases the maintenance costs with worthless work orders
and should also be avoided.

On traditional inspection of BCS, even if the inspectors use advanced instruments as
thermographic cameras, vibration or ultrasonic sensors, the quality of the inspection still depends on
his/her personal experience and qualification. One of the objectives of our proposal is to improve
the accuracy by highlighting the defects in thermal images, reducing and ultimately eliminating
false-negative detection, regardless of inspector’s expertise.

To achieve that, we propose an approach with three steps. First, the UAV collects the thermal
images following the assumptions discussed earlier. On the second step, the algorithm identifies the
bearings of the rollers (regions of interest) in the images. Finally, by applying morphological processing
of the radiometric data on the images, it is possible to extract the temperature and identify the defective
rollers. The Figure 8 illustrates the steps in this approach.

(a) Regions of interest identified in the image

Figure 8. Cont.
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(b) 3-step approach to identify the defects

Figure 8. Assessment of defects on rollers.

5.2. Prior Object Recognition

Several approaches to identify objects in images are available [44], like the entire image search
through a sliding window technique [45–47], segmentation methods [48,49], and other strategies
using Convolutional Neural Network (CNN) [44] and Bag of Words (BoW) [50]. You Only Look Once
(YOLO) [51] is a CNN-based method for object detection. It presents excellent results in terms of
precision and is widely used in inspection scenarios [36,37], but requires a lot of computing power
for real-time execution. The Aggregated Channel Features (ACF) method [52], which can be view as an
evolution of the classical method of Boosted Cascade of Simple Features proposed by Viola-Jones [47],
is another important machine learning technique for object detection. It presents a great balance of
performance concerning the precision metrics and its real-time execution capability. According to
experiments performed by Van Ranst et al. [53], the ACF method precision is only 8% lower than YOLO,
while its execution can be seven times faster. Since processing speed and avoiding false-negative
classification are crucial for rollers’ inspection, we chose the ACF method [52]. The training process is
simple but very efficient in achieving false-negatives rates. The concept is to use a set of weak learners
in each stage to form a strong classifier.

The ACF method proposed by Dollár and Appel uses several characteristic’s channels and a
decision tree to form a robust and fast classifier. As illustrated in the Figure 9a, we used a dataset
with 644 labeled regions to train the algorithm, split in three different areas: the tip of the lateral roller
(labeled as Rolo Lateral (Side Roller) (RLE) with 324 regions), the intersection of the lateral with the
central roller in the left (Rolo Esquerdo Central (Left Central Rollers) (REC), with 167 regions), and the
intersection of the central roller with the lateral roller in the right (Rolo Direito Central (Right Central
Roller) (RDC), with 153 regions).

(a) Image Labeled (b) Left Central Rollers Detect

Figure 9. Cont.
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(c) Third Lateral Roller Not Detect (d) Lateral Rollers Detect

Figure 9. Training for Object Recognition: (a) Different regions of the rollers selected. (b) Left Central
Rollers found using the trained detector. (c) Third Lateral Roller not found using the trained detector.
(d) The Third Lateral Roller from Figure 9d, which is now the central lateral roller was found.

The differentiation between REC and RDC were necessary to mitigate image recognition errors
due to different visualization angles. For example, in the Figure 9b, we used only the detector trained
to detect REC regions, so the RDC regions were not classified. In Figure 9c we applied the detector
for the RLE and the third roller was not detected, what has been corrected on the subsequent image
(Figure 9d), where all the rollers were detected correctly.

It is possible to control and tune several aspects of the training process, including the number
of stages, which has a trade-off between the training time and the precision. Since the former were
not a problem, we used 70 stages to optimize the latter. This step was repeated for each of the regions
of interest. This roller detection algorithm was developed using Piotr’s Computer Vision MATLAB
Toolbox [54].

Object Recognition Performance

To check the performance of the trained detectors, we used a dataset with 548 marked regions
that were not used on the training. The dataset was split in 268 RLE, 167 RDC and 113 REC regions.
We used the following metrics in the algorithm performance evaluation: Average Precision (AP), Average
Recall (AR) and F1 score. We also show the AP and Maximum Recall (R) metrics for each class of the
database. We used the 50% Intersection over Union (IoU) threshold to identify a detection of a roller.
The IoU metric is calculated between the areas of bounding boxes inferred by the model and bounding
boxes of the ground truth.

Figure 10 shows the Precision x Recall curve, as well as the AP and R metrics, for each class of
the database. The overall AP and AR metrics were 88.3% and 91.8% respectively, which gives our
model an F1 score of 90.0%. The Overall False Negative Rate (OFNR), which can be calculated from the
AR, was only 8.2%, strongly impacted by the RDC regions, which had a OFNR of 10.2%, while the
regions RLE and REC had 5.6% and 8.8% respectively. Since we have a spatial redundancy of 3 images,
as demonstrated in Figures 9c,d, the probability of not detecting a region of the roller is only 0.06%
((8.2%)3 = 0.06%).
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Figure 10. ACF algorithm evaluation.

5.3. Failure Identification

Besides the identification of the areas where the temperature should be measured, the previous
step also plays a role to eliminate undesired interferences. For instance, the reflectance is a serious
issue of the thermographic inspections and, in some cases, can even indicate elevated temperatures in
regions without defects. Since we know the properties of the rollers, we can properly set the parameters
in the thermal camera and mitigate such external interferences.

The Figure 11 illustrates how the method works. For this image we used only the detector for
REC, therefore, central and lateral rollers were not identified, but two regions of interest were delimited
(Figure 11a). Please note that there is a roller with a high temperature on the other side of the belt, but
it is disregarded as we did not train it to detect opposite lateral rollers. In this context, it represents
an example of an undesired interference, like the reflectance or a hot point, that was ignored as it
is not part of the region of interest. Thus, only points inside the region selected are considered for
temperature gathering by the morphological method, as demonstrated in the Figure 11b.

(a) Detector of REC regions applied (b) Detail of Region of Interest (ROI) found

Figure 11. Defective roller found through the hybrid method: (a) ROIs selected. (b) Detail of the
defective roller inside the selected region.
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The morphological processing starts with reading the temperature data stored in each pixel within
the bound boxes. In fact, the thermal images are false images produced from the temperature data
collected. Therefore, we use the radiometric matrix of the regions of interest and use it to identify
defective rollers. The morphological processing algorithm was developed using MATLAB’s Computer
Vision Toolbox.

In our work, we define thermal defects as regions of a roller that have a temperature greater
than 45 ◦C and an area greater than 19 pixels. These thresholds were empirically defined considering
the UAV distance parameters relative to the belt conveyor used during the flights. As we kept these
parameters fixed, the same threshold values were used for all images. The area threshold of 19 pixels
represents an area of 384.7 mm2 while the roller has a diameter of 203 mm and area of 32,349 mm2, i.e.,
considering the distance parameters used, the defined area threshold represents about 1% of the total
area of a roller.

We created a mask that marks as 1 the values greater or equal to 45 ◦C and as 0 the remaining
values. It is also important to eliminate small regions that do not represent failures in the rollers or
means error readings in one of the camera’s sensors. For this end, we used areas with size greater than
19 pixels, where each pixel is connected to 8 pixels that also have a temperature greater or equal to
45 ◦C. Finally, such regions can be plotted on the original image to highlight the defect to an inspector.
The Figure 11b shows the result.

Although we have set these thresholds, our database does not contain pixel-level (segmentation
masks) or roller-level annotations indicating whether a pixel or a roller contains or not a thermal defect
(true positives or true negatives). This information will only be available after system deployment,
which will enable data collection, annotation, and analysis by expert inspectors. Therefore, we use this
definition of defects based on thresholds to assess the performance of our method.

Failure Identification Performance

Given the definition of a defect as a region with a temperature greater than 45 ◦C and an area
greater than 19 pixels, the database does not present any failures. However, the morphological
processing (MP) algorithm has identified six False Positive (FP) by using the thresholds of this definition.
Thus, we realize that the morphological operation alone is not a good strategy for identifying failures.

Therefore, we need to observe the behavior of false positives and identify a method that reduces
the number of occurrences to improve the results. FP occur near the edges of the bounding boxes
and correspond to the regions of the belt rubber that have a high temperature. Thus, it is possible to
eliminate most of these false detections by using a distance threshold. This threshold value is calculated
individually for each bounding box and is a function of its width and height: t(w, h) = min(w/2, h/2),
where t is the threshold, w and h represent the width and height of the box, respectively.

We follow a two-step approach to apply this threshold. First, we calculate the distance between
the centroid of the high-temperature region of interest (ROI) and the bounding box center. Then, we
classify the ROI as a defect only if the distance is lower than the threshold. Figure 12 illustrates this
procedure. The cyan point represents the bounding box center, and the cyan circle represents the area
within the distance threshold. A high-temperature ROI is classified as a defect (red) if its centroid is
within the circle. Otherwise, it is classified as a normal region (blue). Figure 12 also shows that this
method reduces the number of false detections, but does not eliminate all of them. The roller on the far
left of the figure has a region misclassified as a defect.
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Figure 12. Defective regions found through the distance threshold approach.

The failure identification using the distance threshold after the morphological processing (MP+DT)
algorithm resulted in only one FP. A significant improvement compared to using morphological
processing alone.

Despite this improvement, it is necessary to observe how this method impacts the identification
of True Positive (TP). To increase the occurrence of defects in the database, we need to reduce the
temperature threshold used in morphological processing. The temperature threshold value, which
represents the defect in a roller, can vary according to several factors, such as the manufacturer, the
type and quality of the production batch of the inspected rollers. Ideally, these temperature values
should be updated continuously via experimentation by the maintenance team. For this reason, we
decided to test the performance of the algorithm for two other temperature settings: 40 ◦C and 35 ◦C.

Considering the temperature threshold of 40 ◦C, the database contains 12 defects. The failure
identification using only the MP algorithm generated a total of 12 TP and 45 FP, resulting in a precision
of 21.05% and a recall of 100%. The identification of defects using the MP+DT algorithm produced
12 TP and only 2 FP, a result of 85.71% precision and 100% recall.

When analyzing these results, we noticed that the bounding boxes are centered on the rollers, and
the true positives are close to the centers of their respective boxes. The distance threshold works so
well because of this.

Considering the temperature threshold of 35 ◦C, the database contains 142 defects. The failure
identification using only the MP algorithm generated a total of 142 TP and 155 FP, resulting in a
precision of 47.81% and a recall of 100%. The identification of defects using the MP+DT algorithm
produced 142 TP and 30 FP, a result of 82.56% precision and 100% recall. Table 1 summarizes the
failure identification performance.

Table 1. Summary for failure identification performance.

Temperature Threshold (◦C) Number of Failures Algorithm TP FP Precision (%) Recall (%) F1 Score (%)

35 142 MP 142 155 47.81 100 64.69

MP+DT 142 30 82.56 100 90.45

40 12 MP 12 45 21.05 100 34.78

MP+DT 12 2 85.71 100 92.31

45 0 MP 0 6 - - -

MP+DT 0 1 - - -

Table 1 shows that the algorithm based on the roller detection followed by morphological
processing and the use of a distance threshold can identify failures with good accuracy and presents
an F1 score above 90%. Despite this, there are still some false positives that must be eliminated.
An alternative to solve this problem is to use more advanced techniques, such as deep learning models
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for object and instance segmentation. However, it will demand more computing power than the
method presented in this work.

6. Conclusions and Future Work

The semi-automatic inspection of rollers using a thermographic camera embedded in a UAV
proved to be a very interesting approach to solve the accessibility and mobility issues associated with
the inspection of these critical industrial components.

The expected productivity gain is significant, as the time taken to inspect a single 1 km long BC
could drop drastically: while a skilled human inspector would require at least 2 h, a conservative
estimate for the UAV-based system is 9 min. We also concluded that the same gain can be expected for
the remaining 119 km of the BCS. The teleoperation of the UAV was feasible, even under challenging
wind conditions at the pier. The identification of defective rollers was very effective as well, particularly
during the night, providing sufficient information to visually identify different types of problems, such
as locked rollers or bearing failures.

Despite the success, there is known room for improvement on multiple fronts. For example,
in the Data Capture tier, flight stability could be improved with corrections from DGNSS base stations.
Striking the right balance between dependability and expendability is another important issue. In other
words, finding the right UAV and thermal camera combination in order to optimize capital and
operational expenditures associated with this new inspection framework.

The automatic assessment of problematic rollers can also be improved. False-negatives numbers
and false-positive detections can be reduced by using CNN-based deep learning models for object
detection and segmentation instead of shallow learning techniques, as the ACF method used
in this work. This is a trade-off between accuracy and execution time which will require more
computing power.

Finally, the authors believe that truly autonomous flights can be a game-changer to deploy
this framework on an industrial scale, even though local regulations could still prevent that.
Active perception and robot vision are expected to play an important role in this application, such as
the incorporation of acoustic sensors to increase the failures predictability.
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