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Abstract

Artificial intelligence and machine learning have demonstrated remarkable results in science

and applied work. However, present AI models, developed to be run on computers but used

in human-driven applications, create a visible disconnect between AI forms of processing

and human ways of discovering and using knowledge. In this work, we introduce a new con-

cept of “Human Knowledge Models” (HKMs), designed to reproduce human computational

abilities. Departing from a vast body of cognitive research, we formalized the definition of

HKMs into a new form of machine learning. Then, by training the models with human pro-

cessing capabilities, we learned human-like knowledge, that humans can not only under-

stand, but also compute, modify, and apply. We used several datasets from different

applied fields to demonstrate the advantages of HKMs, including their high predictive power

and resistance to noise and overfitting. Our results proved that HKMs can efficiently mine

knowledge directly from the data and can compete with complex AI models in explaining the

main data patterns. As a result, our study reveals the great potential of HKMs, particularly in

the decision-making applications where “black box” models cannot be accepted. Moreover,

this improves our understanding of how well human decision-making, modeled by HKMs,

can approach the ideal solutions in real-life problems.

Introduction

Artificial intelligence (AI), fortified by modern machine learning (ML), has demonstrated

remarkable results in many areas of science and applied work, from ecology to healthcare.

This progress has largely been driven by the development of complex ML models, capable of

learning non-trivial patterns from large, multidimensional data.

This approach proved to be very fruitful in many areas of human knowledge except one:

human knowledge itself. Known as “black boxes”, most modern ML algorithms merely trans-

form large volumes of original data points into equally large volumes of model coefficients and

weights, without distilling any concise, conceptual knowledge that humans would be able to

learn and to use. Moreover, standard machine learning results usually come in the same
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format of “optimal instance” solutions, tied to a particular instance of a trained model–and

therefore cannot be explained, generalized, scaled, or modified without rerunning the model.

This distinctly disconnects from the classical way of human learning, where the knowledge–in

the form of simple rules, laws, and actionable logic–is learned directly from the data by repeti-

tive trial-and-error. Consequently, this disconnect poses a number of fundamental barriers to

the use of the present ML models:

1. Black box AI cannot be used in areas where the final decisions ought to be made by

humans–ranging from healthcare and education to management and complex industrial

systems.

2. ML “optimal instance” solutions become highly impractical in applications with frequent

data changes and drifts.

3. Complex ML models, requiring significant resources to develop, set up and maintain, are

immediately ruled out in a large number of real-life applications where the necessary

resources are not available or do not provide sufficient return on investment.

The challenge of converting data into simple and humanly comprehensible logic has been

addressed in many areas of previous research. In the early 1960s, work on formal logic led to

the inception of logical programming and rule-learning algorithms [1–8]. The latter–including

algorithms such as Corels [9], Slipper [10], Skope-Rules [11], RuleFit [12], LRI [13], MLRules

[14], and more–often rely on greedy approaches to extract short Boolean expressions from

more complex models (such as large decision trees). For example, rule induction can be done

by considering each single decision rule as a base classifier in an ensemble, which is built by

greedily minimizing a loss function (Slipper, LRI, MLRules); or by extracting the rules from an

ensemble of trees, and then building a weighted combination of these rules by solving an

L1-regularized optimization problem (RuleFit).

With the recent growth of real-life AI implementations, the concepts of “transparent”,

“decomposable”, “interpretable”, or “explainable” AI have also become the focus of applied AI

research and analysis [11, 15–20] by either reducing more complex models to their simpler

versions, or by providing additional insights into the complex model functionality (such as fea-

ture importance and similar model explainers) [21–23]. In particular, interpretable models are

most commonly defined as the models where a human can understand the causes of model

prediction (e.g., linear regression), and simulatable models are those where a human can repro-

duce the model reasoning and results (e.g., decision-rule models) [11, 24].

Although helpful, these approaches run into a few principal limitations. First, instead of

explaining the original data, many of them focus on explaining the “black box” models, sec-

ondary to the original data [25, 26]. This leads to a number of “reality disconnects” including

incorrect data interpretations, inheriting model bias and false “shortcuts”, lacking satisfactory

explanations, and more, resulting in significant criticism [27, 28]. Second, the key concepts of

“interpretability” are not clearly defined, leaving ample room for imagination [26, 29]. More-

over, they are treated very passively, as our ability to understand, but not to apply–thus ruling

out active, applied use of the model logic.

Many of these shortcomings originate from the “machine” approach to data exploration,

focused on building an optimal computer algorithm rather than extracting human-like knowl-

edge. While humans use their knowledge to conduct more experiments and to generate more

data, converting data back to more knowledge seems to be largely missing. There is a definite

need for building human-knowledge-extracting models, which would not only help us under-

stand the data in the most interpretable and actionable way but would also help us explore the

limits of human “understandability” for any given problem or dataset.
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Therefore, in this paper, we would like to address these limitations by formalizing the class

of mathematical models that an average human can easily evaluate mentally, without using

any additional resources. We did this by starting from a vast volume of research in human cog-

nitive sciences, thus introducing the class of “human knowledge models” (HKMs). Using this

formalization, we discuss how one can learn HKMs directly from data, without relying upon

any intermediate “black boxes.” This enables us to compare the quality of HKMs to that of

classical black boxes, using several datasets from different application areas.

Methods and materials

Human knowledge model class

By “human knowledge models” (HKMs) we understand the subset of functions which, once

known, can be evaluated by humans in real time, mentally, without using any additional
resources. Thus, we are primarily concerned with active, applied knowledge, as opposed to

more passive “interpretable” or “explainable”; and we emphasize “fast and easy to compute” as

opposed to “simulatable” or “humanly-reproducible” AI. Human ability to memorize and to

compute has been a subject of extensive research in psychology and cognitive sciences [30–

33], leading us to the following principal HKM constraints:

1. Boolean operators: OR, AND, NOT, and thresholded Boolean SUM (arithmetic sum of

Boolean variables, compared to an integer threshold) [29, 34].

2. At most four (Boolean) variables, where each variable is used at most once [34–36].

3. At most four (Boolean) operators [35–37].

4. Simple numerical thresholds for converting non-Boolean variables into Boolean.

Note that the class of HKM models can intersect with many previously defined ML model

classes but does not correspond to any of them exactly (Fig 1). For example, HKMs must be

Fig 1. HKM and machine learning. HKMs can be viewed as more constrained forms of several classical ML models (such as logic

rule-learning), but they will be distinctly different from any hard-to-compute ML (regression, CNN).

https://doi.org/10.1371/journal.pone.0275814.g001
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interpretable (as well as explainable or simulatable), but the opposite is not true: many classical

interpretable models, such as linear regression, which requires many complex decimal multi-

plications, cannot be efficiently computed by humans. Similarly, the use of SUM for evaluating

expressions such as “if two of the three conditions are met” (routinely used in human decision

making) exceeds the branching logic of a decision tree but can be viewed as a small random

forest of stumps.

HKM model training

Training an HKM includes the following components:

1. Learning the best data thresholds (to convert the original features into Booleans)

2. Learning the best subset of features (up to 4 features used in the model)

3. Learning the best model logic (the choice of Boolean operators)

4. Selecting M best HKMs, achieving the highest fit

The implementation of this approach is shown in Fig 2. We begin by generating all possible

Boolean functions of N variables (N�4) in the form of truth tables. Then each table is con-

verted to a DNF (disjunctive normal form), commonly used by many decision rule and deci-

sion set models. Therefore, we add a new step–semantically-equivalent formula simplification–

to reduce DNFs to the shortest possible Boolean expressions (including thresholded SUM

Fig 2. HKM algorithm outline. Note that the HKM search loop can be easily computed in parallel.

https://doi.org/10.1371/journal.pone.0275814.g002
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formulas), which preserving their meaning (truth table). This simplification is essential to

ensure that the Boolean expression can be made simple enough to be efficiently remembered

and processed by humans. If the complexity of the simplified expression still exceeds our HKM

constraints stated above, the formula is excluded from further processing. The relatively small

number of remaining formulas (functions) are applied to all subsets of N variables, drawn from

the original variable set. By maintaining a stack of the M currently best (formula, variable sub-

set) pairs (Fj, Vi), the algorithm discovers the best HKMs at explaining the target outcome.

Thus, HKM training learns both the best features and the best Boolean expressions, by tra-

versing all their combinations. This makes it a form of Boolean expression learning rather

than more conventional “coefficient fitting” ML (Fig 2). However, this is exactly what we want

to achieve: we want to find the best possible expressions of low computational complexity,

which then can be used by humans to compute the optimal results on their own.

As a result of this HKM training approach, the principal difference between HKMs and the

previous rule-learners lies in the fact that HKMs narrow down the class of acceptable rules but

broaden the optimal feature selection by using exhaustive subset selection. This sets HKMs

aside from both classical rule learners such as Skope-Rules or RuleFit, where the rules are

greedily learned by using decision trees, and standard machine-learning feature selection,

where the best features are identified by random search (random forest), or greedy feature

selection (Lasso regression, stepwise selection, etc.). The tradeoff between the smaller HKM

rule subset and larger feature search space works extremely well in the case of small variable

counts, as we discuss below.

A few more practically important aspects of HKM learning include:

• Preserving the missing values. Missing values can be important and informative; therefore,

we do not impute any of them. Instead, we encode them as indicator variables and omit the

missing values only when they show in specific subsets Si–where the probability of having

incomplete rows is minimal.

• Learning M best HKMs. In classical ML, it is much more common to produce a single (best)

model instance through fitting the coefficients (weights, thresholds) of a predefined ML

function. In HKM learning however, the Boolean function itself becomes a subject of model

training, and several different functions can achieve nearly optimal quality of their HKMs.

Unusual at first, this however reflects the fact that in reality one can often arrive at the same

optimal goal by different means. Therefore, we learn several top models (M�10–50), and

then let the user examine them and decide which one would be the most practical to use.

Experimental data

To experiment with HKM learning, we have selected several datasets from different applied

areas dependent on active human decision-making and responsibilities:

• Healthcare (H-set): COVID-19 diagnosis dataset, to predict the need of intensive care units

for patients with COVID-19. The dataset includes 1925 observations with 229 features [38].

• Ecology (E-set): Water potability, to predict whether the water has drinking quality. The data-

set includes 3276 observations with 9 features [39].

• Finance (F-set): A dataset of corporate records, to predict company bankruptcy status after

the first year (5910 observations with 64 features) [40].

• Strategy/Gaming (S-set): NIM dataset, to predict the winner of the NIM game [41]. This set

was generated by us, and it includes 2000 observations with 10 features.
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The datasets were chosen to have at least 1000 observations and several features, to allow

experiments with models of different sizes and complexities. All datasets except S-set had

unbalanced Boolean outcomes (27%, 39%, and 7% respectively), and contained missing val-

ues–which were treated as such, without imputing, to preserve the realistic data.

To compare the class of HKM functions with classical machine learning algorithms, we

used the selected datasets to train a variety of standard “black box” and rule learners, which we

divided into three principal classes:

• Simulatable AI: Decision tree, Skope-Rules and RuleFit models, constrained to use at most 4

features, but as many rules as needed to achieve best model quality. These models incorpo-

rated Boolean logic, which can be easily evaluated by a human.

• Interpretable AI: Decision tree, Skope-Rules, RuleFit with any number of variables, as well as

reduced versions of random forest, XGBoost and CatBoost of up to 4 tree stumps and up to

4 variables, and logistic regression. These models corresponded to standard machine learn-

ing models with either simple Boolean logic, or small numbers of variables, which can be

still “understood” by a human.

• Black box: Full versions of random forest, XGBoost and CatBoost, where the best size of the

model was determined only by its hyperparameter training and exceeded the size of easily

understandable/interpretable.

For each model, we ran Nexp individual model training experiments, Nexp varying between

1000 and 5000 depending on the model training time. Since optimizing model hyperpara-

meters for each model run was not feasible due to significant runtime, we optimized them by

selecting 10 random subsets with 80% of the original data, using grid search with 5-fold cross-

validation on each subset. For each model type, this produced 10 different sets of optimal

hyperparameters, which then were used in Nexp experiments, randomly selecting an optimal

hyperparameter set for each model training. For models depending on random seeds, the

seeds were randomized at each experiment as well. Once optimal hyperparameters were deter-

mined, all models, including HKMs, were trained using standard 80/20 train/test splits and

5-fold cross-validation.

Using this multi-instance training approach, for each type of classical “black box” model,

we obtained Nexp best model instances, to represent the highest model performance within

each model class. These best instances were compared with the best HKMs, using different

metrics of model performance (F1 was chosen as a default), and four different sizes of HKM

models (HKM variable count n, increasing from 1 to 4).

Results and discussion

Model quality

Undoubtedly, HKMs achieve human computability through a significant reduction in model

complexity, so one would expect a corresponding reduction in the model quality as well.

Therefore, we studied the distribution of F1 values, obtained from Nexp = 1000 model instances

trained on our four datasets. We used HKMs of size 4 (using 4 features) and compared them

to a decision tree model (as the classical rule-learning model, also used in many rule-learning

algorithms), and XGBoost (as a more complex ensemble model, which also achieved the high-

est quality on our data). We did not constrain the sizes of decision tree and XGBoost, so both

models acted as “black boxes”. The results of this comparison are presented in Fig 3 as histo-

grams of F1 values, and lead to several important observations.
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As one can observe by comparing the means of the histograms, HKMs outperformed

“black boxes” on two of the four datasets (S- and E- sets). On H-Set, top HKM models scored

slightly better than large decision trees on average, but approximately 5% lower than XGBoost

(comparing the peaks of the two histograms). In practical applications, this 5% would present

a very negligible difference, usually consumed by data and implementation noise. We can

therefore conclude that HKMs performed roughly as well as “black boxes” on H-Set.

Consequently, as the F1 values in Fig 3 demonstrate, it was only the F-set where HKMs fell

visibly behind the “black box” models. Therefore, we investigated further, and found that

HKM performance was sharply improved when we added one more engineered feature–the

product of two specific features (X32 and X33) from the original dataset. Then the resulting

“HKM ext” outperforms decision trees, and approaches XGBoost quality (F-set, Fig 3). Thus,

in the case of F-set, the predictive target was highly dependent on the feature multiplication–

which HKMs could not reproduce by definition, since humans cannot compute real number

products efficiently.

Thus, our numerical experiment in Fig 3 shows that HKMs can attain a rather outstanding

model quality, to the point of outperforming the “black boxes”. The latter sounds particularly

surprising, but can be attributed to the following factors:

1. Large HKM search space. While each HKM is very small, enumerating all of them exhaus-

tively creates a huge pool of models to choose from. For example, considering all 3-variable

models from a set of 300 features already results in 4,455,100 possible variable subsets. This

large number is further multiplied by the count of admissible 3-variable Boolean expres-

sions (usually a few dozen, due to HKM constraints), significantly increasing the chances of

finding a very predictive model.

Fig 3. Distribution of F1 values for HKM, decision tree, and XGBoost models on four different datasets where they were trained.

https://doi.org/10.1371/journal.pone.0275814.g003
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2. Intrinsic dataset dimensionality. Despite large variable counts, many real-life datasets have

much smaller “natural dimensionality”, meaning that only a few variables are needed to

explain the main data variability (a phenomenon frequently observed with principal com-

ponent analysis). In this case, increasing model complexity beyond the natural dimension-

ality limits does not produce any significant gains, but increases the probability of not

finding the best models. Moreover, models with significantly more degrees of freedom are

more likely to deviate from finding general dependencies and overfit.

3. Local minima and greedy optimization. Most of the current “black box” machine learning

relies on greedy optimization algorithms, applied to complex multidimensional functions

with large number of local minima. This form of optimization, unlike exhaustive HKMs,

does not guarantee finding the best (globally-optimal) solution.

It is also important to note that, while “black box” results were obtained with their greedy

algorithms and probabilistic feature selection approaches, HKM exhaustive training is deter-

ministic, producing the same best models from the same input dataset. That means that, at

least on the same training data, we will always know the best HKM models, and therefore can

compare only these top models to the less certain outcomes of “black box” training. This

means that in Fig 3, we should be looking at the rightmost tails of the HKM histograms (best

models), rather than the histograms’ centers–which leads to even more favorable HKM

performance.

Model stability and multiplicity

In real life applications, achieving a good model quality “on average” is not enough: it is equally

critical to ensure that the model performs consistently, with minimal deviation in its quality.

Our experiment in Fig 3 reflects this important property in the spread of histograms, wider

histograms corresponding to less consistent models.

To study this further, we quantified the model stability factor as the absolute relative change

in model quality metric (F1 in our case), taken between train and test sets:

S ¼
jQuality trainð Þ � Quality testð Þj

Quality trainð Þ
¼
jF1 trainð Þ � F1 testð Þj

F1 trainð Þ

Lower S values correspond to more stable models, and one can compute the probability of a

model to remain stable below a certain threshold S as:

P Sð Þ ¼ Prob
jF1 trainð Þ � F1 testð Þj

F1 trainð Þ
< S

� �

Ideally, one would like P(S) to approach 100% for the smallest values of S, but we computed

the exact model stability curves for all major classes of ML models we investigated, using the

four datasets (Fig 4).

Fig 4 confirms the expected trend: model stability generally increases in less complex mod-

els. However, HKMs clearly stand aside as the most stable, and significantly improving over

“black boxes.” First, this makes HKMs a more attractive choice for any practical AI implemen-

tations, when reliable model quality is a must. Second, it improves the model training process

as well: HKMs are virtually impossible to overfit, remaining resistant to noise and bias chal-

lenges, so widespread with conventional AI. Consequently, this makes HKMs more appealing

for continuous learning AI, when one must ensure that model retraining will still produce a

reliable result. Finally, this also leads to better model scalability and generalizability, so appre-

ciated in practical applications.
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Another very important–and less obvious–advantage of the HKM models originates from

the exhaustive nature of the HKM learning approach postulated earlier. Learning multiple

nearly optimal HKMs helps identify the classes of optimal decisions, which in turn can provide

more knowledge about the data (for example, identifying different patient phenotypes for

alternative treatments). Additionally, this best model multiplicity helps select the models with

the lowest application cost: for instance, selecting only the HKMs with the most practically

accessible features.

Fig 5 provides a good illustration with a few top COVID-19 HKMs, trained to identify the

patients with the highest risk of ICU oxygen support. In this case, multiple models reflect differ-

ent important classes of high-risk patients (with connective tissue disorder, leukemia, high body

mass index, age, etc.), requiring elevated attention. In classical ML, these important rules, even if

found, would remain invisible, hidden in aggregated ensemble models or neural net layers. With

human-like learning, each of these rules is extremely important on its own, improving the overall

process understanding. In addition to being interpretable, these models are very easy to remem-

ber, and to apply. In essence, they incorporate invaluable clinical knowledge, which could have

taken months to acquire by the usual human trial-and-error but took only a few hours to dis-

cover with HKM learning. In many areas, this can save not only time and resources, but lives.

Limits of human-like learning

The study of HKMs introduces another interesting and new intersection of AI and cognitive

sciences: the study of the limits of human-like learning. Despite frequent comparisons between

Fig 4. Model stability P(S) as a function of model quality threshold S (S varying from 0 to 1 in F1 metric).

https://doi.org/10.1371/journal.pone.0275814.g004
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AI and human intelligence, we know little of how much humans can learn from a certain data-

set and how deeply this data can be understood.

HKMs, specifically designed to reproduce human data processing abilities, can advance our

understanding of these problems. Moreover, by learning multiple optimal HKMs, we essen-

tially simulate a large number of humans, discovering alternative explanations of a given out-

come–when different people can arrive to the same optimal conclusions with entirely different

logic. In this pool of human learners, the best HKMs can be viewed as the top “human

experts”, with the most accurate understanding of the underlying dependencies.

The application of this approach leads to many interesting insights, including a more robust

comparison between “black box” AI and human-like learning, as we illustrate in Fig 6. In this

case, we used the H-set example to compare the top 2000 “black box” model instances (corre-

sponding to XGBoost, which performed best on this dataset) to a few levels of complexity in

human-like learning: the top 2000 HKM models with 2, 3 or 4 features, and all possible one-

feature HKMs. For a more objective comparison, the results were visualized using two major

quality axes: precision and recall.

Several important observations follow.

First, one can clearly see that at four learning features, suggested by human psychology

research, human-like learning modeled by HKMs begins to compete with the quality of “black

boxes.” Moreover, although HKM quality visibly increases when going from single-feature

“HKM size 1” to two or more, it improves only marginally at the larger model sizes (“HM size

4” vs “HKM size 3”). This indicates that within the semantics of proposed features, the intrinsic

dataset dimensionality can be limited to 3 or 4, with adding more features producing only a

very marginal improvement in interpretation. This manifests one of the of most principal dif-

ferences between human intelligence and AI: while humans can efficiently learn by finding the

best few features, AI takes advantage of greedy “weak learning”, aggregating large counts of

less influential (and randomly chosen) features to achieve better quality. Weak learning aggre-

gation, however, requires significant volumes of data (to avoid overfitting), and large comput-

ing power/memory–none of which human learners can provide.

However, as our examples in Figs 3 and 6 suggest, human-like learning can still be efficient

in finding the best few features and short logic rules to explain the outcome. In many practical

applications, this human-like learning process alone can warrant a very good result, often

approaching that of “black boxes” (Fig 6). This is particularly true for data where the best fea-

tures have already been discovered with earlier experiments and science, leading to the optimal

choice of data-describing language (semantics), and more concise data interpretations. In such

Fig 5. Examples of COVID-19 HKMs, identifying high risk patients. The models were learned from a clinical COVID

dataset similar to H-set and achieved the same quality as conventional machine learning models.

https://doi.org/10.1371/journal.pone.0275814.g005
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cases, adding weak learning AI would provide only marginal and practically worthless

improvement, aggravated by a significant implementation cost and complete loss of

comprehensibility.

When the best features are not yet known, any learning model (HKM or “black box”) will

be less successful, resulting in relatively low prediction quality. However, even in these cases

HKMs can still outperform “black boxes” (such as E-set and S-set examples in Fig 3), meaning

that humans, armed with simple optimal decision rules, can outperform AI (likely degraded

by mixing semi-informative features with the noise from the rest). Moreover, HKM-learned

rules, short and comprehensible, work as engineered features, and can improve our under-

standing of the hidden data logic. For example, learning that COVID risk increases for patients

with pulmonary diseases (Fig 5) provides very practical insights into how COVID is spreading

in the human body, instantly leading to better therapy and prevention. Such conceptual break-

throughs cannot be achieved with weak learners, and can originate only from human-like

learning, as provided by HKMs.

HKM computational speed

The time complexity of HKMs with respect to the original variable count N, number of thresh-

olds K, observation count L and HKM variable count n can be estimated as the product of

Fig 6. Using HKM models to visualize the human “comprehensibility” of a specific dataset. HKM size indicates the number of features

used in HKM model learning–from 1 to 4. Size 1 includes all possible one-feature models, sizes 2 and above–only the 2000 best. “Black box”

corresponds to the best 2000 instances of the XGBoost model, which outperformed all other models on this dataset.

https://doi.org/10.1371/journal.pone.0275814.g006

PLOS ONE Learning applied knowledge from the data

PLOS ONE | https://doi.org/10.1371/journal.pone.0275814 October 20, 2022 11 / 16

https://doi.org/10.1371/journal.pone.0275814.g006
https://doi.org/10.1371/journal.pone.0275814


several principal components:

O N;K; L; nð Þ ¼ S N; K; nð Þ � B nð Þ � F n; Lð Þ ð1Þ

The first S(N,K,n) term represents the number of n-variable subsets, selected from the N origi-

nal variables with up to K thresholds per variable. Since K thresholds will produce at most NK
Booleans, and HKM constraint n�4, this results in

SðN;K; nÞ ¼
�NK

n

�

¼
ðNKÞ!

n!ðNK � nÞ!
<

1

n!
ðNKÞn � OððNKÞ4Þ ð2Þ

The second B(n) term represents the number of Boolean formulas built from n Boolean vari-

ables, which is BðnÞ ¼ 22n . This makes B(n) the fastest-growing term in Eq 1, but it also

becomes the most significantly truncated by the HKM constraint of n�4: we found that fewer

than 100 Boolean expressions could be made that satisfy the HKM definition; therefore, we

can limit B(n) by this constant.

The third F(n, L) term is the time complexity of computing a Boolean expression of n Bool-

ean vectors, L observations in each, which must be done for each (formula, variable subset)

pair. Therefore, with the same bound on n, we can compute F(n, L) in O(L), if not faster

(using recursive techniques).

Thus, HKM time complexity can be estimated as

O N;K; L; nð Þ ¼ O L NKð Þ
n

ð Þ; n � 4 ð3Þ

Since HKM expressions are small and hard to overfit, we can always reduce the impact of

high observation count L by subsampling the data. Therefore, HKM time complexity becomes

polynomial with respect to the number of original variables N, and thresholding count K.

This relatively low complexity, combined with very time-efficient Boolean math, and con-

stant memory (as long as it can hold small sets of n Boolean variables) makes HKMs surpris-

ingly attractive for a brute-force algorithm. From our numerical experiments, we were able to

process up to 108 subsets on a Xeon multicore workstation in 2–3 days, using suboptimal inter-

pretable programming languages (Matlab, Python) with parallel processing and vectorized

Boolean math. For n = 4, processing 108 subsets is equivalent to NK�200, or N�20–25

(assuming K<10, and some of N variables being Boolean already); for n = 3, we can increase N

to 80–85. This rather high N proves to be sufficient for many real-life datasets, thus making

HKM a very practical alternative to classical machine learning and human trial-and-error.

When even higher N or K are needed, the computational speed can be increased with more

efficient compiled code (such as C++), algorithm optimization (such as branch-and-bound),

reducing threshold count K, and deterministic greedy searches (such as forward selection, or

combining smaller-size HKMs into large-size HKMs).

Finally–and probably most importantly–the most impressive time savings are achieved by

the HKM approach itself rather than the Boolean search time. Once HKMs are discovered,

they are applied and computed by their human users, with absolutely no need for any comput-

ing time or power. Thus, by investing more time into the model discovery, we save colossal

resources for the subsequent model use.

Limitations and applicability

Any approach to human knowledge models, including ours, will be naturally limited by the

“human factor”, where human ability to reason and to “compute” is significantly affected by

numerous aspects such as stress and emotions [42], cognitive bias [43, 44], and even sense of
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hunger [45]. However, these limitations are universal, and will impact all areas of human activ-

ity, including interaction with other forms of AI. Constraining HKMs to the simplest possible

expressions can help keep these problems at a minimum, and we intentionally formulated our

HKM constraints based on the most average human performance.

It is also understandable that HKMs will fail in many cases–for instance, in problems with

high decision-making branching factors (such as chess or formal proofs)–where small, con-

strained logic will not capture the essence of the problem, and substantial memory will be

required to process all possible scenarios. Nonetheless, in many cases HKMs still can become a

good starting point, to eliminate at least the most obvious blinders, which is still extremely

important in many applied areas (such as healthcare).

Finally, HKMs will be limited by our human ability to formulate, to observe, and to measure

the most important features. A good illustration of this includes many image-recognition prob-

lems, where the principal advantage of deep-learning “black boxes” lies in their ability to capture

complex features through image pixel convolutions–a task impossible for a human. However, as

our human image-recognition experience confirms, at least some of these visual features can be

expressed in humanly-computable ways, which can then lead to successful HKM development.

We believe that this presents a very interesting direction for future research.

Conclusions

In this study, we introduce the class of Human Knowledge Models (HKMs), as an attempt to

formalize the set of functions that humans can efficiently compute without any additional

resources. Based on earlier research in human psychology and cognition, HKM formalization

achieves several principal goals:

• It reduces potentially complex Boolean expressions to the shortest possible form, to ensure

that they can be efficiently processed by humans

• It encapsulates applied human knowledge in the mathematical form of an HKM machine

learning model, which can be trained to discover human decision logic directly from the

data.

• It improves the previous approaches to “interpretable” and “explainable” AI by targeting

active forms of human decision-making and provides a more formal and accurate definition

of this functionality.

• It offers a new and very capable class of models, which can successfully compete with the

classical “black box” machine learning, thus significantly broadening the scope of applied AI

into the areas where “black boxes” cannot be accepted.

• It helps us understand the limits of human-like learning from data.

Most importantly, we consider HKMs as the first successful approach to closing the

“human knowledge” feedback loop. While human knowledge leads to collecting more experi-

mental data, the data processed by contemporary “black box” AI does not feed back into

advancing human knowledge. With HKMs, we still rely on excessive computing power, but we

use it in a completely different way: to discover the best human reasoning logic (instead of

incomprehensible numerical output). Therefore, we believe that further refinements in HKM

formalization and learning algorithms will present extremely valuable directions in both scien-

tific and practical AI applications. This can be particularly useful in many applied fields–such

as medicine, healthcare, ecology, and software development–where large data volumes need to

be understood and transferred into better human-usable decision-making logic.
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