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ABSTRACT
The photodetector is a key component in optoelectronic integrated circuits. Although there are various
device structures and mechanisms, the output current changes either from rectified to fully-on or from
fully-off to fully-on after illumination. A device that changes the output current from fully-off to rectified
should be possible. We report the first photon-controlled diode based on a n/n− molybdenum disulfide
junction. Schottky junctions formed at the cathode and anode either prevent or allow the device to be
rectifying, so that the output current of the device changes from fully-off to rectified. By increasing the
thickness of the photogating layer, the behavior of the device changes from a photodetector to a
multifunctional photomemory with the highest non-volatile responsivity of 4.8× 107 A/W and the longest
retention time of 6.5× 106 s reported so far. Furthermore, a 3× 3 photomemory array without selectors
shows no crosstalk between adjacent devices and has optical signal-processing functions including
wavelength and power-density selectivity.
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INTRODUCTION
Transistor and integrated circuit (IC) technology
has achieved tremendous developments over the
past 70 years. As the size of device components ap-
proaches the technical and physical limits, ICs will,
on the one hand, see sizes decrease and 3D inte-
gration [1] and, on the other, see more diversified
uses including neuromorphic sensing and comput-
ing chips [2], photonic integrated chips [3,4] and
quantum computing chips [5]. Among them, pho-
tonic integrated chips have light emission, modula-
tion, transmission and detection abilities, which can
integrate optical transmission and information pro-
cessing, thereby supporting chip development for
large capacity, low power consumption, large-scale
integration and artificial intelligence [3,4].

A photodetector is an important semiconductor
device that can detect optical signals and convert
them into electrical signals. Typical devices include
photodiodes, phototransistors and photocon-
ductors [6,7]. Although there are many types of
photodetectors with different mechanisms and

structures, their representative behavior can
be summarized as a limited number of actions
depending on their different electrical output
characteristics after illumination. Figure 1 shows the
output current–voltage relationships of a photode-
tector before and after being excited by light. The
three typical states are fully-off (0, 0), fully-on (1, 1)
and rectifying (0, 1) or (1, 0). For example, the out-
put current of a photodiode changes from rectified
to fully-on after illumination, whereas the output
current of a photoconductor or a phototransistor
changes from fully-off to fully-on.

From the perspective of the signal-change
behavior shown in Fig. 1, there should be a new
device that changes the output current from fully-off
to rectified. As a ‘missing’ element, such a device
has not yet been discovered and will play a key role
in future optoelectronic systems, such as optical
logic [8–10], high-precision imaging [11–15] and
information processing [16–35]. For instance, we
can use optical signals to control the logic functions
of optoelectronic devices, greatly improve the
ability and effectiveness of light control and reform
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Figure 1. The three fundamental current states of photodetectors: fully-off (0, 0), fully-
on (1, 1) and rectifying (0, 1) or (1, 0). For a photodiode, the output current changes
from rectified to fully-on; for a photoconductor or phototransistor, the output current
changes from fully-off to fully-on after illumination. For the photon-controlled diode as
a ‘missing’ element, the output current will change from fully-off to rectified.

the existing photoelectric conversion structure and
fundamental logic cognition. In addition, rectifica-
tion controlled by light can avoid the crosstalk issue
of photodetector arrays without selectors, thereby
helping to further improve the integration of
the array.

We believe that this is the first report of a photon-
controlled diode based on a n/n− molybdenum
disulfide (MoS2) junction. Controlled by light, the
Schottky junctions formed at the cathode and anode
suppress or show the rectification property of the
n/n− junction, so that the output current of the de-
vice changes from fully-off to rectified. As a photode-
tector, its responsivity exceeds 105 A/W. By increas-
ing the thickness of the photogating layer, the behav-
ior of the device changes frombeing a photodetector
to a multifunctional photomemory with the highest
non-volatile responsivity of 4.8 × 107 A/W and the
longest retention time of 6.5 × 106 s reported so
far. We have also fabricated a 3 × 3 photomemory
array without any selectors, showing no crosstalk,
as well as optical signal detection and processing
functions.

RESULTS AND DISCUSSION
The photon-controlled diode consists of a lateral
n/n−MoS2 junction, bottomand topgraphene (Gr)
as cathode and anode, and a SiO2/p+-Si back-gate
stack.The lightly p-dopedMoS2 (n−-MoS2)was ob-
tained from the as-transferred MoS2 (n-MoS2) us-
ing an oxygen plasma treatment [36–38] in which a
top hexagonal boron nitride (h-BN) layer was used
as a protecting mask for the n-MoS2 underneath
and a bottom h-BN layer was sandwiched between
the n/n− MoS2 junction and the SiO2/p+-Si back-
gate (Fig. 2a; Supplementary Figs 1 and 2; ‘Meth-
ods’). The cross section of the device shows a van
der Waals heterojunction of MoS2 and h-BN with-
out any gaps, obvious defects and contamination
(Fig. 2b). Although oxygen plasma treatment de-
stroyed the lattice on the surface of the MoS2 mate-
rials, a lateral n/n− MoS2 junction was still formed
inside thematerials. Oxygen is detected in n−-MoS2
by energy-dispersive X-ray spectroscopy (EDX) and
this reduces the electron concentration in the as-
transferred n-MoS2 (Fig. 2c; Supplementary Figs 3
and 4). On the other hand, oxygen is not detected
in n-MoS2, confirming its intact contact with the top
h-BN layer (Fig. 2d).

When the applied gate voltage (VG) is 0 V,
the current–voltage (IA–VA) characteristics of the
photon-controlled diode show a rectifying behavior,
with an on/off current ratio of >105 and a low off
current of∼10–10 A atVA = −3 V (Fig. 2e). In con-
trast, the current of the Gr/n-MoS2/Gr and Gr/n−-
MoS2/Gr structures atVA =±3V is>10–6 A,which
indicates that the rectifying behavior of the photon-
controlled diode comes from the n/n− MoS2 junc-
tion (Supplementary Fig. 4).The photon-controlled
diode can work in a gate voltage-controlled mode,
i.e. the output current changes from a fully-off state
to a rectifying state when VG is changed from −60
to 60 V (Supplementary Fig. 5). It can also work in a
photon-controlledmode, i.e. whenVG =−60V, it is
in the fully-off state in the dark but illumination with
405 nm of light produces a rectifying state with an
on/off current ratio of>106 (Fig. 2f).Therefore, by
changing the light illumination and using a constant
bias gate, a new signal-processing behavior of chang-
ing from fully-off to rectifying is realized (Fig. 2g).

As a photodetector, the responsivity of this de-
vice is>105 A/Wwith a response timeof<1 s (Sup-
plementary Fig. 6). By increasing the thickness of
the bottom h-BN layer from one to several nanome-
ters, the behavior of the photon-controlled diode is
changed from an ordinary photodetector to a new
type of photomemory. The retention characteristics
of the device show that the on/off current ratio is
>106 after illumination and remains at >105 for

Page 2 of 8



Natl Sci Rev, 2022, Vol. 9, nwac088

Top h-BN
Top Gr

n--MoS2n-MoS2

Au

Au

SiO2

p+-Si

Bottom Gr 
Bottom

h-BN

VG

VA

 GateLight 

Cathode

Anode 

Top Gr

SiO2

Top h-BN

Bottom h-BN 
n-MoS2 n--MoS2

-3 0 3
VA (V)

ab
s (

I A)
 (A

)

VG = 0 V
10-3

10-5

10-7

10-9

10-11

10-13

Dark

Light 

VG = -60 V

VA (V)
-3 0 3

ab
s (

I A)
 (A

)

10-4

10-6

10-8

10-10

10-12

10-14

O Mo S N Si O Mo S N Sidc

a b

e f g

Figure 2. Device structure and characterization. (a) Schematic of a photon-controlled diode fabricated by sandwiching a
h-BN layer between a n/n− MoS2 junction and a SiO2/p+-Si back-gate, using bottom/top graphene as the cathode/anode
and a top h-BN as the protecting mask. (b) False-color TEM image of the cross section showing the high-quality interfaces
of the heterostructures (scale bar: 10 nm). (c) Elemental maps of O, Mo, S, N and Si in the white dashed rectangular region
in Fig. 2b, where O can be detected in the n−-MoS2 region (scale bar: 5 nm). (d) Elemental maps of O, Mo, S, N and Si in the
black dashed rectangular region in Fig. 2b, where O is not detected in the n-MoS2 region (scale bar: 5 nm). (e) abs (IA)–VA
characteristics of the photon-controlled diode in the dark at VG = 0 V. (f) abs (IA)–VA characteristics at VG = –60 V in the dark
and under 405 nm of light illumination with a power density of 32 μW/cm2. (g) A symbol for the photon-controlled diode as
a circuit element.

6.5 × 106 s (Fig. 3a; Supplementary Fig. 7). By ex-
trapolation of the retention current, the stored data
can be securely extracted with an on/off current ra-
tio at VA = ±3 V of >103 for ≤109 s (Supplemen-
tary Fig. 7). The switching characteristics of the de-
vice show that the light/dark current ratio is >106

(Fig. 3b) and the device has a stable multi-level stor-
age ability (Supplementary Fig. 8).

The photon-controlled diode has a wavelength-
dependent responsivity. It is sensitive to 405 nm
of light with a non-volatile responsivity (NR)
of 4.8 × 107 A/W and a detectivity (D∗) of
2.4 × 1016 Jones at a light power density (Pin)
of 0.7 μW/cm2 (Fig. 3c; Supplementary Fig. 9).
In contrast, it is much less sensitive to 638 nm of
light, showing a responsivity (R) of <103 A/W
and a relatively lower NR (Fig. 3d; Supplementary
Fig. 10).

In order to benchmark the photomemory char-
acteristics of our photon-controlled diode, its per-
formance was compared with those of devices com-
posed of various 2D [18–20], organic [21,22] and
hybrid [23–28] materials (Fig. 3e and f). Our de-
vice shows the highestNR and the longest retention

time (Supplementary Table 1). It is worth noting
that photon-controlled diodes using other 2Dmate-
rials (such as WS2) can be fabricated using similar
methods, which provides many design possibilities
for the expected signal-processingbehaviors (‘Meth-
ods’; Supplementary Fig. 11).

The photon-controlled diode is essentially
a n/n− MoS2 junction inserted between two
Gr/MoS2 Schottky junctions at the cathode and
the anode. By controlling the light, the Schottky
junction suppresses or permits the rectification
behavior of the n/n− junction, so that the output
current of the photon-controlled diode changes
from fully-off to rectified. Figure 4a and b shows the
energy-band diagram in the fully-off state. When
a negative VG is applied in the dark, the electron
potential barriers at the cathode and anode increase,
so that electron conduction is not possible, leading
to the fully-off state.

Figure 4c shows the energy-band diagram of the
device during the programming process. When it is
exposed to 405 nm of light, electrons are excited by
the photons from the defect energy levels of the bot-
tom h-BN layer to the conduction band [18,39] and
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Figure 3. Photomemory characteristics of the photon-controlled diode. (a) Current retention property. VA = ±3 V, VG = –60 V.
(b) Switching characteristics. For the programming process, 405 nm of light with a power density (Pin) of 0.1 mW/cm2 was
applied for 0.5 s at a negative VG, whereas in the erasing process, 405 nm of light with Pin of 100 mW/cm2 was applied for
1 s at a positive VG. The overshoot of IA in the erasing process is because of the changing of VG. (c) Non-volatile responsivity
(NR) and detectivity (D∗) as a function of Pin using 405 nm of light. VA = 3 V, VG = –60 V. NR = (Istore – Idark)/Pin, where
Idark is the dark current and Istore is the storage current. D∗ = (AB)1/2NR/S1/2, where A is the active area of 30 μm2, B is the
bandwidth of 1 Hz and S is the noise power spectral density. (d) Responsivity (R) and NR as a function of Pin using 638 nm
of light. R = (Iph – Idark)/Pin, where Iph is the photocurrent. VA = 3 V, VG = –60 V. (e and f) Benchmarks of the photomemory
characteristics of the photon-controlled diode showing it has the highest reportedNR and the longest reported retention time.
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Figure 5. A photomemory array. (a) Schematic of a 3 × 3 photomemory array without selectors using a MoS2 photon-controlled diode as a unit.
(b) Magnified image of the individual unit. (c) Optical photograph of the fabricated array (scale bar: 10 μm). (d) Equivalent circuit. (e) Lack of crosstalk
in the photomemory array without selectors. (f) Demonstration of the wavelength selectivity of 405 nm (purple region) and 638 nm (red region) of light
with the same power density of 200 μW/cm2 in the array. (g) Demonstration of the power-density selectivity for the same 638 nm light. The red and
pink regions in the array represent different power densities of 780 and 26 μW/cm2, respectively.

then move to the MoS2 conduction band at a nega-
tiveVG.Thebottomh-BN layer acts as a photogating
layer in which the remaining holes at the defect en-
ergy levels offset the effect of the negativeVG.There-
fore, the electron potential barriers at the cathode
and the anode are reduced and electrons can pass
through theGr/MoS2 Schottky junctions because of
the tunneling effect, showing the rectification behav-
ior of the n/n− MoS2 junction (Fig. 4d and e).When
638 nm of light is used, the photon energy is lower,
which mainly excites carriers in MoS2 to produce a
photo-conductioneffect, leading to a relatively lower
R. When the light is off, photo-generated carriers in
MoS2 recombine with each other. Meanwhile, only
electrons in shallow levels in h-BN are excited to its
conduction band and these are very limited, leading
to a lowNR.

When a thin h-BN was used for the photogating
layer, the deviceworked as a photodetector. Because
of the relatively thin tunneling barrier, the excited
electrons can move back from the MoS2 to the de-
fect energy levels of h-BN after removal of light and
VG (Supplementary Fig. 6). However, when a thick
h-BN layer of about several nanometers was used for
the photogating layer, few electrons can return to
the defect energy levels of h-BN after removing the
light and VG due to the thick tunneling barrier, so
the photogating effect of the h-BN remains and the
photon-controlled diode works as a photomemory.
Figure 4d shows the energy-band diagram of the de-
vice during the erasing process. When a positive VG
and 405 nm of light are used, electrons are excited
from the valance band to the defect energy levels of
h-BN and recombine with holes [18,39] (Fig. 4f).

A 3 × 3 photomemory array without selec-
tors was designed with theMoS2 photon-controlled
diodes as pixel units (Fig. 5; Supplementary Fig. 12;
‘Methods’). All nine devices in the arrayworkedwell
and had a similar performance, indicating a good de-
vice uniformity (Supplementary Fig. 13). Figure 5e
showsno crosstalk in thephotomemory array.When
the optical signal input is provided to all pixel units
except the central one, the electrical signal output
exhibits a light/dark current ratio of >105 even if
none of the external selectors is used. During the
measurementof any individual device in the array, all
possible sneak paths are open. Since there is at least
one reverse-biased diode in a sneak path, the effects
of crosstalk are avoided.

The lack of crosstalk in the photomemory ar-
ray also enables optical signal-processing functions
such as wavelength selectivity and power-density se-
lectivity. An optical signal input composed of both
405 and 638 nm wavelengths of light was used to
demonstrate the wavelength selectivity and the elec-
trical signal output showed a clear pattern with a
light/dark current ratio of >105 (Fig. 5f). Differ-
ent power densities of 780 and 26 μW/cm2 of the
638nmof lightwere used todemonstrate the power-
density selectivity and the electrical signal output
showed a pattern with a light/dark current ratio of
>230 (Fig. 5g).Thewavelength and power-density-
dependent responsivity of the photon-controlled
diode canbeused to reducenoise signals andachieve
a high contrast andhigh-resolution imaging. It is also
important in applications such as optical informa-
tion demodulators [26] and neuromorphic vision
systems [32–34].
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CONCLUSION
Using a n/n− MoS2 junction, we have designed and
fabricated a photon-controlled diode with an un-
usual signal-processing behavior that can change the
output current from fully-off to rectified after illumi-
nation. When a thinner photogating layer was used,
the device worked as a photodetector with a respon-
sivity of >105 A/W, whereas when a thicker pho-
togating layer was used it worked as a photomem-
ory with the highest NR (4.8 × 107 A/W) and the
longest retention time (6.5× 106 s) reported so far.
Furthermore, a 3 × 3 photomemory array without
any selectors showed no crosstalk as well as wave-
length and power-density selectivity. The proposed
photon-controlled diode is the first to demonstrate
this new signal-processing behavior. It is a new cir-
cuit element that has been a ‘missing element’ and it
should pave theway for future high-integration, low-
power and intelligent optoelectronic systems.

METHODS
Device fabrication
Step 1: material preparation. Graphene, MoS2, WS2
and h-BN were exfoliated from their bulk crys-
tals using Scotch R© tape and were placed on a
SiO2/p+Si substrate. Step 2: top h-BN layer pat-
terning. A polymethyl methacrylate (PMMA) layer
(495K MW, A4, MicroChem) was spin-coated on
the h-BN/SiO2/p+Si substrate at 2000 rpm and
baked at 190◦C for 5 min, and then another PMMA
layer (950KMW,A2,MicroChem)was spin-coated
at 4000 rpm and baked at 190◦C for 2 min. An un-
dercut structure was created using electron-beam
lithography (EBL) and a developing process. Sub-
sequently, the h-BN flakes were patterned using re-
active ion etching (RIE) (CHF3 with a flux rate of
20 sccm; O2 with a flux rate of 4 sccm; pressure,
2.0 Pa; power, 50W; etching time, 1min) and lift-off
processes. Step 3: heterostructure stacking.The pat-
terned top h-BN layer was picked up using a piece of
propylene-carbonate and the bottomgraphene layer
(used as the cathode) and n-MoS2 (or n-WS2) layer
were then picked up in sequence. The stack was re-
leased onto a bottom h-BN photogating layer on
a SiO2/p+Si substrate at 130◦C, followed by heat-
ing at 350◦C for 120 min in vacuum to remove the
propylene-carbonate. Step 4: metal-contact deposi-
tion.Metal contacts (Ti/Au: 5/50 nm)were formed
using EBL, RIE (CHF3 with a flux rate of 20 sccm;
O2 with a flux rate of 4 sccm; pressure, 2.0 Pa; power,
50 W; etching time, 1 min), electron-beam evap-
oration and lift-off processes. Step 5: n/n− MoS2
junction formation.The n−-MoS2 was formed using
an oxygen plasma treatment (O2 with a flux rate of

180 sccm; power, 200 W; time, 60 min) on the as-
transferred n-MoS2. The patterned top h-BN serves
as a protecting mask layer for the n-MoS2 under-
neath. Step 6: anode formation. Polydimethylsilox-
ane was used as the medium to transfer the top
graphene layer onto then−-MoS2 to form the anode.

Characterization
The materials and devices were characterized
using an optical microscope (Nikon ECLIPSE
LV100ND), aberration-corrected TEM (Thermo
ScientificTM, Titan Cube Themis G2), with the
operating voltage at 300 kV and Super-X detector
system for Energy-Dispersive X-ray spectrometry
(EDX) mappings, and an X-ray photoelectron
spectroscopy analyser (Thermo VG Scientific
ESCALAB250). The electrical and optoelectronic
performance was measured using a semiconductor
analyser (Agilent B1500A), a probe station (Cas-
cade M150) and a laser diode controller (Thorlabs
ITC4001, with laser excitations of 405 and 638 nm)
in a dark room at room temperature; 405 nmof light
was generated using a Thorlabs ITC4001 unit, and
a current amplifier (Model SR570) and an oscillo-
scope (Tektronix MDO3102) were used to provide
a gate voltage to characterize the programming and
erasing performance.The noise was measured using
a noise-measurement system (Fs Pro, 100 kHz
bandwidth).
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