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Abstract: Progressive diabetic nephropathy (DN) in diabetes leads to major morbidity and mor-
tality. The major pathological alterations of DN include mesangial expansion, extracellular matrix
alterations, tubulointerstitial fibrosis, and glomerular sclerosis. Polygoni avicularis is widely used
in traditional oriental medicine and has long been used as a diuretic, astringent, insecticide and
antihypertensive. However, to the best of the authors’ knowledge, the effects of the ethanolic extract
from rhizome of Polygoni avicularis (ER-PA) on DN have not yet been assessed. The present study
aimed to identify the effect of ER-PA on renal dysfunction, which has been implicated in DN in
human renal mesangial cells and db/db mice and investigate its mechanism of action. The in vivo
experiment was performed using Polygoni avicularis-ethanol soluble fraction (ER-PA) and was ad-
ministrated to db/db mice at 10 and 50 mg/kg dose. For the in vitro experiments, the human renal
mesangial cells were induced by high glucose (HG, 25 mM). The ER-PA group showed significant
amelioration in oral glucose tolerance, and insulin resistance index. ER-PA significantly improved the
albumin excretion and markedly reduced plasma creatinine, kidney injury molecule-1 and C-reactive
protein. In addition, ER-PA significantly suppressed inflammatory cytokines. Histopathologically,
ER-PA attenuated glomerular expansion and tubular fibrosis in db/db mice. Furthermore, ER-PA
suppressed the expression of renal fibrosis biomarkers (TGF and Collagen IV). ER-PA also reduced
the NLR family pyrin domain containing 3 inflammatory factor level. These results suggest that
ER-PA has a protective effect against renal dysfunction through improved insulin resistance as well
as the inhibition of nephritis and fibrosis in DN.

Keywords: diabetic nephropathy; Polygoni avicularis; db/db mice; renal dysfunction; inflammation

1. Introduction

Diabetic nephropathy is a typical kidney disease that occurs as result of diabetes
mellitus [1]. Diabetic renal damage, one of the most common complications of diabetes [2],
is the most frequent cause of end-stage renal failure [3]. In diabetes, kidney damage affects
various structures of the kidneys and is mainly characterized by an increased deposition of
the extracellular matrix (ECM), aggravated glomerular fibrosis, and the overexpression of
chemokines, leading to tubulointerstitial damage [4,5]. The consequences involve kidney
fibrosis, proteinuria, and kidney inflammation. Diabetic nephropathy is one of the leading
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causes of diabetes mellitus progressing to end-stage renal disease and is the most common
cause of kidney failure [6].

TGF-β is a key regulator of fibrosis by promoting the accumulation of ECM. TGF-β
induces phosphorylation and activation of Smad signaling pathway [7]. In particular,
r-Smad serves a pivotal role in controlling the growth and differentiation of cells involved
in intracellular signaling of the TGF-β1 superfamily [8]. The depletion of nephrin and
podocin proteins in podocytes following glomerular injury causes severe proteinuria [9].

The activation of NF-κB may serve an important role in the pathogenesis of DN [10].
Mononuclear cell invasion and abnormal expression of inflammatory mediators, including
intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1),
and TGF-β1 are observed in renal tissues at early stages of DN [11]. TGF-β1 is considered to
serve an important role in mediating fibrosis in DN [12]. Previous studies have suggested
that TGF-β1 mediates the accumulation of ECM in mesangial and tubular cells and that the
inhibition of TGF-β1 signaling significantly reduces renal fibrosis and decreases the mRNA
levels of major mediators of ECM deposition in db/db mice [13]. Ligand binding causes
phosphorylation of the Smad-2 and Smad-3 proteins. Activated r-Smad acts as a co-Smad
(Smad-4) and mainly forms a trans-β-active complex, which is transported into the nucleus
to modulate the expression of the target genes, including TGF-β [14]. Connective tissue
growth factor (CTGF) may also contribute to diabetic renal disease through the inhibition of
matrix decomposition and the induction of ECM synthesis [15]. In DN, ECM degradation is
reduced and CTGF suppresses the decomposition of human renal cell substrates [16]. The
NLR family pyrin domain containing 3 (NLRP3) undergoes oligomerization in the presence
of the adaptor protein apoptosis-associated speck-like protein (ASC) and protease caspase-1
to form a protein complex, termed as the inflammasome. The formation of inflammasome
is important for the auto-processing of caspase-1 and activation of cytokines, pro-IL-1b,
and pro-IL-18 [17].

Herbs have been used for thousands of years, and more recently, herbal remedies are
being considered as complementary medicines for disease prevention, making it a notable
treatment option for the treatment of the disease [18–20]. Polygonum aviculare L. (PA), a
member of the Polygonaceae family, is used as a traditional medicine. PA is a safe and
effective diuretic herb [21] that has multiple biological effects including antioxidant [22],
antitumor [23], and anti-inflammatory activities [24]. PA extract has a high content of
phenolics and flavonoids, which show DNA-protective activities [22,25]. However, the
effect of PA on DN has yet to be elucidated. Therefore, the purpose of the present study was
to investigate whether PA extract has preventive effects on diabetic nephropathy, which is
associated with renal dysfunction in db/db mice, an animal model of type 2 diabetes.

2. Materials and Methods
2.1. Preparation of ER-PA

The dried rhizome of harvesting one-year-old plants (Polygoni avicularis) (1.0 kg),
which was purchased from Daehak Hanyakguk (a dispensary of Oriental medicine), Iksan,
Korea, was cut and then extracted with ethanol (10 L) for 3 h at 80 ◦C. The extract was
filtered using a filter paper and the filtrate was concentrated under reduced pressure to
obtain 126 g of extract. The extract was suspended in distilled water and treated with 1.5 L
of ethyl acetate. The fractions were partitioned in a separatory funnel to obtain 17.85 g of
ethyl acetate fraction.

2.2. Isolation of Compounds from ER-PA

The ethanol-soluble fraction (2.78 g) was subjected to column chromatography (CC)
over a Sephadex LH-20 column using a chloroform (CHCl3):methanol (MeOH) = 1:1 gradi-
ent system. The fractions were combined based on their thin-layer chromatography (TLC)
patterns to yield subfractions, designated as E1–E7. Fraction E4 (838.1 mg) was subjected
to medium-pressure liquid chromatography (MPLC; ODS-S-50-B, 26 × 300 mm) using
H2O:MeOH = 80:20→ 0:100 to obtain nine fractions (E41–H49). Fraction E43 (93.9 mg) was
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further subjected to silica gel CC using a dichloromethane (CH2Cl2):MeOH = 8:1→ 2:1
gradient system to obtain six subfractions (E431–E436). Subfraction E433 was then purified
with reverse-phase high-performance liquid chromatography (RP-HPLC; YMC-Pack C18,
20 × 150 mm) using H2O:MeOH = 50:50→ 35:65 for 30 min and then by normal phase
(NP)-HPLC (YMC-Pack SIL-06, 10 × 250 mm) using H2O:EtOH = 75:25→ 40:60 for 30 min
to obtain myricetin-3-O-rhamnoside [26] (5.6 mg, 0.20%, Figure 1A). Fraction E44 (76.1 mg)
was subjected to silica gel CC and eluted using a hexane:acetone = 2:1 → 1:3 gradient
system to obtain quercetin [27] (8.8 mg, 0.32%, Figure 1F). Fraction E45 (103.8 mg) was
subjected to Sephadex LH-20 CC (CHCl3:hexane:MeOH = 5:3:1) to obtain four subfractions
(E451–E454). Subfraction E452 was then purified by MPLC (ODS-S-50-A, 11 × 300 mM) us-
ing H2O:MeOH = 60:40→ 40:60 and finally by NP HPLC (YMC-Pack SIL-06, 10 × 250 mm)
using a H2O:EtOH = 80:20→ 70:30 elution system for 30 min to separate quercetin-3-O-
arabinofuranoside [28] (8.3 mg, 0.30%, Figure 1B), quercetin-3-O-rhamnoside [29] (6.0 mg,
Figure 1C) and protocatechuic acid [30] (2.0 mg, 0.07%, Figure 1I). Fractions E46 (14.4 mg)
and E47 (34.9 mg) were subjected to silica gel CC using a CHCl3:MeOH = 8:1→ 6:1 gradient
system to obtain six subfractions (E4671–E4676). Subfraction E4674 was later purified by
NP HPLC (YMC-Pack SIL-06, 10 × 250 mM) using a H2O:EtOH = 82:18→ 75:25 system
for 30 min to obtain kaempferol-3-O-arabinofuranoside [27] (22.3 mg, 0.80%, Figure 1G)
and kaempferol-3-O-β-D-glucopyranoside [27] (7.2 mg, 0.26%). Fraction E49 (16.2 mg) was
subjected to RP-HPLC (YMC-Pack C18, 20 × 150 mM) first using H2O:MeOH = 30:70→
10:90 for 30 min and then using hexane:acetone = 2:1→ 1:3 in a gradient system to obtain
kaempferol [28] (3.3 mg, 0.12%, Figure 1H). Fraction E7 (51.4 mg) was subjected to MPLC
(ODS-S-50-A, 11 × 300 mM) with H2O:MeOH = 50:50→ 0:100 to obtain myricetin [31]
(5.6 mg, 0.20%, Figure 1E).
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Figure 1. Chemical structure of compounds isolated from Polygonum aviculare L. (A) Myricetin-3-O-
rhamnoside; (B) Quercetin-3-O-arabinofuranoside; (C) Quercetin-3-O-rhamnoside; (D) Myricetin;
(E) Quercetin; (F) Kaempferol-3-O-arabinofuranoside; (G) Kaempferol; (H) Protocatechuic acid;
(I) Kaempferol-3-O-β-D-glucopyranoside.

2.3. Experimental Animals and Diets

All experimental procedures were performed in accordance with the National Institute
of Health Guide for the Care and Use of Laboratory Animals and were approved by the
Institutional Animal Care and Utilization Committee for Medical Science of Wonkwang Uni-



Int. J. Mol. Sci. 2021, 22, 7230 4 of 16

versity (approval number: WKU 14-50). In brief, 12-week-old male db/db mice (C57BL/6J
Lepr) and age-matched non-diabetic db/m mice (C57BLKS/J) were purchased from CLEA
Japan, Inc. After one week of acclimation, the mice were randomly divided into five
groups (n = 8 per group; total 40) as follows: Control group comprising db/m mice (db/m);
negative control group comprising db/db mice (db/db); positive control group comprising
db/db mice daily treated with 20 mg/kg aminoguanidine (AG); db/db mice daily treated
with a low concentration (10 mg/kg) of ER-PA (PAL); and db/db mice treated daily with
a high concentration (50 mg/kg) of ER-PA (PAH). The mice were subjected to diabetes
through genetic modification. Any animal that died or was severely injured during the
experiment was excluded from study. The primary outcome of the present study involved
assessing changes in biomarkers that improved the DN. The primary indicators included
changes in blood glucose and insulin indicators. The secondary evaluation variables were
changes in renal morphology and nephrin expression to measure improvements in renal
functions. Renal fibrosis and inflammation were detected as changes in the expression of
related factors. The mice were housed in a room automatically maintained at a temperature
of 23 ± 2 ◦C, humidity of 50–60% and a 12-h light/dark cycle throughout the experiment.
Body weight and water/food consumption were measured weekly. They were anesthetized
with 4% isoflurane using an Anesthesia Tabletop Bracket with a N2O and O2 Flow Meter
System (Small Animal Ventilator; Harvard Apparatus) and were sacrificed by incision of
the abdominal artery.

2.4. Cell Cultures

Primary human renal mesangial cells were purchased from ScienCell Research Labo-
ratories, Inc. and cultured in a low-glucose Dulbecco’s modified Eagle’s medium (DMEM;
Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) supplemented with 10% fe-
tal bovine serum (Gibco; Thermo Fisher Scientific, Inc.) and 1% antibiotic-antimycotic
(Gibco; Thermo Fisher Scientific, Inc.). The dispersed mesangial cells were incubated in a
humidified incubator at 37 ◦C under 95% air and 5% CO2.

2.5. Estimation of Blood Glucose and the Oral Glucose Tolerance Test (OGTT)

The concentration of glucose in blood was measured every two weeks using blood
samples obtained from the tail vein, with a glucometer (OneTouch Ultra) and Test Strip
(Life Scan Inc., Milpitas, CA, USA). The OGTT was performed two days apart at eight
weeks. For the OGTT, basal blood glucose concentrations were measured after 10–12 h of
overnight fasting. A glucose solution (2 g/kg body weight) was immediately administered
via oral gavage and blood samples were obtained after 30, 60, 90, and 120 min.

2.6. Analysis of Plasma Biochemical Markers

Insulin, C-reactive protein (CRP), kidney injury molecule-1 (KIM-1), and hemoglobin
A1c (HbA1c) levels in the plasma were measured with ELISA using a mouse insulin ELISA
kit (AKRIN-011T, Shibayagi Co., Ltd., Gunma Prefecture, Japan), commercial mouse CRP
ELISA kit (LS-F4264, LSBIO, Ltd., Seattle, WA, USA), commercial KIM-1 ELISA kit (LS-
F24859, LSBIO, Ltd.) and commercial HbA1c ELISA kit (MBS776343, MyBioSource, Inc.,
San Diego, CA, USA), respectively.

2.7. Monitoring Renal Function

Mice from each group were maintained in separate metabolic cages for two days, to
collect urine and measure water and food intake. Urine samples were used to determine
creatinine level, osmolality and other parameters related to renal function. The levels of
creatinine in the plasma were colorimetrically measured using a spectrophotometer (Milton
Roy). The concentrations of ions were measured using an electrolyte analyzer (NOVA
5; Nova Biomedical) and osmolality was determined using an Advanced CRYOMATIC
osmometer (model 3900; Advanced Instruments, LLC., Norwood, MA, USA).
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2.8. Immunohistochemical and Morphological Staining of Kidney Tissue

For immunohistochemical and morphological analyses, isolated kidney tissues were
fixed in 4% paraformaldehyde for 48 h at 4 ◦C, then incubated with 30% sucrose for two
days. Each tissue was embedded in an embedding medium, optimum cutting temperature
(O.C.T.) compound (Sakura Finetek USA, Torrance, CA, USA), frozen in liquid nitrogen,
and stored at −70 ◦C until analysis. Frozen sections for immunohistochemical staining
were cut to a thickness of 10 µm, with a Shandon Cryotome SME (Thermo Fisher Scientific,
Inc.) and placed on poly L-lysine-coated slides (Thermo Fisher Scientific, Inc.). The slides
were air dried overnight at room temperature and stored at −70 ◦C until immunostaining.
Slides were immunostained using Histostain®-SP kits, as per the labeled-[strept] avidin-
biotin (LAB-SA) method (Invitrogen; Thermo Fisher Scientific, Inc.). For quantitative
analysis, the average score of 10–20 randomly selected areas was calculated using the NIH
Image analysis software, ImageJ (National Institutes of Health, version 1.49). The age
of 16 weeks, mice were anesthetized and perfused with ice-cold Ringer solution before
being perfused and fixed with 10% (v/v) buffered formalin in 50 mM potassium phosphate
buffer (pH 7.0) for 48 h at 4 ◦C. For morphometric analysis, the kidney was removed and
embedded in paraffin to prepare 4-µm tissue slices. The tissue slices were stained with
periodic acid-Schiff (PAS) and images were captured and analyzed using ImageJ.

2.9. Western Blot Analysis of Kidney Samples

Kidney homogenates were prepared in an ice-cold buffer containing 250 mM sucrose,
1 mM ethylenediaminetetraacetic acid, 0.1 mM phenylmethylsulfonyl fluoride and 20 mM
potassium phosphate buffer (pH 7.6). The homogenates were centrifuged at 8000 rpm for
10 min at 4 ◦C and the supernatant obtained was further centrifuged at 13,000 rpm for 5 min
at 4 ◦C and used as the cytosolic fraction for protein analysis. The protein concentrations
were determined using a Bradford protein assay [32]. The recovered proteins (40 µg)
were separated on 10% sodium dodecyl sulfate-polyacrylamide gels and transferred onto
nitrocellulose membranes. Membranes were blocked with 5% bovine serum albumin
in 0.05% Tween 20 Tris-buffered saline (TBS-T) for 1 h in room temperature. The blots
were then incubated with antibodies against TGF-β1(sc-65378), Smad-2 (sc-6200), Smad-3
(SC-101154), Smad-4 (SC-7966), CTGF (SC-373936), nephrin (SC-32530), ICAM-1 (SC-8439),
MCP-1 (SC-52701), ASC (SC-514414), and caspase-1 (SC-56036) (Santa Cruz Biotechnology,
Inc., Dallas, TX, USA); Collagen IV (ab227616) and NLRP3 (ab263899) (Abcam (Cambridge,
UK), overnight at 4 ◦C. It was cultured by diluting it with an antibody at a ratio of
1:1000. The blots were washed several times with TBS-T and probed with a horseradish
peroxidase-conjugated secondary antibody for 1 h. The immunoreactive bands were
visualized using an enhanced chemiluminescence substrate (Amersham; Cytiva) and
densitometrically analyzed using a Chemi-doc image analyzer (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA).

2.10. Reverse Transcription-Quantitative (RT-q) PCR

Cell were collected (5 × 104) and a kit from Qiagen (RNeasy™ Plus mini kit) was used
for RNA isolation from cell cultures and the RNA quality was assessed from the ratio of
absorbance measured at 260/280 nm, using a UV-spectrophotometer. All experimental
procedures were performed according to the manufacturer’s protocol. RT-qPCR analysis
was performed in a 96-well plate using the Opticon MJ Research instrument (Bio-Rad
Laboratories, Inc.) and an optimized standard SYBR Green 2-step RT-qPCR kit protocol
(DyNAmo™, Finnzymes; Thermo Fisher Scientific, Inc.). The specific sense and antisense
primers were as follows: ICAM-1, 5′-GCT GCT ACC ACA CTG ATG ACG ACA A-
3′ (sense) and 5′-CAG TGA CCA TCT ACA GCT TTC CGG-3′ (anti-sense); MCP-1, 5′-
GATCTCAGTGCAGAGGCTCG-3′ (sense) and 5′-TGC TTG TCC AGG TGG TCC AT-3′

(anti-sense); Collagen IV, 5′-GGT GTT GCA GGA GTG CCA G-3′ (sense) and 5′-GCA AGT
CGA AAT AAA ACT CAC CAG-3′ (anti-sense); CTGF, 5′-GCA AAT AGC CTG TCA ATC
TC-3′ (sense) and 5′-TCC ATA AAA ATC TGG CTT GT-3′ (anti-sense); TGF-β1, 5′-CAA
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CAA TTC CTG GCG TTA CCT TGG-3′ (sense) and 5′-GAA AGC CCT GTA TTC CGT
CTC CTT-3′ (anti-sense); NLRP-3, 5′-CTG GAG ATC CTA GGT TTC TCT G-3′ (sense) and
5′-CAG GAT CTC ATT CTC TTG GAT C-3 (anti-sense); ASC, 5′-ATC CAG GCC CCT CCT
CAGT-3′ (sense) and 5′-GTT TGT GAC CCT CGC GAT AAG-3′ (anti-sense); GAPDH,
5′-CGA GAA TGG GAA GCT TGT CAT C-3′ (sense) and 5′-CGG CCT CAC CCC ATT
TG-3′ (anti-sense). The PCR data were the result of repeating 3 times and analyzed using
the software provided by the manufacturer Monitor™ analysis software (#CFB-3120EDU).

2.11. Statistical Analysis

Values are shown as the mean ± standard error (S.E.), and the data were analyzed
using Sigma Plot 10.0 software (SPSS Inc., Chicago, IL, USA) to compare mean values
between groups in a one-way ANOVA followed by a Dunnett’s test or Student’s t-test. A
value of p < 0.05 was considered statistically significant. Thirty-two db/db mice were ran-
domly divided into groups and used for the study, with no exceptions except unexplained
deaths (the cause of death for one animal: could not be identified by autopsy) and deep
wounds due to quarrels (two animals).

3. Results
3.1. Effects of the Ethanolic Extract from Rhizome of PA on Fluid Metabolism

As shown in Figure 2A, all db/db mice groups showed a significantly higher body
weight throughout the experiment than the normal group (db/m). However, the PAL
group showed a significant decrease at 8 weeks (p < 0.01). As a result of evaluating the
change in kidney weight (kidney weight as % of body weight), the kidney weight in
the db/db group was lower compared with that in the db/m group and no difference
was observed following ER-PA administration (Figure 2B). Food and water intake were
significantly higher in the db/db group compared with the db/m group. However, food
and water intake levels in the PAH group showed a significant decrease compared with the
db/db group at eight weeks, which was similarly to that of the AG group (Figure 2C,D).

3.2. Effects of the Ethanolic Extract from Rhizome of PA on Glucose Tolerance and
Insulin Resistance

To understand the effects of ER-PA on glucose metabolism and insulin resistance in
db/db mice, fasting blood glucose, glucose tolerance, and insulin levels were measured.
Blood glucose levels in all db/db mice groups throughout the experiment were significantly
higher compared with the db/m group. However, at eight weeks, the AG, PAL, and PAH
groups showed significantly lower blood glucose levels compared with the db/db group
(Figure 3A, p < 0.01). These results were similar in the results measured through biochemical
analysis from blood collected after the experiment was completed (Figure 3C). OGTT was
performed to determine the effect of ER-PA on glucose tolerance in db/db mice. The blood
glucose concentration of OGTT markedly increased in db/db group, whereas the AG, PAL,
and PAH groups exhibited significantly suppressed blood glucose concentration 60, 90, and
120 min following the glucose load (Figure 3B; p < 0.05; p < 0.05; p < 0.01). Correspondingly,
HbA1c levels were significantly decreased in AG, PAL, and PAH groups compared with
db/db group at the end of treatment (Figure 3D, p < 0.05).

As shown in Figure 3E, plasma insulin levels were markedly higher in the db/db
group (563.30 ± 127.05) compared with the db/m group (204.35 ± 63.62). However, AG
and PAH groups exhibited significantly lowered plasma insulin levels compared with
the db/db group (p < 0.05). Additionally, the insulin resistance index (HOMA-IR) values
were significantly lower in the PAH group compared with the db/db group (Figure 3F,
p < 0.05, 21.95 ± 4.73 vs 40.00 ± 5.26). The results demonstrated that the high dose of
ER-PA, 50 mg/kg, was the most effective in decreasing blood glucose levels and improving
insulin resistance.
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Figure 2. Effects of ER-PA on (A) body weight; (B) kidney weight; (C) food intake and (D) water intake in db/db mice.
Data are presented as mean ± standard deviation (n = 8). * p < 0.05, ** p < 0.01 vs. db/m; # p < 0.05, ## p < 0.01 vs. db/db.
PA, Polygoni avicularis; BW, body weight.

3.3. Effects of the Ethanolic Extract from Rhizome of PA on Renal Function and Glomerular
Morphological Changes

The urine volume was significantly higher for the db/db group compared with the
db/m group during the experiment period (weeks 0–8). However, the urine volume in
the AG and PAH groups was significantly lower compared with the db/db group during
the entire experimental period (Figure 4A; p < 0.01). Urine osmolality was higher in the
PAH group compared with db/db mice (Figure 4B; 1491.75 ± 94.25 vs. 1275.2 ± 139.09;
p < 0.01), similarly to levels observed in AG group. In addition, after 8 weeks, the urine
urea concentration significantly reduced in the AG, PAL and PAH groups compared with
that in the db/db group (p < 0.01; Figure 4C). The urinary and plasma creatinine levels
in the db/db group were markedly higher compared with the db/m group (p < 0.01).
Creatinine levels were lower in PAL and PAH groups compared with the db/db group
(Figure 4D; 619.2 ± 84.84 and 551.7 ± 110.87 vs. 1108.49 ± 196.2; Figure 4E, 3.82 ± 0.02
and 3.65 ± 0.06 vs. 4.13 ± 0.07). The creatinine clearance rate in the AG, PAL, and PAH
groups also significantly improved compared with that in the db/db group (Figure 4F,
p < 0.01, p < 0.05, p < 0.01). The urinary excretion of sodium, chloride and potassium
was significantly lower in PAL and PAH groups compared with the db/db group (data
not shown). As shown in Figure 4G, compared with db/m group, albuminuria was
established in db/db group at the initial treatment and gradually increased. After 4 weeks,
urinary albumin excretion was significantly reduced in the AG and PAH groups, the effect
continued through 8 weeks (p < 0.01). Furthermore, KIM-1 (an early biomarker of acute
kidney injury) and CRP (a biomarker of inflammation) were significantly reduced in the
AG, PAL and PAH groups (Figure 4H,I). To determine the effect of ER-PA on the kidney
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structure, particularly the glomerulus, kidney cross-sections were stained with periodic
acid Schiff (PAS). PAS staining revealed glomerular basement membrane thickening and
mesangial expansion, as well as increased accumulation of ECM in db/db group. However,
the PAL and PAH treatment ameliorated mesangial expansion, similarly to levels observed
in the AG group (Figure 4J).
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Figure 3. Effects of ER-PA on blood glucose (A); oral glucose tolerance test (B); glucose (C); HbA1c (D); insulin (E) and
HOMA-IR (F). Values are expressed as mean ± standard error of the mean (n = 8). * p < 0.05, ** p < 0.01 vs. db/m; # p < 0.05,
## p < 0.01 vs. db/db. PA, Polygoni avicularis; HbA1c, hemoglobin A1c; HOMA-IR, insulin resistance index; AG, db/db
mice daily treated with 20 mg/kg aminoguanidine; PAL, db/db mice daily treated with a low concentration (10 mg/kg) of
ER-PA; PAH, db/db mice treated daily with a high concentration (50 mg/kg) of ER-PA.
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Figure 4. Effects of ER-PA on renal function and glomerular morphological changes. Effect of ER-PA on urine volume (A);
urine osmolality (B); Urea (C); urine creatinine (D); plasma creatinine (E); creatinine clearance (F); urinary albumin excretion
(G); KIM-1 (H) and CRP (I). Values are expressed as mean ± standard error of the mean (n = 8). * p < 0.05, ** p < 0.01
vs. db/m; # p < 0.05, ## p < 0.01 vs. db/db. (J) Representative microscopic photographs of a kidney stained with PAS.
Kidney sections in cortex (glomerulus) and outer medulla obtained from the db/m group, db/db group, AG group, PAL
group and PAH group (n ≥ 3; magnification, ×200). PA, Polygoni avicularis; AG, db/db mice daily treated with 20 mg/kg
aminoguanidine; PAL, db/db mice daily treated with a low concentration (10 mg/kg) of ER-PA; PAH, db/db mice treated
daily with a high concentration (50 mg/kg) of ER-PA.

3.4. Effects of the Ethanolic Extract from Rhizome of PA on Nephrin Levels

As shown in Figure 5A, to determine whether ER-PA ameliorates early glomerular
injury by the loss of glomerular nephrin expression, immunohistochemistry was performed.
The staining of nephrin in the db/m group was greater than the db/db group. However, in
the PAL and PAH groups, the expression of nephrin was significantly increased compared
with db/db mice. To confirm the results obtained from immunohistochemistry, Western
blot analysis and RT-qPCR were performed. The nephrin protein and mRNA level signifi-
cantly increased in the PAL and PAH groups compared with the db/db group (Figure 5B,C;
p < 0.01; p < 0.05). These results suggested that PAH can improve kidney damage by
upregulating the expression of nephrin, a biomarker of early glomerular damage.
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Figure 5. Effect of ER-PA on nephrin immunoreactivity in db/db mice. Expression of nephrin in kidneys was determined
with (A) immunohistochemistry staining; (B) western blotting and (C) reverse transcription-quantitative PCR analysis.
Values are expressed as mean ± standard error of the mean (n = 8). ** p < 0.01 vs. db/m; # p < 0.05, ## p < 0.01 vs. db/db
(n ≥ 3; magnification, ×200). PA, Polygoni avicularis; AG, db/db mice daily treated with 20 mg/kg aminoguanidine; PAL,
db/db mice daily treated with a low concentration (10 mg/kg) of ER-PA; PAH, db/db mice treated daily with a high
concentration (50 mg/kg) of ER-PA.

3.5. Effect of the Ethanolic Extract from Rhizome of PA on Renal Fibrosis

The extent of glomerulosclerosis was examined by determining the expression of
TGF-β1 and collagen IV, which are important regulators of ECM proteins. Immunohisto-
chemistry results showed that TGF-β1 and collagen IV expression increased in the db/db
group compared with that in the db/m group. However, treatment with AG, PAL, and
PAH decreased TGF-β1 and collagen IV expression (Figure 6A). Western blotting and
RT-qPCR demonstrated a significant increase in the expression of the factors related to
TGF-β1/Smad signaling in the db/db group and their decreased expression in the AG and
PAH group. Furthermore, CTGF protein and mRNA expression was inhibited by AG and
PAH treatment (Figure 6B,C). To investigate the inhibitory effects of ER-PA on high glucose
(HG)-induced renal fibrosis in human renal mesangial cells, western blotting and RT-qPCR
was performed. The HG-induced TGF-β1 and collagen IV protein expression were signifi-
cantly inhibited after treatment with ≥5 µg/mL ER-PA. RT-qPCR analysis showed that
TGF-β1 and collagen IV mRNA expression was downregulated following ER-PA treatment
(Figure 6D,E). These data showed that ER-PA can improve glomerular fibrosis associated
with TGF-β/Smad and collagen accumulation in the diabetic nephropathy model.

3.6. Effect of the Ethanolic Extract from Rhizome of PA on Renal Inflammation

The extent of renal inflammation was examined by measuring the expression of
inflammatory factors in db/db mice and human renal mesangial cells. The immunohisto-
chemistry analysis showed that the expression of ICAM-1 increased in the db/db group
compared with in the db/m group. However, administration of the AG, PAL, and PAH
decreased ICAM-1 expression (Figure 7A). In addition, ICAM-1 protein and mRNA levels
were significantly lower in the AG and PAH group (Figure 7B,C; p < 0.01). Further, the level
of MCP-1 protein and mRNA significantly decreased in AG and PAH groups compared
with in the db/db group (Figure 7B,C, p < 0.01; p < 0.05). To investigate the inhibitory effects
of ER-PA on HG-induced renal inflammation in human renal mesangial cells, western
blotting and RT-qPCR were performed. NLRP3, ASC and caspase-1 protein expression
were significantly upregulated in HG-induced mesangial cells. However, NLRP3, ASC, and
caspase-1 expression were significantly inhibited after treatment with ER-PA at ≥5 µg/mL.
RT-qPCR indicated that HG treatment led to increased expression of NLRP3 and ASC
mRNA. However, pretreatment of ER-PA significantly reduced the expression of NLRP3
and ASC mRNA in HG-induced renal mesangial cells (Figure 7D,E). These results indicated
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that ER-PA blocks the activation of NLRP3 inflammasomes and the expression of early
inflammatory factors.
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Figure 6. Effect of ER-PA on renal fibrosis. (A) Immunohistochemistry analysis showed that ER-PA therapy inhibits
TGF-β1 and Collagen IV expression in the diabetic kidneys of db/db mice (n ≥ 3; magnification, ×200); (B) Expression
of protein was determined with western blot analysis (n ≥ 3); (C) Expression of mRNA was determined by reverse
transcription-quantitative PCR analysis (n≥ 5). Values are expressed as mean± standard deviation (n = 8). ** p < 0.01 vs. db/m;
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# p < 0.05, ## p < 0.01 vs. db/db; (D) Human renal mesangial cell lysates were used for western blot analysis with a primary
antibody against TGF-β1 and collagen IV. β-actin was used as the internal standard in each sample; (E) Reverse transcription-
quantitative PCR showing mRNA levels in ER-PA-treated and HG-stimulated mesangial cells. Each value represents the
mean ± standard error of the mean of five independent experiments. ** p < 0.01 vs. db/m; # p < 0.05, ## p < 0.01 vs. HG
alone. PA, Polygoni avicularis; HG, high glucose; AG, db/db mice daily treated with 20 mg/kg aminoguanidine; PAL, db/db
mice daily treated with a low concentration (10 mg/kg) of ER-PA; PAH, db/db mice treated daily with a high concentration
(50 mg/kg) of ER-PA.
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Figure 7. Effect of ER-PA on renal inflammation. (A) Immunohistochemistry analysis showed that ER-PA therapy
inhibited ICAM-1 expression in the diabetic kidney of db/db mice (n ≥ 3; magnification, ×200); (B) Expression of protein
was determined with western blot analysis (n ≥ 3); (C) Expression of mRNA was determined by reverse transcription-
quantitative PCR (n ≥ 5). Values are expressed as mean ± standard error of the mean (n = 8). ** p < 0.01 vs. db/m;
# p < 0.05, ## p < 0.01 vs. db/db; (D) Human renal mesangial cell lysates were used for western blot analysis with a
primary antibody against NLRP3, ASC and caspase-1. β-actin was used as the internal standard in each sample; (E) Reverse
transcription-quantitative PCR showing mRNA levels in ER-PA-treated and HG-stimulated mesangial cells. Each value
represents mean ± standard error of the mean of five independent experiments. ** p < 0.01 vs. db/m; # p < 0.05, ## p < 0.01
vs. HG alone. PA, Polygoni avicularis; ICAM-1, intercellular adhesion molecule-1; MCP-1, monocyte chemoattractant
protein-1; NLRP3, NLR family pyrin domain containing 3; ASC, apoptosis-associated speck-like protein; HG, high glucose;
AG, db/db mice daily treated with 20 mg/kg aminoguanidine; PAL, db/db mice daily treated with a low concentration
(10 mg/kg) of ER-PA; PAH, db/db mice treated daily with a high concentration (50 mg/kg) of ER-PA.

4. Discussion

The present study demonstrated the ER-PA-mediated amelioration of blood glucose
levels and renal function parameters in db/db mice. The db/db mouse is an animal model
of obesity-related diabetes and can be used to study kidney changes due to diabetes [33] The
db/db mouse is overweight, hyperglycemic and hyperinsulinemic and exhibits increased
kidney weight, glomerular mesangial matrix and albumin excretion [34] The present study
showed that ER-PA significantly reduced the body weight and food/water intake of db/db
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mice. The urine volume in db/db mice was significantly higher than that in db/m mice
and ER-PA treatment of these mice reduce the increase in urine volume compared with
that in untreated db/db mice. There were obvious dysregulations in urinary albumin
and plasma creatinine, which are considered as markers of renal function, along with
histological changes in db/db mice. Although these levels were significantly higher in
db/db mice compared with the db/m mice, the difference between untreated and ER-PA-
treated db/m mice was small and the values remained within the normal range. Urinary
albumin excretion may be a predictive factor for the prognosis of DN and urinary albumin
indicates impairment of renal function [35,36]. It was verified that a reduction in urinary
albumin level in type 2 diabetes is associated with reno-protective effects. In the present
study, urinary albumin excretion significantly increased in db/db mice throughout the
study period but decreased following ER-PA treatment. The glomeruli of db/db mice
showed accelerated mesangial expansion, histologically characterized with an increase
in the PAS-positive mesangial matrix area, as compared with that in the glomeruli of
db/m mice. Treatment with ER-PA reduced the mesangial matrix expansion in db/db
mice. These results suggested that ER-PA may improve renal function by reducing urinary
albumin levels in a diabetic animal model. ER-PA inhibits several symptoms of diabetes,
depending on the glucose index. Insulin resistance is a major finding in patients with type
2 diabetes mellitus. Insulin resistance may exist even earlier in patients with mild renal dis-
ease (insulin resistance assessed with OGTT or HOMA-IR) and DN [2,37]. The HOMA-IR
index is the most widely used index, which represents the product of glucose and insulin
concentrations divided by a factor [38]. Plasma insulin and HOMA-IR are markedly ele-
vated in db/db mice compared with db/m mice [39]. In the present study, plasma glucose
and insulin concentrations were significantly higher in db/db mice compared with the
untreated db/m mice but decreased following ER-PA treatment. These results suggested
that ER-PA ameliorates insulin resistance by improving blood glucose and insulin concen-
trations under diabetic conditions. The present study found that ER-PA improved early
glomerular damage by recovering the loss of glomerular nephrin expression. However,
immunochemical staining results confirm that nephrin expression was stained not only
in Bowman’s pockets, but also in the glomeruli. Nephrins should be expressed in most
of the glomeruli, but the present study did not yield such results. However, as with other
studies, there were cases in which no noticeable manifestations were observed within
the glomerulus [40,41]. Therefore, ER-PA may prove to be effective for the treatment of
renal dysfunction. DN is a morbid microvascular complication associated with diabetes
and is the most common cause of end-stage renal disease [42]. In DN, the accumulation
of ECM components in the glomerular mesangium and tubulointerstitium causes early
glomerular hypertrophy and eventually glomerulosclerosis and tubulointerstitial fibro-
sis [43]. The concentration of collagen IV increases with DN progression in patients and
db/db mice [44]. Collagen IV accumulation is a crucial phenomenon underlying mesangial
expansion [45]. The mesangial expansion and glomerular fibrosis observed in db/db mice
may result from molecular changes within the renal tissue, including the activation of
various pro-inflammatory cytokines and growth factors [46]. TGF-β1 is another impor-
tant factor in the pathogenesis of DN and mediates an inflammatory response, which
aggravates ECM secretion involving fibronectin and collagen accumulation and accelerates
glomerulosclerosis in diabetes [47]. To further clarify the effect of ER-PA on glomerular
fibrosis, immunohistological staining for collagen IV and TGF-β1 in glomeruli was per-
formed. Collagen IV and TGF-β1 expression was suppressed by ER-PA, compared with
untreated db/db mice. ER-PA decreased TGF-β/Smad-2 protein and mRNA expression
in the kidneys of db/db mice, as confirmed with western blotting and RT-qPCR, respec-
tively. Furthermore, the expression of Smad-2, Smad-3, and Smad-4 markedly decreased
in the nuclear fraction derived from diabetic mouse kidneys following ER-PA treatment.
Fibronectin and collagen IV levels in ER-PA-treated db/db mice were lower compared
with those in untreated db/db mice. Therefore, ER-PA suppressed renal fibrosis that was
activated in the kidney of db/db mice, disturbed TGF-β/Smad activity and promoted



Int. J. Mol. Sci. 2021, 22, 7230 14 of 16

ECM degradation. In recent years, clinical and experimental evidence has indicated the
important role of inflammatory cytokines in the development and progression of DN [48].
ER-PA ameliorated renal inflammation through the suppression of inflammatory factors in
diabetic db/db mice, emphasizing its renoprotective effect in the DN accelerated by renal
fibrosis and inflammation in type 2 diabetic db/db mice.

DN is characterized by glomerular alterations in the renal tissue, including thickening
of the glomerular basement membrane and mesangial matrix expansion, leading to the
evolution of glomerulosclerosis [49]. Increased mesangial cell proliferation as well as
the accumulation of ECM components such as collagen in the glomeruli are some of
the characteristic pathologic features of early stage DN [50]. Renal inflammation and
subsequent fibrosis are critical processes leading to end-stage DN [51,52]. The NLRP3
inflammasome is a mediator of inflammation and contributes to the progression of chronic
kidney disease. Its activation is linked to autoinflammatory diseases [17]. The present study
confirmed the effect of ER-PA on inflammatory and fibrotic changes in primary human
renal mesangial cells induced by the HG. As with the in vivo studies, these results showed
that ER-PA markedly ameliorated HG-induced mesangial fibrosis in renal glomerular
mesangial cells through the downregulation of the TGF β signaling pathway. Furthermore,
ER-PA inhibited HG stimulation and increased the expression of inflammation-related
factors, including ICAM-1, MCP-1 and NLRP3 inflammasome. Therefore, these findings
demonstrated the significant protective effect of ER-PA against diabetic renal injury via the
control of TGF-β signaling pathways and inflammatory factors leading to DN. However,
the present study had several limitations. Aminoguanidine used in the present study is a
representative AGE inhibitor, but it is not a clear positive control for diabetic nephropathy
improvement. Therefore, further studies taking this into account are needed for a clearer
identification of the improvement of diabetic nephropathy.

5. Conclusions

In conclusion, the present study demonstrated ER-PA resulted in significant ame-
liorate of urinary albumin excretion, oral glucose tolerance, and insulin resistance index.
Moreover, the beneficial effects of ER-PA on DN that are mediated through the allevia-
tion of glomerular fibrosis in the kidneys induced by diabetes as well as amelioration of
inflammation. Taken together, the function of ER-PA against diabetes-associated renal
dysfunction may provide new insights into the development of therapeutic drugs for DN.
Moreover, further research to elucidate detailed mechanism of ER-PA at the cellular and
molecular levels in diabetic nephropathy needs to be done.
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