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Abstract 

Background: Our ability to acquire, refine and adapt skilled limb movements is a hallmark of human motor learning 
that allows us to successfully perform many daily activities. The capacity to acquire, refine and adapt other features of 
motor performance, such as visual search, eye-hand coordination and visuomotor decisions, may also contribute to 
motor learning. However, the extent to which refinements of multiple behavioral features and their underlying neural 
processes independently contribute to motor learning remains unknown. In the current study, we used an etho-
logical approach to test the hypothesis that practice-related refinements of multiple behavioral features would be 
independently predictive of motor learning.

Methods: Eighteen healthy, young adults used an upper-limb robot with eye-tracking to practice six trials of a 
continuous, visuomotor task once a week for six consecutive weeks. Participants used virtual paddles to hit away 200 
“Targets” and avoid hitting 100 “Distractors” that continuously moved towards them from the back of the workspace. 
Motor learning was inferred from trial-by-trial acquisition and week-by-week retention of improvements on two 
measures of task performance related to motor execution and motor inhibition. Adaptations involving underlying 
neural processes were inferred from trial-by-trial acquisition and week-by-week retention of refinements on measures 
of skilled limb movement, visual search, eye-hand coordination and visuomotor decisions. We tested our hypoth-
esis by quantifying the extent to which refinements on measures of multiple behavioral features (predictors) were 
independently predictive of improvements on our two measures of task performance (outcomes) after removing all 
shared variance between predictors.

Results: We found that refinements on measures of skilled limb movement, visual search and eye-hand coordination 
were independently predictive of improvements on our measure of task performance related to motor execution. In 
contrast, only refinements of eye-hand coordination were independently predictive of improvements on our measure 
of task performance related to motor inhibition.

Conclusion: Our results provide indirect evidence that refinements involving multiple, neural processes may inde-
pendently contribute to motor learning, and distinct neural processes may underlie improvements in task perfor-
mance related to motor execution and motor inhibition. This also suggests that refinements involving multiple, neural 
processes may contribute to motor recovery after stroke, and rehabilitation interventions should be designed to 
produce refinements of all behavioral features that may contribute to motor recovery.
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Introduction
Humans learn to perform a broad repertoire of motor 
tasks that often require diverse and adaptable limb move-
ments (i.e., skilled limb movements) to interact with our 
outside world. Many motor tasks, such as cooking, walk-
ing and driving, also employ diverse and adaptable pat-
terns of eye movements (i.e., visual search) to actively 
gather visual information for planning and execution of 
skilled limb movements. Information gathered by visual 
search is also used to decide what skilled limb move-
ments should be performed to achieve task goals (i.e., 
visuomotor decisions). Conversely, patterns of visual 
search are influenced by the available repertoire of skilled 
limb movements that can be used to achieve task goals. 
These interactions between skilled limb movements and 
visual search lead to coordinated patterns of eye and limb 
movements (e.g., eye-hand coordination). Overall, skilled 
limb movements, visual search, eye-hand coordination 
and visuomotor decisions may all contribute to learn-
ing and performance of motor tasks. However, we do 
not know the extent to which these behavioral features 
and their underlying neural processes are independently 
refined to produce improvements in task performance.

Given that many concepts in motor learning have 
unclear or ambiguous definitions, we will define sev-
eral concepts based on how they are used in this study. 
“Motor tasks” refer to all tasks that require skilled limb 
movements to achieve their task goal. Accordingly, most 
activities of daily living (e.g., cooking, walking, driving) 
are considered motor tasks even if they engage percep-
tual, cognitive and motor functions. “Neural processes” 
refer to brain networks that manipulate perceptual, cog-
nitive and motor information to perform motor tasks. 
“Motor learning” refers to acquisition and retention of 
practice-related improvements in task performance, 
where “task performance” refers to outcomes that are 
specific to achieving task goals and “improvements” 
necessitate increased achievement of task goals. We 
assume that motor learning results from neural adapta-
tions that produce refinements of behavioral features of 
motor tasks (e.g., skilled limb movements, visual search, 
eye-hand coordination, visuomotor decisions), where 
“refinements” are practice-related changes that do not 
occur in a particular direction.

Traditional studies of motor learning have examined 
how skilled limb movements are refined during prac-
tice of motor tasks [1–3]. Studies of movement dynam-
ics have found that muscle activations, joint torques and 
endpoint forces exhibit trial-by-trial refinements of coor-
dination and efficiency [4–6]. Similarly, studies of move-
ment kinematics have observed trial-by-trial refinements 
of speed, accuracy, smoothness and variability of skilled 
limb movements [7–9], and these refinements exhibit 

good day-by-day retention [10–13]. However, these stud-
ies were not designed to investigate if refinements of 
other behavioral features, such as visual search, eye-hand 
coordination and visuomotor decisions, contribute to 
motor learning.

Research on eye movements indicates that refine-
ments of visual search may contribute to motor learning 
[14, 15]. Observational studies have found that experts 
at different visuomotor skills have better control of eye 
movements than novices [16–20]. Experimental stud-
ies have also demonstrated that interventions designed 
to improve control of eye movements and attention lead 
to improvements in visuomotor performance [21–25]. 
While none of these studies examined trial-by-trial or 
week-by-week refinements of eye movements, there is 
ample evidence that visual search is refined during prac-
tice of perceptual tasks [26–30]. However, these studies 
did not examine any relationships between refinements 
of visual search and improvements in task performance, 
nor did they investigate refinements of other behavioral 
features. Thus, we do not know if refinements of visual 
search independently contribute to motor learning.

Studies of spatiotemporal coupling between eye and 
hand movements have provided evidence that refine-
ments of eye-hand coordination may contribute to motor 
learning. Patterns of eye-hand coordination vary with 
task demands [31, 32] and are refined during motor 
learning in a task-dependent manner [33–36]. However, 
it remains unclear if refinements of eye-hand coordina-
tion independently contribute to improvements in task 
performance, or if they result from refinements of skilled 
limb movements and visual search but do not actually 
contribute to motor learning.

It is widely accepted that sensory processes contribute 
to planning and execution of skilled limb movements 
[37]. In addition, information from sensory feedback 
provides reinforcement that is known to play an impor-
tant role in motor learning [2]. Recent studies have also 
found that motor learning can induce changes in visual 
processing that are associated with refinements of skilled 
limb movement [38, 39]. This suggests that adaptations 
of visual and visuomotor processing contribute to motor 
learning. However, these studies were not designed to 
investigate the extent to which refinements of other 
behavioral features, such as visual search, eye-hand coor-
dination and visuomotor decisions, may independently 
contribute to motor learning.

Despite evidence that refinements of multiple features 
might underlie motor learning, we do not know the 
extent to which they independently contribute to motor 
learning. Traditional experiments cannot easily address 
this problem because they are designed to isolate indi-
vidual processes. In contrast, ethological approaches 
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that study real-time, natural behavior can overcome this 
limitation by leveraging individual patterns of variability 
exhibited by several behavioral features [40]. However, 
this approach requires carefully controlling for any covar-
iation between different features. For example, two or 
more processes may be associated with motor learning, 
but their individual patterns of variability might exhibit 
substantial covariance. This shared variance can cause 
regression analyses to produce incorrect estimates of the 
contributions made by each process. Accurate estimates 
of the individual contributions can only be obtained from 
the independent variance that remains after removing all 
shared variance.

The objective of the current study was to investigate 
the extent to which multiple neural processes might 
independently contribute to motor learning. Healthy 
young adults used an upper-limb robot with eye track-
ing to complete six weeks of practice of a novel, visuo-
motor task designed to mimic the richness of real-world 
visuomotor tasks. Motor learning was inferred from 
trial-by-trial acquisition and week-by-week retention of 
improvements on measures of task performance. Adap-
tations of multiple neural processes were inferred from 
trial-by-trial acquisition and week-by-week retention of 
refinements on measures of skilled limb movement, vis-
ual search, eye-hand coordination and visuomotor deci-
sions. Our first hypothesis was that practicing our novel, 
visuomotor task would elicit trial-by-trial acquisition and 
week-by-week retention of improvements in task perfor-
mance that are mirrored by concurrent refinements of 
skilled limb movements, visual search, eye-hand coordi-
nation and visuomotor decisions. Our second hypothesis 
was that refinements related to multiple neural processes 
would be independently predictive of improvements in 
task performance.

Methods
Participants
We recruited healthy, young adults (18–35  years old) 
from the University of South Carolina and surrounding 
areas. Participants were excluded if they reported any 
history of a central or peripheral neurological disorder 
or an ongoing musculoskeletal issue affecting either arm 
or hand. The study protocol was approved by the Univer-
sity of South Carolina’s Institutional Review Board and all 
participants provided informed consent to participate.

Apparatus
Data were collected with a bilateral, upper-limb robot 
(KINARM EndPoint Lab, KINARM, Kingston, Canada) 
and monocular eye-tracker (EyeLink 1000, SR Research 
Ltd., Ottawa, Canada) that were integrated with an aug-
mented-reality workspace (Fig. 1a) [41]. Participants sat 
in a custom chair that used floor-mounted tracks and 
hydraulics to align them with a forehead rest, which sta-
bilized the head for eye tracking. Participants grasped 
two near-frictionless manipulanda, which allowed them 
to make two-dimensional hand movements within an 
80 cm wide by 80 cm deep workspace. An opaque shield 
and fabric cover prevented direct vision of the hands and 
arms. Hand and gaze position in the robotic workspace 
were respectively sampled at 1000 and 500 Hz, recorded 
at 200 Hz, and filtered offline using a low-pass filter with 
a 20 Hz cutoff.

The augmented-reality environment was created in the 
same horizontal plane as the robotic workspace by using 
an inverted-monitor to project visual stimuli at 60  Hz 
through a semi-transparent mirror. Cartesian gaze posi-
tion in the horizontal plane was estimated using propri-
etary calibration algorithms (Kinarm, Kingston, Canada) 
that provided accurate eye tracking within a workspace 

a b c Variant 1
Targets

Camera

Manipulandum

Workspace
Distractors

Targets

Distractors

Variant 2 Variant 3

Variant 4 Variant 5 Variant 6

Fig. 1 Apparatus and task. a Bilateral, upper-limb robot (manipulandum), monocular eye-tracker (camera) and augmented-reality environment 
(workspace) used for data collection. b Overhead view of the Object Hit and Avoid (OHA) task, showing the arms and hands, robotic manipulanda, 
two green paddles and six red objects (geometric shapes). Participants used the two paddles to hit away 200 target objects and avoid hitting 
100 distractor objects that moved toward them from the back of the workspace. The augmented-reality environment presented the paddles and 
objects in the same horizontal plane as the robotic workspace. Participants were unable to see their arms and hands or the robotic manipulanda. c 
The six OHA variants comprised of six combinations of target objects (one small, one large) and distractor objects (2 small, 4 large)
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of approximately 50  cm wide by 50  cm deep. All visual 
stimuli were presented within this portion of the robotic 
workspace. A nonlinear mapping corresponded to a 
visual area approximately 55° wide by 40° deep in which 
stimuli located closer to participants comprised larger 
visual angles.

Task
Participants practiced six trials of a continuous, visuomo-
tor task, Object Hit and Avoid (OHA) [42], once a week 
for six consecutive weeks. Each participant was sched-
uled at a consistent time of day on the same weekday to 
avoid potential confounds caused by circadian rhythms 
and to assure a consistent retention interval between ses-
sions. Illumination of the room was maintained at a con-
stant level for the duration of the study. 

In each trial of the OHA task, 300 red objects com-
prised of eight geometric shapes (e.g., square, circle, 
triangle, etc.) moved from the back of the workspace 
towards the participants along ten parallel paths (5  cm 
center-to-center spacing) (Fig.  1b). Two shapes were 
predefined as “Targets” and six shapes were predefined 
as “Distractors”. Each parallel path contained 20 Targets 
(n = 200) and 10 Distractors (n = 100) that were released 
in random order. The average number of objects that 
were simultaneously present in the workspace and the 
average speed that objects moved progressively increased 
over time. As a result, task difficulty increased within 
each trial, whereas the overall difficulty of each trial was 
consistent. Each trial ended after all 300 objects had 
passed through the workspace (~ 2 min).

Participants received standardized instructions to use 
two green paddles (2.5 cm wide) located on top of each 
hand to hit away as many Targets and to avoid hitting as 
many Distractors as possible. When participants made 
paddle contact with Targets, the robot applied a small 
perturbation (10 Newtons for 50  ms) to the partici-
pant’s hand and Targets rebounded from the paddle with 
the same direction and speed as the paddle movement. 
When participants made paddle contact with Distractors, 
no perturbation was applied to the participant’s hand and 
Distractors passed unaltered through the paddle. Paddle 
size, object size and the spacing between adjacent paths 
prevented participants from simultaneously hitting two 
objects with the same hand.

We employed six distinct variants of targets and distrac-
tors to prevent overlearning of a specific variant from caus-
ing plateaus in task performance (Fig. 1c). Each variant was 
pseudo-randomized and counter-balanced between partic-
ipants each week and was never practiced by a participant 
in more than one week. Specifically, each of the six variants 
was assigned to three different participants each week, and 
each participant performed six trials of a different variant 

each week. Before starting each trial, the two target shapes 
were presented in the middle of workspace until partici-
pants confirmed that they had memorized the shapes and 
were ready to begin. After each trial, participants were 
offered a rest period until they were ready to start the next 
trial.

Gaze classification
Gaze data were processed and classified using the proce-
dures of a validated methodology for processing gaze data 
our group previously published [41]. In brief, the meth-
odology involves preprocessing gaze data to remove blink 
artifacts, one sample spikes caused by incorrect corneal 
detection, and outliers that occurred when gaze moved 
outside the eye-tracking workspace. We subsequently 
use a novel geometric method to transform gaze position 
data into rotational kinematics of the eye. Finally, we use 
adaptive thresholding methods to classify eye movements 
into saccades (rapid eye movements between targets) and 
smooth pursuits (eye movements that followed moving 
targets with foveal vision). Our previous manuscript dem-
onstrated that our methodology for gaze processing and 
classification correctly classifies approximately 90% of sac-
cades and smooth pursuits and misclassifies approximately 
5% of saccades and smooth pursuits when compared with 
manual classification (gold standard) [41].

Measures
We used hand and gaze data to compute measures of Task 
Performance, Skilled Limb Movement, Visual Search, Eye-
Hand Coordination and Visuomotor Decisions for each 
OHA trial.

Task performance We computed two measures of task 
performance (Eqs. 1 and 2). Targets Hit (%) quantified goal 
achievement resulting from successful execution of hand 
movements to hit targets (motor execution). It was calcu-
lated as the percent of all 200 targets that participants “hit”, 
where a target was counted as “hit” if either paddle made 
contact with the target, causing it to move toward the back 
of the workspace. Only one “hit” was counted if a target 
was hit more than once. Distractors Avoided (%) quantified 
goal achievement resulting from successful inhibition of 
hand movements to avoid distractors. It was calculated as 
the percent of all 100 Distractors that were “not hit”, where 
a distracter was counted as “not hit” if neither paddle made 
contact with the distractor or if a paddle made contact 
but caused the distractor to move toward the front of the 
workspace.

(1)TargetsHit =
NTargetsHit

200Targets
∗ 100%



Page 5 of 19Perry et al. J NeuroEngineering Rehabil          (2020) 17:151  

Skilled limb movement We computed five measures of 
skilled limb movement (Eqs.  3–7). Mean Hand-Speed 
(cm/s) quantified the overall execution speed of all hand 
movements by computing the average speed of right- and 
left-hand movements. Mean Hand-Area  (cm2) quantified 
the overall spatial distribution of all hand movements by 
calculating the average area covered by right- and left-hand 
movements, where each area was obtained by computing 
the convex hull of left- and right-hand movements. Target 
Contact Speed (cm/s) quantified the execution speed of 
skilled hand movements by computing the average speed 
of hand movements at the onset of paddle-contact with 
each target that was successfully hit. Hand-Speed Bias 
quantified bimanual coordination by computing inter-limb 
differences in movement speed. It was calculated as the 
normalized difference between the average speed of right- 
and left-hand movements. Hand-Area Bias quantified 
bimanual coordination by computing inter-limb differences 
in the spatial distributions of hand movements. It was cal-
culated as the normalized difference between the area cov-
ered by movements of the right and left hands. Values of 
hand-speed bias or hand-area bias near zero indicate equal 
use of both hands and increasingly higher values indicate 
greater use of one hand than the other. We were unable to 
quantify many traditional measures of skilled limb move-
ment, such as time to peak velocity, peak acceleration or 
smoothness, because we could not identify a distinct start 
or end point of most limb movements due to the continu-
ous nature of our task.

(2)DistractorsAvoided =
NDistractorsNotHit

100Distractors
∗ 100%

(3)
MeanHand − Speed =

−

Hand − SpeedRight +
−

Hand − SpeedLeft

2Hands

(4)
MeanHand − Area =

Hand − AreaRight +Hand − AreaLeft

2Hands

(5)Hand − SpeedBias =

∣

∣

∣

∣

∣

∣

∣

−

Hand − SpeedRight −
−

Hand − SpeedLeft
−

Hand − SpeedRight +
−

Hand − SpeedLeft

∣

∣

∣

∣

∣

∣

∣

(6)

Hand − AreaBias =

∣

∣

∣

∣

Hand − AreaRight −Hand − AreaLeft

Hand − AreaRight +Hand − AreaLeft

∣

∣

∣

∣

(7)

TargetContactSpeed =

∑N
1 Hand − SpeedTargetContact

NTargetsHit

Visual search We computed three measures of visual 
search (Eqs.  8–10). Objects Foveated (%) quantified the 
overall efficiency of visual search by calculating the percent 
of all 300 objects that participants “foveated” with pursuit 
eye movements, where an object was counted as “fove-
ated” if the object was followed with foveal vision for at 
least 40 ms [41]. If an object was foveated more than once, 
it was only counted once. Spatial Foveation Bias quantified 
spatial biases in the distribution of visual search by com-
puting the normalized difference between the number of 
objects foveated on the right and left sides of the work-
space. Extrafoveal Hits (%) quantified covert use of parafo-
veal and peripheral vision for visual search by calculating 
the percent of targets that were hit but were not previously 
foveated. We were unable to compute other measures of 
visual search because a large number of catch-up saccades 
during pursuit prevented accurate calculation of other valid 
measures.

Eye–hand coordination We computed two measures of 
eye-hand coordination (Eqs. 11–12). Gaze-Hand Distance 
(cm) quantified spatial coupling between the eyes and 

hands by calculating the distance between gaze and hand 
position at the onset of paddle-contact with each target 
[33]. Gaze-Hand Latency (ms) quantified temporal cou-

pling between eyes and hands by calculating the interval 
between the initial time of each target hit and final time 
that gaze foveated the target [33–36, 43]. If a target was hit 
more than once, only the first hit was included in these cal-
culations. If a target was not foveated or was hit before it 
was foveated, it was excluded from these calculations.

(8)ObjectsFoveated =
NObjectsFov

300Objects
∗ 100%

(9)

SpatialFoveationBias =

∣

∣

∣

∣

NObjectsFovonRight − NObjectsFovonLeft

NObjectsFovonRight + NObjectsFovonLeft

∣

∣

∣

∣

(10)

ExtrafovealHits =
NTargetsHit∩NotFoveated

NTargetsNotFoveated
∗ 100%
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Visuomotor decisions We computed three measures 
of visuomotor decisions (Eqs.  13–15). Target Foveation 
Time (ms) quantified the amount of time used for making 
decisions to hit targets and was calculated as the average 
duration that participants foveated targets. Distractor 
Foveation Time (ms) quantified the amount of time used 
for making decisions to avoid distractors and was calcu-
lated as the average duration that participants foveated 
distractors. If a target or distractor was foveated more 
than one time, we included the total time of all fovea-
tions. Both measures quantified the average time used 
to recognize and classify shapes as a target or distractor. 
However, Target Foveation Time included the average 
time used to initiate hand movements, whereas Distrac-
tor Foveation Time included the average time used to 
inhibit hand movements. Foveation Time Difference (ms) 
quantified differences between the amount of time used 
for making decisions to hit targets and avoid distractors 
and was calculated as the difference between target and 
distractor foveation times.

Analysis
All analyses were performed using Matlab 2017b (Math-
works Inc., Natick, MA).

Validation of measures
Since most of our measures were novel, we first exam-
ined each measure for uniqueness of information and for 
the presence of outliers. We confirmed that each measure 
quantified unique information by examining the covari-
ance between each pair of measures. If we found a mod-
erate Pearson correlation coefficient between any pair of 
measures (|r|≥ 0.707, r2 ≥ 0.5), we excluded the measure 

(11)Gaze −HandDistance =

∑N
1

√

(XGaze − XTarget)
2 + (YGaze − YTarget)

2

NTargetsHit

(12)
Gaze −HandLatency =

∑N
1 (TimeInitialContact − TimeFinalFov)

NTargetsHit

(13)TargetFoveationTime =

∑N
1 TargetFovTime

NTargetsFoveated

(14)

DistractorFoveationTime =

∑N
1 DistractorFovTime

NDistractorsFoveated

(15)FovTimeDiff = TargetFoveationTime − DistractorFoveationTime

with the highest coefficient of variance from further anal-
yses [44]. We subsequently performed a visual inspection 
of our data, which revealed the presence of a small num-
ber of outliers in several measures. For all subsequent 
analyses, we minimized the potential influence of outliers 
by performing robust regression with a Welsch weight-
ing function [45]. Finally, we standardized each measure 
to obtain a mean of zero and standard deviation of one, 
which allowed us to compare measures with different 
units.

Practice‑related refinements
Our first hypothesis was that practice would induce 
trial-by-trial and week-by-week refinements of skilled 
limb movement, visual search, eye-hand coordina-
tion and visuomotor decisions that mirror improve-
ments in task performance. We tested this hypothesis 
by using robust regression to compare eight different 
linear mixed-effects models that quantified trial-by-trial 
acquisition and week-by-week retention of refinements 
(Eqs. 16–23). The first four models implemented different 
combinations of linear and logarithmic growth rates (lin-
ear–linear, linear–logarithmic, logarithmic–linear, loga-
rithmic–logarithmic) to quantify trial-by-trial acquisition 
and week-by-week retention of refinements (Fig. 2). The 
other four models added an interaction term that quanti-
fied trial-by-trial changes across weeks.

(16)Yijk = bi + β1Trialj + β2Weekk + ǫijk

(17)Yijk = bi + β1logTrialj + β2Weekk + ǫijk

(18)Yijk = bi + β1Trialj + β2logWeekk + ǫijk

(19)Yijk = bi + β1logTrialj + β2logWeekk + ǫijk

(20)
Yijk = bi + β1Trialj + β2Weekk + β3(Trialj ∗Weekk)+ ǫijk
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In Eqs.  16–23, Yijk represents each measure obtained 
from participant i , in trial j of week k , bi is a random 
intercept for each participant, β1 describes trial-by-trial 
acquisition of refinements, β2 describes week-by-week 
retention of refinements, and ǫijk is the error term. In 
Eqs.  20–23, β3 is an interaction term that describes 
changes in trial-by-trial refinements across weeks. The 
model with the lowest Bayesian Information Criterion 
(BIC) was used to examine trial-by-trial acquisition 
and week-by-week retention of refinements. After find-
ing the best-fit model for each measure, we verified that 
additional transformations were not required by visu-
ally inspecting the fit between the predicted and actual 
outcomes and by testing the residuals for normality with 
Kolmogorov-Smirnoff tests. Measures with at least a 
small effect size ( f 2≥0.02; [46] for trial-by-trial acquisi-
tion ( β1 ) or week-by-week retention ( β2 ) of refinements 

(21)Yijk = bi + β1logTrialj + β2Weekk + β3(logTrialj ∗Weekk)+ ǫijk

(22)Yijk = bi + β1Trialj + β2logWeekk + β3
(

Trialj ∗ logWeekk
)

+ ǫijk

(23)Yijk = bi + β1logTrialj + β2logWeekk + β3(logTrialj ∗ logWeekk)+ ǫijk

were subsequently included as “predictor measures” in 
the following analyses of our second hypothesis.

Prediction of motor learning
Our second hypothesis was that refinements related to 
multiple neural processes would be independently pre-
dictive of improvements in task performance. We tested 
this hypothesis by using multiple regression to quantify 
the extent to which refinements of predictor measures 
were independently predictive of improvements on our 
two measures of task performance (outcome measures). 
Before performing these multiple regression analyses, we 
first reduced the number of predictor measures included 
in each model by using bivariate regression to confirm 
that each predictor measure that was individually related 
to improvements on our two measures of task perfor-
mance (i.e., at least a small effect size, f 2≥0.02). We then 
examined each predictor measure for multicollinearity by 

Y ~ logTrial + WeekY ~ Trial + Week

Week

Y ~ Trial + logWeek Y ~ logTrial + logWeek

a b

c d

0

25

50

75

100
Me

as
ur

e Y
 (%

)

Week
0

25

50

75

100

Me
as

ur
e Y

 (%
)

Week
0

25

50

75

100

Me
as

ur
e Y

 (%
)

Week

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 60

25

50

75

100

Me
as

ur
e Y

 (%
)

Fig. 2 Theoretical models used to quantify trial-by-trial acquisition and week-by-week retention of refinements. a Linear trial-by-trial and linear 
week-by-week refinements. b Logarithmic trial-by-trial and linear week-by-week refinements. c Linear trial-by-trial and logarithmic week-by-week 
refinements. d Logarithmic trial-by-trial and logarithmic week-by-week refinements
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computing the Tolerance of each measure, which is the 
proportion of variance not explained by linear combi-
nations of all other predictors (i.e., 1–R2 ) [47]. We sub-
sequently performed multiple regression using linear 
mixed-effects models that only included the predictor 
measure identified in the previous step (Eq. 24).

In Eq.  24, Yijk represents task performance of partici-
pant i in trial j of week k , bi are random intercepts for 
each participant, coefficients β1–βN are estimated rela-
tionships between each predictor measure ( X1–Xn ) and 
the respective measure of task performance, and ǫijk is 
the error term.

We finally identified each predictor measure that was 
independently predictive of improvements on our two 
measures of task performance. Importantly, the values 
of coefficients β1–βN in Eq. 24 are influenced by variance 
that is independent of all other predictors and variance 

(24)
Yijk = bi + β1X1(ijk) + β2X2(ijk) + · · · + βNXn(ijk) + ǫijk

that is shared with other predictors. Figure  3 illustrates 
conceptual representations of independent and shared 
variance for four theoretical regression models that 
include one, two, three, or four predictors of motor 
learning. If only one predictor is examined (a), it might 
be assumed that all variance related to motor learning 
(dark grey area) is independently predictive of motor 
learning. However, if multiple predictors are examined 
(b–d), part of each predictor’s variance related to motor 
learning would be independent of all other predictors 
(dark grey area) and part would be shared with other pre-
dictors (light grey area). The relationships between each 
predictor’s independent variance and motor learning are 
described by semipartial coefficients of determination 
( sr2 ). For the purpose of our second hypothesis, we cal-
culated semipartial coefficients of determination ( sr2 ), 
semipartial effect sizes ( sf 2 ), and semipartial p-values 
( sp ) to examine the relationships between the independ-
ent variance of each predictor measure and improve-
ments on our two measures of task performance. We 
considered measures with at least a small semipartial 
effect size ( sf 2≥0.02) as meaningful predictors of motor 
learning, though we recognize that this could underesti-
mate the amount of motor learning that should be attrib-
uted to each predictor.

For the purpose of rigor and reproducibility, we vali-
dated our multiple regression results by performing for-
ward and backward stepwise regression with the same 
set of predictor measures used in our multiple regression 
analyses. We used the BIC to determine which predic-
tor to add or remove at each step. This resulted in a final 
model with a minimum BIC.

Results
Participants
We enrolled 18 healthy, young adults (8 male, 10 female; 
24.2 ± 3.7  years old; 17 R-handed, 1 L-handed) in the 
study. One participant was unable to complete the sixth 
week of the study. We included the participant’s data 
without replacement of the sixth week.

Exemplar OHA performance
Figure 4 illustrates pursuit and saccadic eye movements 
(pink and gold lines) and left- and right-hand move-
ments (blue and red lines) made by an exemplar partici-
pant at four time points,  Week1·Trial1 (a),  Week1·Trial6 
(b),  Week6·Trial1 (c), and  Week6·Trial6 (d). At each 
time point, the participant’s eye movements covered 
an area of approximately 50 cm wide (X) by 40 cm deep 
(Y). The center-of-mass was consistently located near 
the midline but shifted distally from around 30  cm on 
 Week1·Trial1 (a), to 35 cm on  Week1·Trial6 (b), and 40 cm 
on  Week6·Trial1 and  Week6·Trial6 (c, d). Combined 
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Predictor 1

Predictor 3
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ict
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Predictor 1

Motor
Learning

Motor
Learning

a b
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ict

or
 2 Predictor 4

Predictor 1

Predictor 3

Motor
Learning

d

Fig. 3 Conceptual illustrations of regression analyses used to 
examine motor learning. a Diagram showing how bivariate 
regression quantifies relationships between an individual predictor 
and motor learning without removing the variance shared with 
other potential predictors. b–d. Diagrams showing how multiple 
regression quantifies relationships between two (b), three (c) or four 
(d) predictors and motor learning. Regression coefficients estimate 
relationships from the independent and shared variance of each 
predictor, whereas semipartials estimate relationships from only 
the independent variance of each predictor. Light grey areas show 
portions of motor learning that cannot be attributed to a single 
predictor due to shared variance with other predictors. Dark grey 
areas show portions of motor learning that can be attributed to a 
single predictor after removing its shared variance
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movements of both hands covered an area that was 
around 50  cm wide and consistently centered near the 
midline. However, the range of hand movements in depth 
increased from around 15  cm on  Week1·Trial1 (a) to 
20 cm on the other three trials (b–d). The center-of-mass 
also shifted distally from under 10 cm on  Week1·Trial1 (a) 
to over 15 cm on the other three trials (b–d). Left- and 
right-hand movements covered similar areas and were 
largely constrained to their respective sides.

Figure 4 also displays grids of rectangles that represent 
each Target (upper grids: 20 × 10) and Distractor (lower 
grids: 10 × 10) that was foveated and hit (left hand: dark 
blue, right hand: dark red), foveated but not hit (grey), 
not foveated but hit (left hand: light blue, right hand: 
light red), or neither foveated nor hit (white). The partici-
pant failed to foveate several targets and distractors on 
 Week1·Trial1 (e) but foveated the majority of targets and 
distractors on the other three trials (f–h). Similarly, the 
participant failed hit a number of targets on  Week1·Trial1 
(e) but hit the majority of targets on the other three trials 
(f–h). In contrast, the participant hit several distractors 
in the first week (e, f ) but very few in the last week (f–h). 
At all four time points, the participant hit more targets 
with the right-hand, including several targets on the left 
side of the workspace.

Validation of measures
Targets Hit and Distractors Avoided exhibited a low 
correlation ( r= 0.03), indicating that they quantified 
unique aspects of task performance. Both measures were 
included in our subsequent analyses. We also examined 
each pair of predictor measures for high correlations ( |r|
≥ 0.707) indicative of redundant information (Table  1). 
Two pairs exhibited high correlations, Mean Hand-Speed 
and Target Contact Speed ( r= 0.89) and Gaze-Hand Dis-
tance and Gaze-Hand Latency ( r= 0.89). Target Contact 
Speed and Gaze-Hand Latency were excluded from all 
remaining analyses because they had the highest coeffi-
cients of variance in each pair [44].

Confirmation of motor learning
Before testing our two hypotheses, we first confirmed 
that our participants demonstrated trial-by-trial acqui-
sition and week-by-week retention of improvements in 
task performance (Table  2). Targets Hit exhibited mod-
erate trial-by-trial increases ( β1=0.26, f 2=0.23, p<10–6), 
large week-by-week increases ( β2=0.49, f 2=0.82, p

<10–6), and small trial-by-trial decreases across weeks 
( β3=-0.16, f 2=0.09, p<10–6) (Fig. 5a). We also observed 
small, week-by-week increases on Distractors Avoided 
( β2=0.20, f 2=0.11, p<10–6) (Fig. 5b). These finding show 
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that practice-related improvements in motor execution 
(Targets Hit) and motor inhibition (Distractors Avoided) 
contributed to improvements in task performance.

Practice‑related refinements
We tested our first hypothesis by examining trial-
by-trial acquisition and week-by-week retention of 

refinements on our measures of skilled limb movement, 
visual search, eye-hand coordination and visuomo-
tor decisions (Table  2). Three measures of skilled limb 
movement (Mean Hand-Speed, Hand-Speed Bias, and 
Hand-Area Bias) displayed practice-related refinements. 
Mean Hand-Speed exhibited small trial-by-trial increases 
( β1=0.09, f 2=0.03, p<10–4) and small week-by-week 
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increases ( β2=0.21, f 2=0.14, p<10–6) (Fig.  6a). Hand-
Speed Bias demonstrated small week-by-week increases 
( β2=0.14, f 2=0.03, p<10–5) and Hand-Area Bias showed 
small trial-by-trial increases ( β1=0.14, f 2=0.03, p<10–4). 
Two measures of visual search (Objects Foveated and 
Extrafoveal Hits) exhibited practice-related refinements. 
Objects Foveated displayed small trial-by-trial increases 
( β1=0.12, f 2=0.04, p<10–6), moderate week-by-week 
increases ( β2=0.32, f 2=0.29, p<10–6), and small trial-by-
trial decreases across weeks ( β3=− 0.12, f 2=0.04, p<10–

6) (Fig. 6b). Extrafoveal Hits exhibited small trial-by-trial 
increases ( β1=0.22, f 2=0.12, p<10–6) and large week-
by-week increases ( β2=0.38, f 2=0.36, p<10–6) (Fig.  6c). 
Our only measure of eye-hand coordination, Gaze-Hand 
Distance, demonstrated large week-by-week increases ( β2
=0.33, f 2=0.69, p<10–6) (Fig. 6d). All three measures of 
visuomotor decisions (Target Foveation Time, Distrac-
tor Foveation Time and Foveation Time Difference) dis-
played practice-related refinements. Target Foveation 
Time showed moderate week-by-week decreases ( β2
=− 0.27, f 2=0.20, p<10–6) (Fig. 6e). Distractor Foveation 
Time displayed small week-by-week increases ( β2=0.11, 
f 2=0.04, p<10–6). Foveation Time Difference exhibited 
moderate week-by-week decreases ( β2=− 0.41, f 2=0.25, 
p<10–6) (Fig. 6f ). One measure of skilled limb movement 
(Mean Hand-Area) and one measure of visual search 
(Spatial Foveation Bias) did not exhibit practice-related 
refinements and were excluded from further analyses.

Prediction of motor learning
We initially used bivariate regression to identify predic-
tor measures that were individually related to improve-
ments on our two measures of task performance (i.e., at 
least a small effect size, f 2≥0.02) (Table 3). We identified 
six predictor measures that were individually related to 
improvements in Targets Hit. They included Extrafoveal 
Hits ( β=0.70, f 2=1.52, p<10–6) (Fig.  7a), Objects Fove-
ated ( β=0.59, f 2=0.80, p<10–6) (Fig.  7b), Gaze-Hand 
Distance ( β=0.58, f 2=0.65, p<10–6) (Fig.  7c), Mean 
Hand-Speed ( β=0.50, f 2=0.48, p<10–6) (Fig. 7d), Target 
Foveation Time ( β=-0.46, f 2=0.41, p<10–6), and Fovea-
tion Time Difference ( β=0.23, f 2=0.09, p<10–6). We also 
identified six predictor measures that were individually 
related to improvements in Distractors Avoided. They 
included Gaze-Hand Distance ( β=0.29, f 2=0.25, p<10–

6), Target Foveation Time ( β=− 0.11, f 2=0.04, p<10–3), 
Hand-Speed Bias ( β=0.11, f 2=0.03, p<10–3), Extrafoveal 
Hits ( β=0.11, f 2=0.03, p<10–3), Foveation Time Differ-
ence ( β=− 0.09, f 2=0.02, p<10–3), and Objects Foveated 
( β=0.09, f 2=0.02, p<0.01).

We subsequently tested our second hypothesis by 
using multiple regression to analyze the extent to which 
refinements on the preceding predictor measures were 
independently predictive of improvements in Tar-
get Hits and Distractors Avoided (i.e., at least a small 
semipartial effect size, f 2≥0.02) (Table  4). Our multi-
ple regression identified two measures of visual search 
(Extrafoveal Hits: β=0.54, f 2=0.61, sp<10–6; Objects 
Foveated: β=0.32, f 2=0.16, sp<10–6), one measure of 

Table 3 Bivariate regression between predictor and outcome measures

Outcome measures Predictor measures β SE r2 f 2 p p(residuals)

Targets Hit Extrafoveal Hits − 0.70 0.03  < 0.49  < 1.52  < 10–6 0.07

Objects Foveated − 0.59 0.04  < 0.35  < 0.80  < 10–6 0.27

Gaze-Hand Distance − 0.58 0.05  < 0.33  < 0.65  < 10–6 0.31

Mean Hand-Speed − 0.50 0.05  < 0.25  < 0.48  < 10–6 0.07

Target Foveation Time − 0.46 0.04  < 0.21  < 0.41  < 10–6 0.14

Foveation Time Difference − 0.23 0.03  < 0.05  < 0.09  < 10–6 0.05

Hand-Speed Bias − 0.10 0.04  < 0.01  < 0.02 0.01 0.04

Distractor Foveation Time − 0.06 0.05  < 0.01  < 0.01 0.23 0.07

Hand-Area Bias − 0.02 0.04  < 0.01  < 0.01 0.65 0.10

Distractors Avoided Gaze-Hand Distance 0.29 0.04  < 0.09  < 0.25  < 10–6 0.65

Target Foveation Time − 0.11 0.04  < 0.01  < 0.04  < 10–3 0.23

Hand-Speed Bias 0.11 0.03  < 0.01  < 0.03  < 10–3 0.51

Extrafoveal Hits 0.11 0.03  < 0.01  < 0.03  < 10–3 0.37

Foveation Time Difference − 0.09 0.03  < 0.01  < 0.02  < 10–3 0.31

Objects Foveated 0.09 0.04  < 0.01  < 0.02  < 0.01 0.21

Distractor Foveation Time 0.05 0.04  < 0.01  < 0.01 0.19 0.32

Hand-Area Bias 0.02 0.03  < 0.01  < 0.01 0.54 0.25

Mean Hand-Speed 0.01 0.04  < 0.01  < 0.01 0.92 0.14
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Table 4 Multiple regression between predictor and outcome measures

Bold indicates measures that exhibited meaningful relationships with Targets Hit or Distractors Avoided (sf2 ≥ 0.02).

Outcome DF R2 F2 P P(residuals)

Target Hits Full Model 631 0.78 3.59  < 10–6 0.71

Predictors β sr2 sf 2 sp Tolerance

Extrafoveal Hits − 0.54 0.133 0.61  < 10–6 0.83

Objects Foveated − 0.32 0.034 0.16  < 10–6 0.88

Gaze-Hand Distance − 0.22 0.015 0.07  < 10–3 0.83

Mean Hand-Speed − 0.14 0.006 0.03 0.02 0.89

Target Foveation Time − 0.11 0.003 0.01 0.12 0.72

Foveation Time Difference − 0.07 0.002 0.01 0.08 0.79

Outcome Predictors DF R2 F2 P P(residuals)

Distractors Avoided Full Model 631 0.66 1.90  < 10–6 0.48

Predictors β sr2 sf 2 sp Tolerance

Gaze-Hand Distance − 0.24 0.014 0.04 0.01 0.86

Hand-Speed Bias − 0.09 0.005 0.01 0.03 0.95

Extrafoveal Hits − 0.04 0.001 0.00 0.32 0.83

Foveation Time Difference − 0.04 0.001 0.00 0.40 0.90

Target Foveation Time − 0.01 0.000 0.00 0.94 0.74

Objects Foveated − 0.01 0.000 0.00 0.95 0.88
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eye-hand coordination (Gaze-Hand Distance: β=0.22, 
f 2=0.07, sp<10–3), and one measure of skilled limb 
movement (Mean Hand-Speed: β=0.14, f 2=0.03, sp
=0.02) that were independently predictive of improve-
ments in Target Hits (Fig. 8a). In contrast, our multiple 
regression only identified a single measure of eye-hand 
coordination (Gaze-Hand Distance: ( β=0.24, f 2=0.04, 
sp=0.01) that was independently predictive of improve-
ments on Distractors Avoided (Fig. 8b).

Finally, our stepwise regression analyses confirmed 
the results obtained from our multiple regression anal-
yses. Specifically, the final model for Targets Hit only 
included the same measures of visual search (Extrafo-
veal Hits, Objects Foveated), eye-hand coordination 
(Gaze-Hand Distance) and skilled limb movement 
(Mean Hand-Speed). Furthermore, the final model 
for Distractors Avoided only included Gaze-Hand 
Distance.

Discussion
Multiple processes independently predict motor learning
The results of this study provide indirect evidence that 
practice-related refinements involving multiple neural 
processes may contribute to motor learning. Notably, 
we observed that measures of skilled limb movement, 
visual search and eye-hand coordination underwent 
practice-related refinements (Hypothesis 1) that were 
independently predictive of improvements in task per-
formance (Hypothesis 2). Importantly, in drawing this 
conclusion, we assume that the trial-by-trial and week-
by-week refinements exhibited by measures of skilled 
limb movement, visual search and eye-hand coordi-
nation can be used to infer that practice produced 

refinements involving multiple neural processes. Fur-
thermore, we assume that motor learning could be 
inferred from trial-by-trial and week-by-week improve-
ments exhibited by measures of task performance.

Other studies have provided evidence that both sen-
sory and motor processes contribute to motor learning 
[48], but these studies were not designed to investigate 
the extent to which these processes are independent 
predictors of motor learning. As result, we do not know 
the extent to which relationships with motor learning 
reflected independent or shared variance. In the cur-
rent study, we addressed the issue of covariation by 
examining independent predictions of motor learn-
ing after removing all shared variance. This analysis 
showed that skilled limb movements, visual search and 
eye-hand coordination are independent predictors of 
motor learning, indicating that studies of motor learn-
ing should account for the various processes that may 
influence improvements in task performance.

Skilled limb movements independently predict motor 
learning
Increases in Mean Hand-Speed were associated with 
increases in Targets Hit, indicating that participants 
learned to hit more targets by quickly moving their hands 
to different areas of the workspace. Although faster 
movements are more variable and less accurate [2, 9], 
any decreases in movement accuracy were not associated 
with increases in the proportion of hand movements that 
failed to make paddle-contact with targets. Alternatively, 
it is possible that optimization of intermuscular coor-
dination may have allowed participants to move faster 
without incurring greater movement variability. In either 
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case, increases in movement speed had a positive effect 
on task performance, thus our results are consistent with 
the principles of optimal feedback control [49, 50].

Visual search independently predicts motor learning
Increases in Extrafoveal Hits and Objects Foveated were 
the strongest independent predictors of increases in Tar-
gets Hits. These findings indicate that refinements of vis-
ual search led to better task performance by optimizing 
how participants gathered information with foveal and 
extrafoveal vision. This is consistent with evidence that 
visual search is highly adaptive to different task demands 
and environments, such as environments in which task-
relevant objects are more likely to appear at certain loca-
tions [51, 52].

The association between Extrafoveal Hits and Target 
Hits indicates that participants learned to use extrafo-
veal information to guide hand movements used to hit 
targets. This is consistent with a previous study of visual 
search, which found that practice led to improvements in 
using extrafoveal vision to search for objects with task-
relevant features [53]. In addition, cortical areas known 
to process peripheral visual information exhibit greater 
involvement during motor tasks [54]. However, to our 
knowledge, our study is the first to show that refinements 
of extrafoveal visual processing are predictive of motor 
learning.

The association between Targets Foveated and Tar-
get Hits suggests that refinements used to maximize the 
number of objects that participants foveated with visual 
search led to improvements in hitting targets. The mod-
est correlation between Objects Foveated and Target 
Foveation Time (r = − 0.31; Table 1) also indicates that, at 
least in part, decreases in the time spent foveating targets 
freed up time to foveate more objects. In contrast, studies 
of “quiet eye” have found that experts at motor tasks have 
longer foveations on task-relevant objects than novices 
[17, 19, 20]. Furthermore, training interventions designed 
to increase foveation durations have produced improve-
ments in motor performance [22–25]. These divergent 
findings suggest that both increases and decreases in 
foveation times can benefit motor performance, depend-
ing on the task demands and environment. As a result, 
we predict that practice will lead to increases in target 
foveation times in tasks with high demands on accuracy 
and low demands on speed of visual processing, whereas 
practice will produce decreases in foveation times in 
tasks with low demands on accuracy and high demands 
on speed of visual processing.

Eye‑hand coordination independently predicts motor 
learning
Increases in Gaze-Hand Distance were associated with 
increases in Targets Hits, indicating that looking away 
from targets before hitting them led to improvements in 
task performance. Although this contrasts with studies 
showing rigid coupling between initiation of eye move-
ments and completion of hand movements [43], other 
studies have found that this rigid coupling decreases with 
practice [33–36]. We believe that increases in Gaze-Hand 
Distance may reflect a transition from an early reliance 
on visual feedback for accurate execution of hand move-
ments to a subsequent reliance on kinesthetic feedback 
for accurate execution of hand movements. This would 
have allowed visual search to gather task-relevant infor-
mation with greater efficiency [33]. Specifically, looking 
away from targets before hitting them would have dis-
rupted visual feedback used to accurately guide hand 
movements toward targets. However, it would have 
enabled earlier and longer foveations of objects, thereby 
facilitating more efficient decisions whether to hit or 
avoid objects by either executing or inhibiting skilled 
limb movements. Importantly, any negative effects 
resulting from disruption of visual feedback of hand 
movements could be offset by a greater reliance on kin-
esthetic feedback, which is known to improve during 
motor learning [55–57] and may directly contribute to 
motor learning [58–61].

Distinct predictors of motor execution and inhibition
We found that motor execution (Targets Hit) and motor 
inhibition (Distractors Avoided) exhibited distinct pat-
terns of improvements. Notably, Targets Hit showed 
trial-by-trial and week-by-week improvements, whereas 
Distractors Avoided displayed only week-by-week 
improvements. We also found that different processes 
were independently predictive of improvements in motor 
execution and inhibition. Refinements of skilled limb 
movements (Mean Hand-Speed), visual search (Objects 
Foveated, Extrafoveal Hits) and eye-hand coordination 
(Gaze-Hand Distance) were independently predictive of 
improvements in Targets Hit. In contrast, eye-hand coor-
dination (Gaze-Hand Distance) was the only independent 
predictor of improvements in Distractors Avoided. Given 
that avoiding distractors mainly involved inhibition 
rather than execution of hand movements, it is not sur-
prising that increases in Mean Hand-Speed were not pre-
dictive of increases in Distractors Avoided. In contrast, 
increased Gaze-Hand Distance would have facilitated 
both motor execution and inhibition by allowing partici-
pants more time to make decisions whether to initiate or 
inhibit movements. It is perhaps surprising that increases 
in Objects Foveated were not predictive of increases in 



Page 17 of 19Perry et al. J NeuroEngineering Rehabil          (2020) 17:151  

Distractors Avoided. We would expect that more efficient 
visual search should lead to improvements in both motor 
execution and inhibition by allowing more objects to be 
processed with foveal vision. The lack of a relationship 
may reflect that participants exhibited smaller improve-
ments on Distractors Avoided. However, if the propor-
tion of targets and distractors was equal or reversed, we 
expect that our participants may have shown greater 
improvements on Distractors Avoided and we may have 
found a meaningful relationship.

Limitations
By examining patterns of variability exhibited by meas-
ures related to multiple neural processes, we found that 
refinements of multiple processes were independently 
predictive of motor learning. However, our paradigm and 
analyses were not designed to make causal inferences. 
This requires measuring motor learning while experi-
mentally manipulating one process and controlling for 
interactions with all other processes. For example, mask-
ing objects that are not located within foveal vision would 
neutralize the contributions of extrafoveal hits on motor 
learning. If this reduced motor learning without affect-
ing refinements of other processes, it would show that 
refinements of extrafoveal processing are causally linked 
to motor learning.

Another limitation of the current study is that we did 
not examine practice-related refinements of propriocep-
tion. This is an important limitation because improve-
ments in planning and executing skilled limb movements 
may involve refinements that alter the processing of 
proprioceptive feedback [37]. In agreement with this 
hypothesis, previous studies have demonstrated that 
motor learning is associated with modifications of rapid 
responses to proprioceptive feedback [62] and improve-
ments in kinesthesia [54–56]. Although we do not know 
if refinements involving proprioceptive processing con-
tribute to motor learning in the current study, we believe 
they may have facilitated increases in Gaze-Hand Dis-
tance by reducing reliance on visual feedback used to 
accurately execute skilled limb movements.

Task demands and environmental features are known 
to alter motor learning [63, 64]. However, we did not 
investigate how task demands and environmental fea-
tures influence the extent to which different processes are 
predictive of motor learning. In the current paradigm, 
for example, we would expect that refinements of skilled 
limb movements would be a greater predictor of motor 
learning if the demands on skilled limb movements 
were increased by reducing the size of the paddles or by 
imposing mechanical perturbations on the hands.

Although our behavioral measures probed several 
neural processes involved in motor learning, we did not 

directly investigate the underlying neural mechanisms 
of motor learning. Numerous studies of motor learning 
have explored changes in brain regions and networks 
related to refinements of skilled limb movement [65–67]. 
Other studies have investigated the brain regions and 
networks associated with visual search during perceptual 
and cognitive tasks [68–72]. However, we are unaware of 
any studies that have examined the extent to which brain 
regions and networks that underlie multiple processes 
are associated with motor learning.

Conclusions
Our findings indicate that motor learning may result 
from refinements of multiple behavioral features that are 
mediated by adaptations involving multiple neural pro-
cesses. This knowledge may help advance post-stroke 
rehabilitation. Notably, most stroke survivors experience 
chronic difficulties performing daily motor tasks like 
cooking, walking, and driving [73–75], and many exhibit 
deficits in performing skilled limb movements [76–80], 
visual search [81–83], and eye-hand coordination [84, 
85]. Our findings suggest that these deficits may indepen-
dently alter the outcomes of rehabilitation interventions 
designed to target mechanisms of motor learning. Future 
studies that investigate the extent to which these deficits 
independently affect motor learning are needed to guide 
the development of novel neurorehabilitation inter-
ventions that can improve motor function and reduce 
chronic disability after stroke.
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