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Abstract: In this study, calcium carbonate nanoparticles (CCNPs) and calcium oxide nanoparticles
(CONPs) are synthesized by the carbonization/calcination of calcium oleate. CONPs are an essential
inorganic material, and they are used as catalysts and as effective chemisorbents for toxic gases.
CCNPs are widely used in plastics, printing ink, and medicines. Here, calcium oleate is used as a
starting material for the preparation of CCNPs and CONPs. This calcium oleate is prepared from
calcium hydroxide and oleic acid in ethanol under mild reflux conditions. The effect of the calcination
temperature of calcium oleate is examined during the synthesis of CCNPs and CONPs. By simple
carbonization/calcination, calcite-type CCNPs and CONPs are prepared at <550 ◦C and >600 ◦C, re-
spectively. The synthesized nanomaterials are analyzed by various physicochemical characterization
techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravi-
metric analysis (TGA) with derivative thermogravimetry (DTG), and scanning electron microscopy
(SEM) with energy dispersive X-ray analysis. An X-ray diffractometer and the Scherrer formula are
used to analyze the crystalline phase and crystallite size of prepared nanoparticles. TGA techniques
confirm the thermal stability of the calcium oleate, CCNPs, and CONPs. The SEM analysis illustrates
the dispersive behavior and cubic/spherical morphologies of CCNPs/CONPs. Furthermore, the
obtained results are compared to the CCNP and CONP samples prepared using calcium hydroxide.
As a result, the carbonization/calcination of calcium oleate produces monodispersed CONPs, which
are then compared to the CONPs from calcium hydroxide. Additionally, from calcium oleate, CONPs
can be prepared on a large scale in a cheap, convenient way, using simple equipment which can be
applied in various applications.

Keywords: calcium carbonate; calcium oxide; calcium hydroxide; calcium oleate; carbonization;
pyrolysis

1. Introduction

Calcium carbonate (CaCO3) is one of the most important inorganic materials because
it has a wide range of applications in various fields of industry [1–3]. Especially, it is used
in white pigments, fillers, biomedical implanting, drug delivery, and bone regeneration
applications. Furthermore, CaCO3 is used in the preparation of paper, rubber, paint, and
plastics [4,5]. Three polymorphic forms of CaCO3 exist, and they are listed as follows in
order of decreasing thermodynamic stability: rhombohedral calcite, orthorhombic arag-
onite, and hexagonal vaterite [6]. Most commonly, CaCO3 nanoparticles (CCNPs) are
synthesized through the wet chemical precipitation technique. However, the technique
causes the considerable agglomeration of particles during synthesis, leading to a bimodal
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size distribution [7–9]. Moreover, the technique requires the precise control of a number
of operation parameters, such as reagent concentration, residential time, stirring speed,
pH, feed point position, and temperature, which determine the size, crystal structure, and
morphology of the particles. Apart from the wet chemical precipitation method, CCNPs can
be prepared by several other methods, including emulsion liquid membrane, gas–liquid
carbonation, and the gas–liquid microdispersion process [10]. The emulsion liquid mem-
brane has some limitations, such as emulsion instability, the use of surfactants, and the
need to recover the transported species by breaking the emulsion. Notably, the gas–liquid
microdispersion process also has some drawbacks, including limited mass transfer. Among
these methods, the gas–liquid carbonation method is one of the best industrial processes
for the preparation of CCNPs.

Calcium oxide (CaO) is applied in various fields because it is inexpensive, non-
corrosive, and easy to handle with excellent basicity compared to typical homogeneous
base catalysts, such as catalysts, bactericides, additives in refractories, flue gas desulfur-
ization, pollutant emission control, and particularly critical adsorbents for toxic chemical
agents [11,12]. Apart from these, CaO has been identified as the most promising candidate
for CO2 capture because CaO-based adsorbents have the following advantages: a high reac-
tive sorption capacity for CO2, a low cost, and an abundance of natural precursors [13–15].
CaO is used as a starting material for the preparation of CaCO3 in reversible reactions
(Equation (1)). The calcination process determines the structural characteristics of CaO,
which is an active sorbent for CO2 [13]. CaO nanoparticles (CONPs) are generally prepared
by several methods, including thermal decomposition, microwave processes, sonochem-
ical synthesis, hydrogen plasma–metal reactions, solvothermal reactions, precipitation,
and water-in-oil microemulsions [12]. The above methods have some limitations, such
as the use of toxic organic solvents, prolonged reaction time, high synthesis temperature,
and expensive/intricate equipment. In our previous study, monodisperse CONPs were
obtained from a calcium oleate precursor through the thermal decomposition of calcium
oleate. Typically, calcium stearate and oleic acid are placed in a reaction vessel and heated
at 100 ◦C for 1 h under vacuum to remove the oxygen and moisture from the mixture. Then,
the temperature is increased to 350 ◦C and maintained for 5 h with vigorous stirring under
an argon atmosphere. After cooling, an excess amount of ethanol is added to the final
reaction mixture, yielding a brownish residue. The product of calcium oleate (brownish
residue) is recovered by centrifugation and washing with ethanol several times to remove
the excess amount of unreacted oleic acid. This calcium oleate precursor is prepared by
multistep synthesis through a laborious process, and prohibitive reagents are used [16].

CaO(s) + CO2(g)
Carbonization−−−−−−−→
←−−−−−−
Calcination

CaCO3(s) (1)

Here, a new simple way is proposed to prepare CCNPs and CONPs from calcium
oleate. Calcium oleate is prepared from calcium hydroxide and oleic acid in the presence of
ethanol under mild reflux conditions. The effect of reaction temperature on the formation
of CCNPs and CONPs is investigated systematically. The structural properties of CCNPs
and CONPs are examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR)
spectroscopy, thermogravimetric analysis (TGA) with derivative thermogravimetry (DTG),
and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX).

2. Experimental Conditions
2.1. Required Materials

Calcium hydroxide (99.9%), ethanol (99.8%), and oleic acid (90%) were purchased
from Aldrich Chemicals, and they were used as received without any further purification.
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2.2. Preparation of Calcium Oleate, CCNPs, and CONPs

An appropriate amount of calcium hydroxide (1 mol) and oleic acid (2.5 mol) was
added to ethanol. The reaction mixture was refluxed for 5 h, and the obtained solid material
(calcium oleate) was filtered and washed several times with ethanol. Subsequently, the
calcium oleate was dried and then carbonized/calcined at various temperatures for the
production of CCNPs and CONPs. In a typical growth experiment, an appropriate amount
of calcium oleate was taken into a silica crucible, and it was carbonized/calcined for 5 h
in a muffle furnace at different temperatures (450–800 ◦C) under static air conditions. The
muffle furnace was cooled to room temperature, and then the final product (white color
powder) was collected from the crucible. Scheme 1 clearly illustrates the formation of
calcium oleate by a mild reflux condition and the preparation of CCNPs/CONPs from
calcium oleate via the simple carbonization/calcination (pyrolysis) method. On the other
hand, CCNPs/CONPs were prepared using calcium hydroxide. For this, an appropriate
amount of calcium hydroxide was taken alone into a silica crucible, and it was calcined for
5 h in a muffle furnace at different temperatures (450–800 ◦C) under static air conditions.
The formation of CCNPs and CONPs from calcium hydroxide via the simple calcination
method is shown in Scheme S1.
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3. Results and Discussion

The XRD patterns of CCNPs and CONPs are shown in Figure 1. The patterns exhibited
an intense diffraction peak around 29.4◦ (2θ) due to (104) diffraction and low intense peaks
around 23.1, 31.4, 36.0, 39.4, 43.2, 47.1, 47.4, 48.5, 56.6, 57.5, 60.7 and 64.8◦ (2θ) attributed
to the (012), (006), (110), (113), (202), (024), (018), (116), (211), (112), (122) and (220) planes,
respectively, confirming the formation of CCNPs with the calcite polymorph phase [10,17].
The obtained materials possessed a well-defined crystalline structure and were found to
be in good agreement with a standard JCPDS pattern (JCPDS card no: 86-0174) for similar
calcite nanoparticles [18]. The XRD patterns of the CCNPs prepared from calcium oleate
between the carbonization temperatures of 400 and 550 ◦C had similar phase compositions.
However, with increasing carbonization temperature, the peak intensities also increased,
which might be due to an increase in the degree of crystallinity with temperature. The
crystallite size of the calcite, which is estimated by the Debye–Scherrer equation from the
unique peak (104) plane, was around 100 nm for the samples obtained at 550 ◦C. The
CCNP phases were turned into CONPs phases beyond 600 ◦C and were confirmed by
the XRD patterns with peaks at 32.2, 37.4, 53.9, 64.2, and 67.4◦ (2θ) corresponding to
the (111), (200), (202), (311) and (222) planes, respectively. These patterns agreed well
with the corresponding standard values given in the JCPDS pattern of CaO (JCPDS card
no: 37-1497) [19,20]. The intensities of the diffraction patterns increased with increasing
calcination temperature from 600 to 800 ◦C without any further phase changes. The
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Debye–Scherrer equation was used to estimate the crystallite size using the faces of the
(200) peaks. The sizes were calculated as about 65 and 75 nm for the samples obtained at
600 and 650 ◦C, respectively.
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Figure 1. XRD patterns of CCNPs and CONPs fabricated from calcium oleate at different carboniza-
tion/calcination temperatures.

FTIR spectra of synthesized calcium oleate, CCNPs, and CONPs were recorded to
determine their existing surface functionalities. The infrared spectra of the calcium oleate,
CCNPs, and CONPs are shown in Figure 2. As seen in the spectra of the CCNPs, three
strong bands centered at around 713, 875, and 1450 cm−1, corresponding to framework
vibrations of ν4, ν3, and ν2, respectively, and were considered to arise from CO3

2− [21].
Among these vibrations (ν4, ν3, and ν2), ν2 vibration was strong and broad due to the
crystalline structure of CONPs and CCNPs without major defects [22]. The weak and broad
peaks around 3440 cm−1 may be attributed to the stretching vibration of −OH groups of
physically adsorbed or lattice water molecules [23–25]. Deformational vibrations of the
adsorbed molecules caused absorption bands around 1635 cm–1. The intensities of the ν4,
ν3, and ν2 vibrations decreased for CONPs prepared at 600 and 625 ◦C, which might be due
to the transformation of CCNPs into CONPs. In addition, a sharp band was observed at
3645 cm–1 and attributed to the asymmetric –OH stretching vibration [16]. This asymmetric
–OH stretching vibration decreased with increasing reaction temperature from 600 to 625 ◦C
and then disappeared at 650 ◦C, indicating the degree of the modification. The FTIR spectra
of calcium oleate showed strong peaks at 2924 and 2854 cm−1, corresponding to C−H
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asymmetric and symmetric vibrations in the methyl groups, respectively, which were
not observed in the CCNPs and CONPs. The small peak at 1705 cm−1 is assigned to the
−C=O stretching vibration of carboxylate groups in the calcium oleate [26]. The intense
bands between 1510 and 1610 cm−1 were due to asymmetric stretching bands for uni- and
bidentate carboxylate groups associated with calcium ions [27]. The hydrogen bonding of
fatty acids was damaged during the calcination of calcium oleate at a suitable temperature,
resulting in the formation of CCNPs and CONPs [28].
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Figure 2. FTIR spectra of synthesized calcium oleate; CCNPs and CONPs from calcium oleate at
different carbonization/calcination temperatures.

The thermal stability of synthesized calcium oleate was examined by TGA, and the
corresponding results are shown in Figure S1. The TGA curves of calcium oleate displayed
four distinct weight losses. The initial weight loss was up to 150 ◦C due to the removal
of physically adsorbed water molecules over the surface. The second weight loss was
observed between 150 and 350 ◦C, and was associated with removing functional groups of
calcium oleate. Third, weight loss at 350–520 ◦C was due to the decomposition of oleate
from calcium oleate and the formation of CCNPs, and the horizontal portion (500–570 ◦C)
gives the range of the thermal stability of CCNPs. The fourth and final weight loss was
displayed between 570 and 650 ◦C, indicating the decomposition of CCNPs into CONPs
and CO2. After that, no weight loss was observed up to 1000 ◦C, suggesting the stability of
the CONPs. This result matches well with the XRD result. The thermal decomposition of the
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synthesized CCNPs and CONPs was evaluated at temperatures ranging from 25 to 1000 ◦C
using TG/DTG analysis (Figure 3). An initial minute quantity of weight loss below 150 ◦C
was due to the desorption of physically adsorbed water molecules. The second/final
weight loss due to the decomposition of the occluded organic template occurred between
600 and 770 ◦C. CCNPs were decomposed and transferred into CONPs and CO2 (g). The
loss of around 47% of the initial mass in this temperature range was due to the escape of
CO2 from the system after the decomposition of CCNPs. Furthermore, we observed the
absence of decomposition up to 1000 ◦C from the thermogram, which is credited to the
purity of the synthesized calcite nanoparticles. Two separate weight losses were displayed
in the CONPs prepared at above 600 ◦C. The first weight loss was observed from 380 to
450 ◦C, and the second/final weight loss was observed from 550 to 770 ◦C for the CONPs
prepared at 600 ◦C. The CONPs prepared above 650 ◦C showed the weight losses from
350 to 420 ◦C and 500 to 670 ◦C. The first weight loss was due to the removal of hydroxyl
groups on the surface of CONPs, and the final weight loss was due to the incomplete
conversion of CCNPs into CONPs during calcination at a temperature beyond 600 ◦C [14].
The derivative thermogravimetry (DTG) curves clearly showed the appropriate weight loss
of the CCNPs and CONPs, and the corresponding DTG curves are presented in Figure S2.
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The morphologies of the nanoparticles were revealed by SEM analysis. Figures 4–6
show the SEM images of CCNPs and CONPs synthesized at different temperatures. The ex-
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periments were carried out to study the effect of reaction temperature on the morphology of
CCNPs and CONPs fabricated from calcium oleate via a simple carbonization/calcination
method. The nanoparticles obtained at 600 and 650 ◦C were nearly spherical and uniform
in size, but particles formed at 450–550 and 650–800 ◦C were cubic-shaped and aggregated.
The nanoparticles formed at 650 ◦C had unique properties such as good dispersion and
narrow size distribution. The diameters of the nanoparticles were in the range of about
60–80 nm. The average diameter of the CONPs was estimated as 70 nm. This result is
consistent with the size calculated by the Debye–Scherrer equation in XRD studies, which
implies a single crystalline nature of prepared nanoparticles. The EDAX spectra of CCNPs
and CONPs were recorded for the samples synthesized from calcium oleate at different
carbonization/calcination temperatures (550, 650, and 750 ◦C). The corresponding spectra
displayed the appearance of carbon (C), oxygen (O), and calcium (Ca) elements (Figure S3)
in the prepared CCNPs and CONPs. Carbonization/calcination temperature is one of the
most significant factors for the preparation of CCNPs and CONPs.
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On the other hand, CCNPs and CONPs were synthesized directly using calcium
hydroxide at different carbonization/calcination temperatures (550, 650, and 750 ◦C), and
the corresponding SEM images are shown in Figure S4. The transformation of calcium
hydroxide into CCNPs and CONPs with respect to carbonization/calcination temperature
followed the same trend as that of CCNPs and CONPs from calcium oleate. However,
there was a significant difference in terms of homogeneity and the size distribution of the
particles. The average diameter of the CONPs (650 ◦C) was measured to be at about 150 nm.
This reveals that encapsulation of oleic acid in the calcium (calcium oleate) controlled the



Nanomaterials 2022, 12, 2424 8 of 10

particle size and monodispersity of the CONPs. Hence, the CONPs were monodispersed
when prepared from calcium oleate compared to CONPs from calcium hydroxide.
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4. Conclusions

CCNPs and CONPs were synthesized by the simple carbonization/calcination of
calcium oleate and prepared by the interaction of calcium hydroxide and oleic acid. Below
600 ◦C, aggregated CCNPs with calcite polymorph phase were obtained. However, sphere-
shaped CONPs were obtained by the calcination at 600–650 ◦C, and the CONPs were
well dispersed with narrow size distribution. The diameters of CONPs were virtually
the same, and the range in diameter was calculated as 60–80 nm. The spherical shape of
CONPs was turned into different morphologies beyond 650 ◦C, with moderate aggregation.
Additionally, the CONPs’ particle size increased in the temperature range from 700 to
800 ◦C. Hence, the monodisperse CONPs were obtained from calcium oleate at optimal
calcination temperature (650 ◦C). On the other hand, CCNPs and CONPs, as prepared
from calcium hydroxide, showed polydispersed and aggregated particles. Thus, this study
provides the carbonization/calcination route of calcium oleate, a versatile and simple
technique that can be used for the large-scale production of CCNPs and monodispersed
CONPs that can be applied in various vital and industrial applications, including papers,
paints, plastics, and biomedical products.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12142424/s1. Scheme S1: Illustration of the formation of
CCNPs and CONPs from calcium hydroxide via simple carbonization/calcination. Figure S1: TGA
curve of calcium oleate was synthesized using calcium hydroxide and oleic acid. Figure S2: DTG
curves of CCNPs and CONPs obtained from calcium oleate. Figure S3: EDAX spectra of (a) CCNPs
(550 ◦C), (b) CONPs (650 ◦C) and (c) CONPs (750 ◦C) synthesized using calcium oleate. Figure S4:
(a–c) SEM images of CCNPs were synthesized at 550 ◦C using calcium hydroxide. SEM images of
CONPs synthesized at 650 ◦C (d–f), and 750 ◦C (g–i) using calcium hydroxide.
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