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Abstract

Crystals in Bacillus thuringiensis are usually formed in the mother cell compartment during sporulation and are separated
from the spores after mother cell lysis. In a few strains, crystals are produced inside the exosporium and are associated with
the spores after sporulation. This special phenotype, named ‘spore crystal association’ (SCA), typically occurs in B.
thuringiensis subsp. finitimus. Our aim was to identify genes determining the SCA phenotype in B. thuringiensis subsp.
finitimus strain YBT-020. Plasmid conjugation experiments indicated that the SCA phenotype in this strain was tightly linked
with two large plasmids (pBMB26 and pBMB28). A shuttle bacterial artificial chromosome (BAC) library of strain YBT-020 was
constructed. Six fragments from BAC clones were screened from this library and discovered to cover the full length of
pBMB26; four others were found to cover pBMB28. Using fragment complementation testing, two fragments, each of
approximately 35 kb and located on pBMB26 and pBMB28, were observed to recover the SCA phenotype in an
acrystalliferous mutant, B. thuringiensis strain BMB171. Furthermore, deletion analysis indicated that the crystal protein gene
cry26Aa from pBMB26, along with five genes from pBMB28, were indispensable to the SCA phenotype. Gene disruption and
frame-shift mutation analyses revealed that two of the five genes from pBMB28, which showed low similarity to crystal
proteins, determined the location of crystals inside the exosporium. Gene disruption revealed that the three remaining
genes, similar to spore germination genes, contributed to the stability of the SCA phenotype in strain YBT-020. Our results
thus identified the genes determining the SCA phenotype in B. thuringiensis subsp. finitimus.
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Introduction

Bacillus thuringiensis is a Gram-positive, spore-forming bacterium

with one of its most important features being the formation of

parasporal crystals. The insecticidal activity of B. thuringiensis lies

primarily in its parasporal crystals. B. thuringiensis strains carry one

or more different crystal genes which are usually located on large,

transmissible plasmids [1]. Crystal protein is typically deposited

against the forespore and develops outside the exosporium.

Parasporal crystals are then separated from spores after lysis of

the mother cell. However, in a few strains, such as in B. thuringiensis

subsp. finitimus strains [2,3] and B. thuringiensis subsp. oyamensis

strain LBIT-113 [4], the parasporal crystals are located between

the exosporium and the spore coat and continue to adhere to the

spore after mother cell lysis. This phenotype has been previously

described as spore-crystal association (SCA) [5].

The SCA phenotype was identified a half century ago [6]. SCA

strains were originally designated as Bacillus finitimus; ‘‘finitimus’’

meaning ‘‘neighboring’’ or ‘‘adjacent’’ in Latin, and this species

was later made a subspecies of B. thuringiensis [7]. Debro et al. [2]

described that the SCA phenotype depended on a 98 MDa

plasmid, suggesting that the plasmid contained all the genes

essential for crystal formation within the exosporium, and that the

inclusion that formed within the exosporium contained a major

polypeptide of approximately 135 kDa. Two crystal protein

encoding genes, cry26Aa1 and cry28Aa1, were identified from B.

thuringiensis subsp. finitimus B-1166 VKPM; encoding 131 and

125 kDa proteins respectively [3]. An unusual nontoxic strain of B.

thuringiensis subsp. oyamensis was isolated from living larvae of

Anopheles pseudopunctipennis [4]. In this strain, the crystal protein was

found to be enclosed within the exosporium and composed of two

proteins of 88 and 54 kDa. A survey of B. thuringiensis strains

isolated from Spanish citrus orchards, conducted by Vidal-Quist

et al. [8], showed that 25 out of 376 strains produced crystals that

adhered to spores. Four morphological types of crystals with four

different protein profiles were described using SDS-PAGE.

To date, the gene(s) conferring such localization have not been

reported. B. thuringiensis subsp. finitimus strain YBT-020 is a typical
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strain with the SCA phenotype. In our previous studies, two crystal

protein genes, cry26Aa and cry28Aa, were isolated from this strain.

When cry26Aa and cry28Aa were transferred into the acrystallifer-

ous B. thuringiensis strain BMB171, the crystals were separated from

the spores after mother cell lysis, even when they were transferred

into the plasmid-cured strain of YBT-020, that had been cured of

all plasmids. These results revealed that the expression of cry26Aa

and cry28Aa alone from their own promoters was not sufficient for

SCA phenotype [5].

To isolate the key genes that determining the SCA phenotype in

strain YBT-020, the following work was performed: testing which

plasmid was required for the SCA phenotype by plasmid

conjugation, and then constructing a shuttle bacterial artificial

chromosome (BAC) library for complementation testing to enable

screening of clones exhibiting the SCA phenotype. We found that

two native, large plasmids, pBMB26 and pBMB28, were essential

for the formation of SCA phenotype, and two 35 kb fragments

located on plasmids pBMB26 and pBMB28 were able to recover

the SCA phenotype in an acrystalliferous mutant strain BMB171.

Deletion analysis and gene disruption indicated that six genes are

indispensable for the SCA phenotype in strain YBT-020.

Results

Discovery of native plasmids pBMB26 and pBMB28
determining the SCA phenotype

Strain YBT-020 harbors two native plasmids, named pBMB26

and pBMB28. In our previous study [9], a plasmid-curing

experiment suggested that plasmid pBMB26, harboring the crystal

protein gene cry26Aa, was indispensable for the SCA phenotype in

strain YBT-020. To test whether plasmid pBMB26 contains all the

genes essential for the SCA phenotype, a plasmid conjugation

experiment was performed. The conjugational donor, strain

BMBJ1, was generated by inserting a chloramphenicol resistance

cassette into gene cry26Aa via homologous recombination. By

screening of the acrystalliferous mutant strain BMB171, a

spontaneous rifampin resistance mutant was obtained. Plasmid

pBMB0617, harboring gene cry26Aa, was transformed into this

strain to generate the recipient strain BMB171R1. Two kinds of

phenotype were isolated from the transconjugants, with crystals

enclosed inside spores (Fig. 1A, 1B), or crystals separated from

spores (Fig. 1C, 1D). The morphology of fifty randomly selected

transconjugants was observed, and the ratio of the two phenotypes

was found to be approximately 1:4.

Based on the complete sequences of plasmids pBMB26 and

pBMB28 [10], PCR primers were designed to detect the existence

of both plasmids. PCR verification showed that the strains with

separated crystals contained plasmid pBMB26, while the strains

with the SCA phenotype contained the two plasmids. This mating

experiment suggested that the two plasmids together determined

the SCA phenotype.

Characterization of fragments from pBMB26 and pBMB28
recovering the SCA phenotype in BMB171

To locate the critical regions detemining the SCA phenotype,

six fragments covering the full length of pBMB26, and four others

covering pBMB28, were screened from the shuttle BAC library of

strain YBT-020. The plasmid pBMB26-cured mutant BMB1151

of strain YBT-020 [10], in which crystals were not formed

(Fig. 2A), was used as a host strain to locate the crucial region for

the SCA phenotype within plasmid pBMB26. Six BAC clones,

covering different regions of pBMB26, were transferred into

mutants BMB1151 and BMB171 by electroporation. The SCA

phenotype of the transformants was detected by microscopic

observation after sporulation. A fragment of 35 kb (pBMB275),

carrying cry26Aa, was confirmed to direct the formation of crystals

adhering to spores, and to recover the SCA phenotype in the

pBMB26-cured mutant BMB1151 of strain YBT-020 (Fig. 2B),

but not in acrystalliferous mutant BMB171 (Fig. 2C). This further

suggested that both pBMB26 and pBMB28 were indispensable to

the SCA phenotype.

Figure 1. Micrographs of parasporal crystals from transconjugants. (A) Electron micrograph of a thin section of transconjugant with the SCA
phenotype during sporulation. (B) Transconjugants with the SCA phenotype after sporulation; (C) Electron micrograph of a thin section of
transconjugant with separated crystal during sporulation. (D) Transconjugants with separated crystal after sporulation. (A) and (C) were Grown for
20 h, Scale bar = 0.5 mm; the arrowheads indicate the exosporium. (B) and (D) were grown for 48 h and observed by phase-contrast microscopy.
pc = parasporal crystal. Magnification, 61,000.
doi:10.1371/journal.pone.0027164.g001

Gene Clusters Determine Spore Crystal Association
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Following this, we determined the location of the crucial region

within plasmid pBMB28 that was essential to the SCA phenotype.

As a requirement of resistance screening, the 35 kb fragment

(pBMB275) was inserted into another shuttle BAC vector

pEMB0603, to give rise to pBMB275A. Using the same methods,

four BAC clones, covereing different regions of pBMB28, were

transferred into strains BMB171/pBMB275A and BMB171. The

SCA phenotype of the transformants was detected after sporula-

tion. A 35 kb fragment (pBMB251) was demonstrated to recover

the SCA phenomenon in strain BMB171/pBMB275A (Fig. 2D),

but not in strain BMB171 (Fig. 2E). Thus, by large fragment

complementation testing, two 35 kb fragments, from plasmids

pBMB26 and pBMB28, were identified to determine the SCA

phenotype.

Determination of minimal regions essential to the SCA
phenotype

Firstly, pBMB251A (a fragment of pBMB28), was constructed

by inserting the 35 kb fragment from pBMB251 into shuttle BAC

vector pEMB0603, and then transferring this into BMB171. The

subclones of the 35 kb fragment within pBMB275 (a fragment of

pBMB26) were then transferred into strain BMB171/pBMB251A.

The results demonstrated that a minimal fragment of 4 kb

(pBMB0617), carrying an intact cry26Aa gene was sufficient for

the SCA phenotype (Fig. 3A, Fig. 4A, Table 1). Following this, the

subclones of the 35 kb fragment within pBMB251 (a fragment of

pBMB28), were transferred into strain BMB171/pBMB275A. A

7 kb fragment (pBMB251B2), was confirmed as the minimal

sufficient fragment for the SCA phenotype (Fig. 3B, Fig. 4B).

Figure 2. Phase-contrast micrographs of recombinant strains after growth for 48 h. (A) BMB1151 (pBMB26-cured mutant of YBT-020). (B)
Strain BMB1151 containing the 35 kb fragment of pBMB26. (C) Strain BMB171 containing the 35 kb fragment of pBMB26. (D) Strain BMB171
containing the fragments of pBMB26 and pBMB28. (E) Strain BMB171 containing the 35 kb fragment of pBMB28. Magnification, 61,000.
doi:10.1371/journal.pone.0027164.g002

Figure 3. The search for minimal DNA fragments essential to the SCA phenotype in B. thuringiensis strain BMB171. (A) Determination
of the minimal sequence of pBMB275 (a fragment of pBMB26) in strain BMB171 harboring pBMB251A (a fragment of pBMB28). (B) Determination of
the minimal sequence of pBMB251 (a fragment of pBMB28) in strain BMB171 harboring pBMB275A (a fragment of pBMB26). The ability of the region
to recover SCA is indicated by ‘‘+’’, and inability by ‘‘2’’.
doi:10.1371/journal.pone.0027164.g003

Gene Clusters Determine Spore Crystal Association
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Sequence analysis showed that this 7 kb fragment carried five

putative genes (Table 1). Three partial sequences from this

fragment could not recover the SCA phenotype in strain

BMB171/pBMB275A, and separated crystals were formed after

sporulation (Fig. 4C, 4D). The combination of the above described

4 kb and 7 kb fragments in strain BMB171 led to the SCA

phenotype (Fig. 4E). This meant that the two fragments of 4 kb

and 7 kb, from pBMB26 and pBMB28 respectively, contained the

critical genetic information for the SCA phenotype. (Nucleotide

sequences of two fragments have been deposited in GenBank

under accession numbers DQ242519 and HQ695909).

DNA sequence analysis of the 7 kb fragment revealed that it

contained five ORFs (Table 1). The genes orf1 and orf2 encoded the

putative peptides of 300 and 268 amino acid residues with predicted

molecular weights of 34,509 daltons and 30,872 daltons respectively.

These two proteins showed low similarity with the crystal proteins

NT40KD and NT32KD [11], exhibiting 30% and 22% sequence

identity. Gene orf1, located 101 nucleotides upstream of orf2 in the

same orientation, was preceded by potential ribosome-binding sites.

No putative promoter was found upstream of orf2. It is probable that

the two genes are involved in a single operon. The genes orf3, orf4,

and orf5 were similar to the genes encoding the germination

complex, and were particularly similar to the spore germination

genes pBt086, pBt085, and pBt084, which are located on the

plasmid pBtoxis. These had 58%, 54%, and 44% amino acid

sequence identity with Orf3, Orf4, and Orf5 [12,13]. This

germination complex operon has been demonstrated to be a single

operon by transcriptional analysis [14]. The three orfs shared

sequence overlaps; orf3, for example, was shown to overlap with orf4

by 8 bp, while orf4 overlapped with orf5 by 4 bp. This suggests that

the three genes are organized within a single operon.

Construction and analysis of mutant strains at the critical
genes

To confirm that the six genes were involved in determining the

SCA phenotype in strain YBT-020, three mutant strains were

constructed and characterized. The operon containing orf1 and

orf2 was disrupted to create mutant strain BMBJA. We observed

that the crystals of this mutant were formed outside the

exosporium during sporulation (Fig. 5A), and were separated

from the spores after sporulation (Fig. 5B). In complementation

experiments, the plasmid pBMB251B5 carrying orf1 and orf2

(2.9 kb, Fig. 3B), was capable of recovering the SCA phenotype in

BMBJA (Fig. 5C, 5D).

To confirm that orf1 and orf2 are necessary to the SCA

phenotype, a frameshift was introduced into these genes to

generate plasmids pBMB251B5A and pBMB251B5B respectively

(see Materials and Methods), These plasmids were transferred into

strain BMBJA. No SCA phenotyope was observed in the

transformants (Fig. 5E, 5F). The combination of the two frameshift

mutant plasmids in strain BMBJA resulted in the SCA phenotype

Figure 4. Phase-contrast micrographs of different plasmid derivatives of pBMB275 and pBMB251 in strain BMB171 after growth for
48 h. (A) Strain BMB171/pBMB251A+pBMB0617. (B) Strain BMB171/pBMB275A+pBMB251B2. (C) Strain BMB171/pBMB275A+pBMB251B3. (D) Strain
BMB171/pBMB275A+pBMB251B5. (E) Strain BMB171/pBMB0617A+pBMB251B2. Magnification, 61,000. Data not shown for pBMB251B4.
doi:10.1371/journal.pone.0027164.g004

Table 1. ORFs involved in the spore-crystal association (SCA) phenotype.

Gene Positiona Size (aa)
Best BLAST
match (source)

GenBank
accession no.

% amino
acids identity reference

pBMB275

Cry26Aa 7026–10520 1164 Cry26Aa [Bacillus thuringiensis subsp. finitimus] ABB51652 100 [5]

pBMB251

orf1 18621–19523 300 crystal protein NT40KD [Bacillus thuringiensis subsp
dakota]

AAL26871 30 [11]

orf2 19625–20431 268 crystal protein NT32KD [Bacillus thuringiensis subsp
dakota]

AAL26870 22 [11]

orf3 20796–22238 480 putative spore germination receptor [Bacillus
thuringiensis subsp israelensis]

CAD30127 58 [14]

orf4 22231–23334 367 putative spore germination receptor [Bacillus
thuringiensis subsp israelensis]

CAD30126 54 [14]

orf5 23331–24461 376 putative spore germination receptor [Bacillus
thuringiensis subsp israelensis]

CAD30125 44 [14]

aThe numbers correspond to the nucleotide coordinates of inserted fragments in pBMB275 or pBMB251.
doi:10.1371/journal.pone.0027164.t001

Gene Clusters Determine Spore Crystal Association
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(data not shown). This indicated that both the products of orf1 and

orf2 are indispensable for the SCA phenotype.

The operon containing orf3, orf4, and orf5, was disrupted,

resulting in mutant strain BMBJB. Microscopic observation

revealed that the crystals of this mutant formed inside the

exosporium during sporulation (Fig. 5G) and the SCA phenotype

remained after sporulation (Fig. 5H), However, the SCA

phenotype in the mutant appeared impermanency compared with

wild strain YBT-020. After growth for 100 h, the crystals were no

longer attached to the spores (Fig. 5I). This observation suggested

that the products of orf3, orf4, and orf5 were only essential

in maintaining the stability of the SCA phenotype, and were

not involved in the formation of the SCA phenotype in strain

YBT-020. In complementation experiments, the plasmid

pBMB251B3 carrying intact orf3, orf4, and orf5 (5.3 kb, Fig. 3B)

was demonstrated to be capable of restoring the stability of the

SCA phenotype in BMBJB (Fig. 5J).

Strain BMBJ1 was a cry26Aa gene disruption mutant from

strain YBT-020. Microscopic observation revealed that BMBJ1

had lost the ability to form crystals (Fig. 5K). After the plasmid

pBMB0617 harboring the cry26Aa gene was transferred into

BMBJ1, the crystals were observed and the SCA phenotype was

regained (Fig. 5L). This confirmed that the crystal protein gene,

cry26Aa, was essential for the SCA phenotype. Through the

characterization of mutant strains, we thus revealed that the six

genes were indispensable to the formation of the SCA phenotype

in strain YBT-020.

Crystal proteins that are normally deposited outside the
exosporium were not able to restore the SCA phenotype
in BMBJ1

In a previous study [5], we found that the Cry1Ca protein could

not be deposited inside the exosporium in strain YBT-020. To

determine if the crystal proteins that were normally deposited

outside the exosporium were able to replace Cry26Aa and restore

the SCA phenotype in BMBJ1, several crystal protein genes,

including cry1Ac, cry2Aa, cry5Ba, cry6Aa, cry7Ba, cry51Aa, and

cry55Aa, were transferred into mutant strain BMBJ1 to detect

the formation of the SCA phenotype. Microscopic observation

revealed that only separated crystals were formed (data not

shown). This suggested that the Cry26Aa protein was specific to

the formation of the SCA phenotype in strain YBT-020.

Discussion

Aronson [15] proposed two possible mechanisms for SCA

phenotype formation. In the first, he suggested that the synthesis

time of the crystal protein was synchronized with the formation of

the exosporium. In a previous study [5], we demonstrated that

crystal protein genes and their promoters were not able to cause

crystal formation inside the exosporium. Thus, Aronson’s second

hypothesis seems reasonable. This was that the plasmid gene

encodes a protein that binds the crystal protein to the inner surface

of the exosporium. For determining the critical regions, we used a

shuttle BAC library to carry out complementation testing and

Figure 5. Micrographs of mutant strains of YBT-020 and their corresponding complementary strains. (A) and (B) Strain BMBJA (genes
orf1 and orf2 disrupted). (C) and (D) Complementary strain BMBJA/pBMB251B5 (carrying orf1 and orf2). (E) Complementary strain BMBJA/
pBMB251B5A (carrying a frameshift at the AccI site in orf1). (F) Complementary strain BMBJA/pBMB251B5B (carrying a frameshift at the EcoRI site in
orf2). (G), (H) and (I) strain BMBJB (genes orf3, orf4, and orf5 disrupted). (J) Complementary strain BMBJB/pBMB252B3 (containing orf3, orf4, and orf5).
(K) Strain BMBJ1 (gene cry26Aa disrupted); (L) Complementary strain BMBJ1/pBMB0617 (carrying the gene cry26Aa). (A), (C) and (G) Electron
micrographs of a thin sections during sporulation, arrowheads indicate exosporium. Scale bar = 0.5 mm. (B), (D), (E), (F), (K) and (L) after Growth for
48 h. (H) after growth for 36 h. (I) and (J) after growth for for 36 h, 100 h. Magnification, 61,000.
doi:10.1371/journal.pone.0027164.g005

Gene Clusters Determine Spore Crystal Association
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identified that five genes from pBMB28 and a crystal protein gene

cry26Aa from pBMB26 were indispensable to the SCA phenotype

in strain YBT-020. By screening shuttle BAC library, we have

isolated several novel crystal protein genes [16], and a thur-

ingiensin synthesis gene cluster [17]. Our results testify to the

convenience of this method in searching for unknown functional

genes or gene clusters. This is the first report of the isolation of

genes determining the SCA phenotype.

When other types of crystal protein genes were transferred into

strain BMBJ1, only separated crystals were observed under phase

microscope. This suggested that the formation of the SCA

involved recognition of the specific amino acid sequences of the

Cry26Aa protein. We also isolated the gene cry28Aa from strain

YBT-020 as well, and by screening the library of YBT-020, we

isolated a fragment of pBMB28 carrying the cry28Aa gene. The

combination of this fragment and plasmid pBMB0617 harboring

the cry26Aa gene in strain BMB171 was able to prolong the

stability of separated inclusion bodies (unpublished). We speculat-

ed that the co-existence of proteins Cry26Aa and Cry28Aa

provided a way of preventing the crystal protein from degradation.

The genes orf1 and orf2 were found to determine the deposition of

crystal proteins inside the exosporium. The genes orf3, orf4 and orf5

were found to be necessary for the stability of the SCA phenotype.

This implied that the formation of the SCA phenotype was

involved in protein interaction and was closely linked with spore

differentiation and development. We have revealed the genes

which were indispensable to the SCA phenotype. However, the

functions of the proteins encoded by these genes remain unclear

and need investigation.

The exosporium is a prominent structure with a paracrystalline

basal layer and an external hair-like nap [18]. It is composed of at

least 20 proteins and glycoproteins [19]. Exosporium assembly is a

non-uniform process, and exosporium formation begins with the

synthesis of a cap substructure [20]. How do proteins, which are

essential to the formation of SCA phenotype, carry out their function

during the process of SCA? We propose the following explanatory

mechanism to explain it. The Orf1 and Orf2 proteins play a role as

bridges between spores and crystals. We infer that these two proteins

are located on the spore coat, and interact with crystal proteins and

other spore proteins (such as the products of the orf3, orf4, and orf5

operon). They would therefore bind crystal proteins to the inner

surfaces of the exosporium cap. The inclusion assembly could then

be confined to such a site in order to ensure a location within the

exosporium. This needs detailed investigation in future.

Untill now, many strains with SCA phenotype have been

isolated, and the crystal proteins enclosed within the exosporium

are distinct among subspecies. Four morphological types of the

SCA phenotype and four different crystal protein profiles were

isolated from citrus orchards in Spain [8]. Genome sequence

analysis of B. thuringiensis strain C15 (another strain with the SCA

phenotype maintained in our lab), showed that the genes involved

in the formation of the SCA phenotype in YBT-020 could not be

found (data not shown). This indicates that the genes controlling

the formation of the SCA phenotype differ among subspecies.

Materials and Methods

Bacterial strains, plasmids, growth conditions and DNA
manipulations

The bacterial strains and plasmids involved in this study are

listed in Table 2. Conditions and media used for growing and

maintaining different strains of E. coli and B. thuringiensis

have been described previously [16]. Chloromycetin, tetracy-

cline, erythromycin, kanamycin, ampicilin, and rifampin were

supplemented at the final concentrations of 5 or 25, 10, 25, 50, 100,

100 mgmL21 when needed, respectively. Plasmids were extracted

from B. thuringiensis following the procedure described by Andrup

et al. [21]. All regular DNA manipulations were carried out follow-

ing standard methods [22]. E. coli-B. thuringiensis shuttle vectors,

pEMB0557 and pEMB0603, were used to clone large DNA

fragments. The two vectors were constructed from BAC vector

pBeloBAC11 by adding erythromycin and kanamycin resistance

genes, as the selectable marker in B. thuringiensis, and B. thuringiensis-

originated plasmid replication origins ori60 and ori44 respectively. The

2.3-kb ori60 and 2.25-kb ori44 replication origins were amplified from

large plasmids in B. thuringiensis strain YBT-1520 [23], and show 99%

and 100% sequence identity with that of the 91 kb and 66 kb

plasmids in B. thuringiensis subsp. kurstaki HD-263 [24]. B thuringiensis

transformation was conducted as described previously [25].

Construction of shuttle BAC library and screening of
clones covering the full length of plasmids pBMB26 and
pBMB28

Shuttle vector pEMB0557 was used to construct a genomic BAC

library of B. thuringiensis strain YBT-020. Construction of library was

performed following the method described by Liu et al [26], with

slight modifications. Genomic DNA embedded in agarose plugs was

partially digested with HindIII and separated by pulse field gel

electrophoresis (PFEG). 30–50 kb fragments of genomic DNA were

recovered by electroelution (Bio-Rad) and were ligated with HindIII

dephosphorylated vector pEMB0557 to generate a genomic library.

The fragments which covered the full length of pBMB26 and

pBMB28 were screened from library of strain YBT-020.

Construction of recombinant plasmids
(i). Large fragment complementation testing. Two

fragments, which were seclected from the shuttle BAC library and

were able to recover the SCA phenotype in BMB171, were named

as pBMB275 and pBMB251. And then, they were sub-cloned into

pHT304 for sequencing by a primer walking strategy. The two

fragments were digested with NotI and inserted into another vector

pEMB0603 to generate pBMB275A and pBMB251A.
(ii). Minimizing the regions that determine the SCA

phenotype. Deletion derivatives of pBMB275 containing either

a BamHI fragment of 16.7 kb or a HindIII fragment of 13.7 kb were

designated pBMB290 and pBMB291 respectively. A 6.3 kb NdeI

fragment from pBMB291 was first inserted into pDG1514, then

digested with BamHI and SalI, and inserted into pHT304 to generate

pBMB292. A fragment of 4 kb was amplified from pBMB275 using

the pair of primers cry26-F and cry26-R (Table 3). This fragment

was cloned into pEMB0603 between BamHI and HindIII to generate

pBMB0617A. Deletion derivatives of pBMB251, which containing

either a 12.5 kb BamHI fragment, a 7 kb ScaI-HindIII fragment, a

5.3 kb PstI-HindIII fragment, or a 1.7 kb ScaI-EcoRI fragment,

were designated pBMB251B1, pBMB251B2, pBMB251B3, and

pBMB251B4, respectively. A fragment of 2.9 kb was amplified from

pBMB251 using the the pair of primers 251B1 and 251B2 (Table 3),

and cloned into pMD18-T simple vector to generate pEMB251B5.

After that, it was digested with ScaI and HindIII and then cloned into

pHT304 between SmaI and HindIII, to generate pBMB251B5.
(iii). Construction of frame-shift mutant plasmids. To

assess the role of Orf1 and Orf2 protein, two plasmids pBMB251B5A

and pBMB251B5B were constructed as follows: Briefly, frame shift

mutation was introduced in the pEMB251B5 by AccI and EcoRI

cleaving respectively, filling-in of the recessed ends with Klenow

enzyme, and then blunt-end self-ligated. This was then digested

with ScaI and HindIII and cloned into pHT304 between SmaI and

HindIII, to generate pBMB251B5A and pBMB251B5B. The DNA
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sequencing confirmed the effectiveness of the mutation by

introduction of stop codons generating truncated orf1 and orf2.

Construction of gene disruption mutants of strain
YBT-020

To construct a temperature-sensitive shuttle vector pHT304Ts,

an EcoRV fragment of 2.1 kb, carrying the replication protein

gene from the E.coli-B. thuringiensis shuttle vector pHT304 was

replaced by a HpaI fragment containing the temperature-sensitive

replication origin from pEG491 [27].

To verify the necessary of the genes for SCA in strain YBT-020,

three gene disruption strains were constructed via homologous

recombination. The first was the cry26Aa disruption strain BMBJ1.

Using primers cry26A and cry26B (Table 3), a fragment of 2 kb

carrying the partial region of cry26Aa was amplified by PCR,

cloned into pMD18-T simple vector, and then digested with

Table 2. Bacterial strains and plasmids.

Strain or plasmid Descriptiona Source or reference

Bacillus thuringiensis

YBT-020 B. thuringiensis subsp. finitimus, harboring pBMB26 and pBMB28 [5]

BMB171 Acrystalliferous mutant of B thuringiensis subsp. kurstaki [33]

BMB171R1 BMB171R containing pBMB0617. This work

BMB1151 YBT-020 derivative, containing pBMB28 but cured of pBMB26 [9]

BMBJ1 YBT-020 derivative, with a chloromycetin insertion at cry26Aa gene This work

BMBJA YBT-020 derivative, with a chloromycetin insertion replacing the DNA
fragment covering orf1 and orf2

This work

BMBJB YBT-020 derivative, with a chloromycetin insertion replacing the DNA
fragment covering orf3, orf4 and orf5

This work

Escherichia coli

DH5a F- Q80lacZDM15 D(lacZYA-argF) U169 deoR recA1 endA1 hsdR17 (rk-,mk+)
phoA supE44 l- thi-1 gyrA96 relA1

EPI300 F2 mcrA D(mrr-hsdRMS-mcrBC) W80dlacZDM15 DlacX74 recA1 endA1 araD139
D(ara, leu)7697 galU galK l2 rpsL (StrR) nupG trfA tonA

Epicentre

Plasmids

pHT304 E. coli and B. thuringiensis shuttle vector; Ampr, Ermr [34]

pDG1514 E .coli vector. Ampr, Tetr [35]

pEG491 E. coli and B. thuringiensis shuttle vector; Ampr, Cmr [27]

pHT304Ts Derivative of pHT304, containing temp-sensitive replicon, 6.8 kb This work

pEMB0557 E. coli and B. thuringiensis shuttle BAC vector; Cmr, Ermr [26]

pEMB0603 E. coli and B. thuringiensis shuttle BAC vector; Cmr, Kanr unpublished

pBMB26 188 kb endogenous plasmid harboring cry26Aa in strain YBT-020 [5]

pBMB28 139 kb endogenous plasmid harboring cry28Aa in strain YBT-020 [5]

pBMB26-CmR Derivative of pBMB26, with a chloromycetin insertion at cry26Aa gene This work

pBMB275 pEMB0557 containing a 35 kb fragment of pBMB26 This work

pBMB275A pEMB0603 containing a 35 kb fragment of pBMB26 This work

pBMB0617 pHT304 containing cry26Aa [5]

pBMB0617A pEMB0603 containing cry26Aa This work

pBMB290 pEMB0557 containing 16.7 kb BamHI fragment of pBMB275 This work

pBMB291 pEMB0557 containing 13.7 kb HindIII fragment of pBMB275 This work

pBMB292 pHT304 containing 6.3 kb BamHI/SalI fragment of pBMB275 This work

pBMB251 pEMB0557 containing a 35 kb fragment of p28 This work

pBMB251A pEMB0603 containing a 35 kb fragment of p28 This work

pBMB251B1 pHT304 containing 12.5 kb BamHI fragment of pBMB251 This work

pBMB251B2 pHT304 containing 7 kb ScaI/HindIII fragment of pBMB251 This work

pBMB251B3 pHT304 containing 5.3 kb PstI/HindIII fragment of pBMB251 This work

pBMB251B4 pHT304 containing 1.7 kb ScaI/EcoRI fragment of pBMB251 This work

pBMB251B5 pHT304 containing 2.9 kb ScaI/HindIII fragment of pBMB251 This work

pBMB251B5A pBMB251B5 derivative carrying frameshift mutation at AccI site of orf1 This work

pBMB251B5B pBMB251B5 derivative carrying frameshift mutation at EcoRI site of orf2 This work

aAmpr, ampicillin resistance; Cmr, Chloromycetin resistance. Ermr, erythromycin resistance; Kanr, kanamycin resistance; Tetr, Tetracycline resistance.
doi:10.1371/journal.pone.0027164.t002
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EcoRI. A chloramphenicol resistance cassette, derived from

pAD123, was amplified with primers CM1 and CM2 (Table 3),

and cloned into the EcoRI site, yielding pEMBJ1. The HindIII

fragment was inserted into pHT304Ts to generate pBMBJ1.

To generate the orf1 and orf2 deletion mutant strain BMBJA,

a fragment of 3.8 kb was amplified by reverse PCR with primers

251B4 and 251B5 (Table 3) using pEMB251B5 as template, and

then digested with EcoRI. A chloramphenicol resistance gene

was amplified and cloned into the EcoRI site to give rise of

pEMBJA. The plasmid was digested by ScaI and HindIII and

inserted into pHT304Ts between SmaI and HindIII to generate

pBMBJA.

To obtain the operon deletion mutant strain for orf3, orf4, and

orf5, a PCR fragment of 3.8 kb was amplified with primers 251B6

and 251B7 (Table 3) using pBMB251 as template, and inserted

into pMD18-T simple vector to generate pEMBJB. Using the

plasmid as template, primers 251B8 and 251B9 (Table 3) were

used to amplify a 4 kb fragment by reverse PCR. This was then

digested with EcoRI. A chloramphenicol resistance gene was

amplified and cloned into the EcoRI site, yielding pEMBJB1 which

was then digested by BamHI and HindIII and inserted into

pHT304Ts to generate pBMBJB.

Mutants were selected following the method described by Fang

et al. [28]. Briefly, the plasmids were transferred into strain YBT-

020, and the transformants were cultivated in LB medium with

2.5 mg/mL chloramphenicol for 8 h. Then the transformants were

incubated at 42uC for 4 days to eliminate unintegrated temperature-

sensitive plasmids. The expected mutant strains, which were

resistant to Chloramphenicol and meanwhile sensitive to erythro-

mycin colonies, were harvested and confirmed by PCR using

appropriate primers and sequencing.

Conjugation experiments
Plasmid conjugation transfers were conducted following the

protocols described by Andrup et al. [29] with slight modifications.

In short, the overnight cultures of donor and recipient strains were

incubated separately at 28uC in LB medium with appropriate

antibiotics. Equal quantities of donor and recipient cells (250 ml per

OD600 unit) in logarithmic growth were mixed and shaken in 5 ml

prewarmed LB medium at 28uC with moderate shaking (80 rpm).

After 8 h, appropriate dilutions were plated onto appropriate

selective medium to determine the number of transconjugants

Controls of donors and recipients grown separately were also tested.

Microscopic observation
For phase contrast microscopy, all B. thuringiensis were sporulated

at 28uC and 220 rpm in a liquid medium (ICPM medium)

containing 0.6% peptone, 0.5% glucose, 0.1% CaCO3, 0.05%

MgSO4, and 0.05% KH2PO4 (pH 7.0) until almost all mother cell

lysis. Spores and crystals were collected by centrifugation and

washed three times with a solution containing 1 mol of NaCl per

liter and then three times with water. The mixture of spores and

crystals was then resuspended in water [30]. By phase-contrast

microscopy, spores appear as phase-bright, and crystals appear as

phase-dark [31]. Each sample was chosen five fields to observe

morphology. Transmission electron microscopy was performed

following the method described by Bailey-Smith et al. [32]. Sections

were examined under a FEI Tecnai G2 20 TWIN transmission

electron microscope at an accelerating voltage of 200 kV.
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