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Abstract
Basophils are mainly known as pro-inflammatory effector cells associated with
allergy and helminth infections. Although they were identified over 130 years
ago, their   functions are still poorly understood. New insights intoin vivo
basophil development and function have been gained by the development of
various transgenic mouse lines and staining techniques to detect and purify
these cells from different organs. Several studies over the past few years have
identified unexpected functions for basophils, including immunomodulatory
properties and interactions with other immune cells. Here, I summarize and
discuss the main findings.
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Introduction
Basophils belong to the group of granulocytes which constitute 
rather short-lived effector cells of the innate immune system. They 
usually represent less than 1% of all leukocytes in the peripheral 
blood, but they have potent effector functions. In contrast to many 
other cell types of the immune system, it is poorly understood 
how basophils develop and execute their effector functions. Not 
too long ago, it was even questioned whether mice contain a bona 
fide basophil population mainly because mouse basophils contain  
fewer granules as compared to human basophils1. After establish-
ing staining protocols and genetically engineered mouse strains 
basophils could be identified, isolated, and functionally char-
acterized in various settings of immune responses. Basophils 
and mast cells share the expression of the high-affinity receptor 
for IgE (FcεRI), histamine, and a few other effector molecules, 
yet basophils do not represent a subset or precursor population  
of mast cells; rather, they constitute a distinct cell lineage with a 
very different gene expression profile2. Basophils can be efficiently 
depleted in vivo with the monoclonal antibody MAR-1 directed 
against FcεRI or Ba103 which binds to another activating recep-
tor named CD200R3. However, since the recognized antigens of 
both antibodies are not exclusively expressed on basophils, this  
approach can cause bystander effects that interfere with clear  
interpretations of such depletion experiments. Transgenic mice 
expressing the Cre recombinase, GFP, or human diphtheria-toxin 
receptor under control of regulatory elements of the Mcpt8 gene 
have been developed by several groups over the past few years 
(reviewed in 3). Mcpt8 encodes the mouse mast cell protease  
8 (mMCP-8), a serine protease which is highly expressed in  
basophils but not mast cells4. The genetically modified mouse 
strains facilitate the functional characterization of basophils in vivo.  
However, it is important to keep in mind that mouse and human 
basophils differ in many respects, and it remains to be determined  
to what extent findings in mouse models can be translated to the 
human immune system. In the following paragraphs, I summarize  
some major new findings regarding the in vivo functions of  
basophils published during the past few years.

Basophil development and critical transcription 
factors
Interleukin (IL)-3 is the most potent cytokine to promote 
basophil proliferation, but high concentrations of thymic stromal  
lymphopoietin (TSLP) can have similar effects5. IL-3 and  
TSLP-elicited basophils differ in terms of their gene expression 
profiles and may resemble different states of activation rather  
than representing stable subpopulations of basophils. The recep-
tors for IL-3 and TSLP are linked to the STAT5 signaling pathway, 
and it was recently shown that STAT5 binds to regulatory elements 
of Gata2, which is another critical transcription factor for basophil 
development6. In addition, it was found that IRF8 can also promote 
Gata2 expression in precursor cells and thereby drive basophil 
differentiation7. Other transcription factors including Gata1,  
P1-Runx1, c/EBPα, and MITF also play an important role in 
basophil development and maintenance (reviewed in 8).

Relevance of antigen-presentation by basophils
Basophils were found to display low levels of major histo-
compatibility complex class II (MHC-II) on the cell surface, 
and antibody-mediated depletion of basophils resulted in poor 
Th2 polarization9–11. However, genetically basophil-depleted   
Mcpt8Cre mice showed normal expansion of Th2 cells during pri-
mary infection with the helminths Nippostrongylus brasiliensis12,  
Heligmosomoides polygyrus13, and Schistosoma mansoni14. Oval-
bumin (OVA)-alum immunized and challenged Mcpt8Cre mice 
also showed an unimpaired Th2 response and eosinophilia in the 
lung12. Furthermore, papain+OVA-induced T-cell proliferation  
and Th2 polarization in draining lymph nodes was normal in  
Mcpt8Cre mice while genetically dendritic cell (DC)-depleted 
mice showed a severely impaired response12. With another  
genetically basophil-depleted mouse model (Basoph8 x Rosa-DTa 
mice), it was shown that footpad immunization with S. mansoni  
eggs results in normal Th2 priming in the absence of basophils15. 
In contrast, diphtheria toxin (DT)-mediated depletion of DCs 
causes impaired Th2 priming upon S. mansoni egg immunization 
and diminished Th2 cell accumulation in the liver of S. mansoni- 
infected mice16. It was further shown that DCs are required and 
sufficient for the Th2 response to house dust mite antigens17. 
This study also demonstrated that a subset of monocyte-derived 
DCs express FcεRI. These cells will therefore also be depleted  
with the anti-FcεRI antibody MAR-1 frequently used to deplete  
basophils in vivo.

Basophils lack the machinery for antigen uptake and processing, 
although they can contain MHC-II molecules on the cell surface 
which may be loaded with exogenous peptides and are then capable 
of stimulating T cells9,18,19. Two other studies provide evidence that 
basophils and DCs cooperate to promote Th2 polarization. It was 
shown that subcutaneous papain injection induced reactive oxygen 
species that indirectly activated DCs to promote basophil recruit-
ment into lymph nodes and subsequent Th2 polarization20. Another 
study showed that TSLP-elicited dermal DCs express OX40L to 
induce IL-3 secretion from T cells leading to the recruitment of 
basophils which then promote Th2 polarization21. The Th2-pro-
moting activity of basophils in both studies might be explained 
by basophil-derived IL-4 rather than direct antigen recognition on 
basophils.

Recent evidence shows that basophils can in fact acquire MHC-II 
from DCs by the uptake of plasma membrane patches, a process 
termed trogocytosis19. Clearly, further studies are needed to deter-
mine whether MHC-II trogocytosis by basophils has functional 
consequences for T-cell activation or memory formation or other 
processes that are regulated by antigen recognition.

Basophil functions in type 2 immune responses
Lung inflammation
In a mouse model of allergic lung inflammation induced by the 
administration of the cysteine protease papain, it was found that 
basophil-derived IL-4 promotes the secretion of IL-5, IL-9, and 

Page 3 of 7

F1000Research 2017, 6(F1000 Faculty Rev):1464 Last updated: 15 AUG 2017



IL-13 from type 2 innate lymphoid cells (ILC2s) in the lung and 
thereby induces lung eosinophilia22. Another type 2 immunity-
inducing property of basophils was observed in a commonly used 
model for allergic lung inflammation which is based on alum 
adjuvant-mediated priming of the Th2 response. It was recently 
reported that alum enhanced the ability of basophils to induce Th2 
polarization by the release of TSLP and IL-25 but independently of 
IL-4 secretion23. However, we and others observed no impairment 
in lung Th2 responses with N. brasiliensis infection or OVA/alum 
immunization in genetically basophil-depleted mice12,15.

Local inflammatory responses in the skin
Similar to reports from papain-induced lung inflammation, it was 
reported that basophil-derived IL-4 induces ILC2 accumulation 
and proliferation in the skin after topical application of MC903, 
a vitamin D analog24. MC903 elicits high levels of TSLP expres-
sion in the skin and causes pathology reminiscent of skin lesions 
of atopic dermatitis patients. Anti-TSLP antibodies can block the 
accumulation of basophils in the skin25 but also inhibit peripheral 
TSLP-induced basophilia during Trichinella spiralis infection26.  
Experiments with mixed bone marrow chimeras revealed that 
basophil accumulation in the MC903-treated ear does not require 
direct recognition of TSLP by basophils5. Basophils were further 
found to cooperate with fibroblasts to promote the recruitment 
of eosinophils in a murine model of irritant contact dermatitis27. 
Related to this, it was reported that basophils regulate the entry of 
eosinophils into the skin by the induction of VCAM-1 expression 
on endothelial cells28.

Local activation of basophils in the ear skin via FcεRI causes an 
ear swelling response termed “chronic allergic inflammation” 
or IgE-CAI, which peaks at day 2–3 and resolves by day 6. This 
IgE-CAI response is strictly dependent on basophils29. Using 
this model, Egawa et al. reported that the release of IL-4 from 
basophils promotes the differentiation of alternatively activated or  
“M2” macrophages which have anti-inflammatory and tissue repair 
properties, arguing for a role of basophils in the resolution of  
inflammation30. Others observed that α(1,3) fucosyltransferases IV 
and VII are essential for the initial recruitment of basophils in the 
IgE-CAI model31. Basophils express various proteases including 
mMCP-8 and mMCP-11. By analyzing mMCP-11-deficient mice, 
Iki et al. showed that mMCP-11 promotes the ear swelling response 
in IgE-CAI32. However, basophils can also have anti-inflammatory 
properties, as shown in a model of skin contact hypersensitivity 
where UVB irradiation reduced the hapten-induced ear swelling 
response. In this model, it could be demonstrated that basophil-
restricted expression of amphiregulin, a cytokine with tissue 
repair activities, was required for the suppressive effect of UVB  
irradiation33. Increased numbers of basophils were also found in 
skin biopsies from patients with various skin disorders, indicat-
ing that these cells also regulate inflammatory responses in human 
skin34.

Protection against parasites in the skin and intestine
The presence of basophils in the skin indicates that they could 
be involved in protective immunity against helminths that enter 

their hosts via the skin or against ectoparasites like ticks. Using  
basophil-depleted mice, Wada et al. showed that basophils 
impair tick feeding upon secondary engorgement35. Furthermore, 
basophils promote the trapping of larvae in the skin upon secondary  
N. brasiliensis infection36. In addition, basophils accumulate in 
the small intestine and induce rapid expansion of Th2 cells and 
protection against N. brasiliensis or H. polygyrus during second-
ary infection by IgE-induced secretion of IL-4/IL-1313. Basophils  
further promote a Th2 response in a TSLP-dependent manner  
during T. spiralis and Trichuris muris infections25,26. In contrast, 
basophils play only a minor role in the control of Strongyloides 
ratti infection37. Anti-CD200R3-mediated depletion of basophils 
resulted in smaller granulomas around S. mansoni eggs in the  
liver38, while this effect was not observed in genetically basophil-
depleted Mcpt8Cre mice14. This difference might be explained  
by secondary effects caused by the injected antibody, includ-
ing mast cell activation and Fc receptor-mediated modulation of  
phagocytes.

Basophils in food allergy and eosinophilic esophagitis
An interesting role for basophils during skin sensitization fol-
lowed by oral challenge to elicit a food allergic response has been 
described. Mice developed a severe food allergic response when 
chicken OVA was first applied in combination with MC903 to 
the ear skin and later given intragastrically by oral gavage39. The  
authors further showed that basophils and TSLP are required 
for this effect. In a subsequent study, it was further revealed that  
basophil-derived IL-4 promoted the IgE-mediated food allergic 
response and eosinophils were dispensable for this effect40. A role 
for basophils, TSLP, and IL-33 to elicit an anaphylactic response 
to oral antigens was also shown in another model where OVA was 
applied to skin pretreated with 4% SDS instead of MC90341.

The impaired skin barrier function in atopic dermatitis may facili-
tate allergic sensitization that can lead to eosinophilic esophagitis 
(EoE). Pathology reminiscent of EoE can be elicited by intrana-
sal OVA challenge of MC903+OVA skin-sensitized mice42. Using 
this model, Noti et al. showed that IgE is dispensable for EoE 
while basophils and TSLP are required42. Furthermore, IL-33 was  
identified as a critical cytokine to promote the accumulation of 
basophils in the esophagus and the recruitment of eosinophils43.

Basophils in other inflammatory settings, allograft 
transplantation, and tumor control
Intravenous immunoglobulin (IVIG) therapy, the intravenous 
administration of high doses of purified IgG, is used as a thera-
peutic approach to treat autoantibody-mediated inflammation in  
various clinical settings. The anti-inflammatory mechanism of 
IVIG therapy is incompletely understood. Using a mouse model 
of serum-induced arthritis, researchers showed that IVIG elicits  
IL-33 secretion, which in turn promotes IL-4 release from  
basophils. Basophil-derived IL-4 then upregulates the inhibitory  
Fc receptor FcγRIIB on macrophages and thereby ameliorates 
pathology44. However, others found no role for basophils in IVIG-
induced suppression of serum-induced arthritis45. The apparent  
discrepancies between these observations remain to be resolved.
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Systemic lupus erythematosus (SLE) is another autoantibody-
mediated disease. SLE patients were found to have higher serum 
levels of IgE and activated basophils46. Another study showed 
that basophils from SLE patients promoted Th17 differentiation  
in vitro, probably by the secretion of IL-647. Depletion of basophils 
from SLE-prone MRL-lpr/lpr mice resulted in ameliorated pathol-
ogy and an extended lifespan, while adoptive transfer of basophils 
had the opposite effect47. Further evidence for an important role of 
basophil-derived IL-6 in Th17 differentiation is based on a cholera 
toxin-induced lung inflammation model. Here it was shown that 
Th17-associated lung inflammation was reduced in the absence of 
basophils and could be restored by the transfer of wild-type but not 
IL-6-deficient basophils48.

Basophils were also found to regulate the rejection of allogeneic 
transplants. In a mouse model of pancreatic islet allotransplan-
tation, it was reported that the depletion of basophils results in 
improved graft survival49. Furthermore, basophil-derived IL-4 was 
found to act on myofibroblasts and promote fibrosis in a cardiac 
allotransplantation model50. In vitro studies with human basophils 
further revealed their potential to inhibit TLR4-induced monocyte 
activation51 and to induce the differentiation of alternatively acti-
vated macrophages52.

Recently, basophils were further found to modulate immune 
responses against solid tumors. One study described the recruit-
ment of basophils into tumor-draining lymph nodes in correlation 
with a Th2-biased immune response and poor survival of pancreatic 
cancer patients53. In contrast, basophils were also shown to promote 
tumor rejection by recruiting CD8+ T cells.

Future perspective
Our current understanding of basophil development and effector 
functions has improved considerably over the past few years. We 
realize now that basophils not only function as pro-inflammatory 
cells during allergic responses and helminth infections but also 
modulate the immune system in many ways. Most of our knowl-
edge is still based on mouse models. It will be important to translate 
these findings to the human immune system in order to develop new 
therapeutic approaches for the treatment of inflammatory diseases 
where basophils may play an important role.
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