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Abstract: Tool wear is a major cause of accelerated tool failure during the milling of aluminum alloy.
The periodically cutting force directly affect the cutting heat and tool wear due to the intermittent
cutting characteristics of the milling process. The focus of this paper is to analyze the influence
of the variation of cutting force on tool wear behavior. The change law of cutting force by cutting
parameters was analyzed firstly. Secondly, the variation of the wear land width (VB) of tool flank
face by the milling length was analyzed. Thirdly, the wear morphology and the energy dispersive
spectrometer (EDS) results of tool rake face and flank face in different cutting parameters were
observed by tungsten filament scanning electron microscope. Finally, considering the cutting force
effect, the tool wear mechanism during high-speed milling of Aluminum-Alloy Die Castings 12
(ADC12, 12 means aluminum number 12) was analyzed. The cutting force in tangential direction is
predominant during high-speed milling aluminum alloy, which decreases gradually with the increase
of cutting speed but increases gradually with the feed rising. The adhesion-oxidation wear was main
wear mechanism of tool rake face during high-speed milling. While adhesive wear was the main
wear mechanism of the tool flank face during high-speed milling. It is found that the formation of
adhesive wear is the process from particle adhesion to melting until the formation of adhesive layer,
which related to the change of cutting force.

Keywords: ADC12 aluminum alloy; high-speed milling; cutting force; tool wear

1. Introduction

With the development of the automobile industry, ADC12 aluminum alloy has been
widely used in an engine cylinder body and head with its low density, good casting
performance, wear resistance, and small thermal expansion coefficient [1]. Due to the
existence of silicon-containing crystals in this alloy, serious tool wear, high cutting heat
were easy to generate during high-speed cutting, which will shorten tool life, increase
workpiece deformation and reduce productivity [2]. In addition, the periodically varying
cutting force directly affect the cutting heat, further affecting tool wear and machining
surface quality because the milling process is a multi-tooth discontinuous cutting process.
The workpiece and tool undergo a periodic load-unload process at each tooth cycle. Cyclic
load causes cyclic mechanical force and thermal stress on the tool [3,4]. Therefore, it is
necessary to analyze the influence of the variation of cutting force on tool wear during high-
speed milling of ADC12 alloy. In addition to the machine tool, tool geometry parameters,
the cutting fluid and cutting parameters also have impact on the cutting force during metal
cutting. Among them, the cutting parameters have the greatest influence. The cutting
speed has the greatest influence on the cutting force, followed by the feed, and the last by
cutting depth [4]. The cutting temperature also has an effect on the cutting force. Especially
the tool-chip interface temperature, which affects the distribution of cutting force, tool wear
morphology and machining surface quality. The maximum cutting temperature in cutting
zone rising exponentially as cutting speed increases [5–7]. Feng et al. [8] proposed a new

Materials 2021, 14, 1054. https://doi.org/10.3390/ma14051054 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-0222-0846
https://doi.org/10.3390/ma14051054
https://doi.org/10.3390/ma14051054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14051054
https://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/14/5/1054?type=check_update&version=5


Materials 2021, 14, 1054 2 of 18

prediction model of cutting temperature considering the effect of dynamic recrystallization.
Cui et al. [9] analyzed the influence of chip temperature on chip morphology. The higher
the temperature, the more ductile the chip. The higher chip temperature caused lower
cutting force and more stable cutting process, which is conducive to better surface finish.

To research the effect of cutting force and tool rotation radius on the tool wear, Alessan-
dro Colpani et al. [10] proposed a statistical analysis method based on Pearson correlation
coefficient, and illustrated that the tool flank wear can be used for a criterion of tool life.
The minimum chip thickness significantly influences the cutting force, tool wear, and
machining stability of machining process, the prediction of that is very important to study
cutting force and tool wear [11].

An accurate prediction model of tool wear is essential to analyze the tool wear pro-
cess [12]. Considering the thermodynamic coupling effect during milling, tool wear model
can be constructed using Fick diffusion law [13]. M. Pradeep Kumar [14] researched the
effect of machining variables on tool life and various tool failure mechanisms. Considering
the impact of tool wear on the machined surface, the surface morphology during cutting
according to the tool wear morphology and the additional thermal and mechanical load
were studied, and the plastic flow, surface burn, scratch and other undesirable surface
defects are discussed. The experimental results show surface morphology and tool wear are
positively correlated with each other [15]. Tool material and coating material also have the
influence on the variation of cutting force and the distribution of cutting temperature, thus
affecting the tool wear mechanism [16,17]. Aluminum titanium nitride (TiAlN) coated tools
have the highest wear resistance at the cutting speed of 30 m/min [18]. The larger fillet
feed radius can lower the tool wear significantly by comparing the milling experiments of
different fillet feeding methods [19].

Wang et al. [20] believed that the cutting mechanism changed back and forth between
the ploughing and shearing during milling. The ratio of feed per tooth to tool fillet radius
(f/r) has an important influence on the milling mechanism [21]. The surface quality has
been improved using the up milling comparing with the down milling [22]. In addition,
many scholars have studied the relationship between the cutting force and tool wear
of laser assisted milling and ultrasonic vibration assisted milling [23–25]. It found that
adhesive wear is the main wear mechanism of tool failure. The adhesion and diffusion are
most important causes of tool wear in dry machining of aluminum alloy with cemented
carbide insert [26]. Adhesion arising from workpiece material pick upon the rake face and
partial melting of the chip due to the high temperatures and pressure conditions on the tool
edge. Diffusion wear of tool-chip occurs when the temperature is greater than a certain
critical temperature. Oxidative wear mainly exists in high-speed cutting of aluminum
alloy [27–30]. This is mainly determined by the mechanical properties of aluminum alloy.
The finite element method is mainly used to study the influence of material mechanical
properties and cutting temperature on the tool wear behavior [31–33].

In conclusion, most researchers only study the effect of cutting parameters on cutting
force and cutting temperature, or only study the tool wear behavior under different cutting
parameters. The innovation of this paper is to analyze the influence of the variation of
cutting force on tool wear behavior. The key point is the relationship between cutting force
and tool wear. To solve the problem, firstly the changing law of cutting force with the
cutting parameters was analyzed. Secondly the tool wear behavior at different cutting
parameters has been studied, which included the variation of wear land width (VB),
the wear morphology of rake face and flank face of the tool, and the EDS results of wear
morphology of tool rake face and flank face. Finally, the tool wear mechanism was analyzed
considering the cutting force effect. It is found that the formation process of adhesive layer
on rake face is the process from particle adhesion to melting until the formation of adhesive
layer. The change of adhesion particle shape is related to the variation of cutting force.
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2. Experiment Details
2.1. Experimental Equipment and Carbide Tool

The milling experiments were conducted for ADC12 aluminum alloy to study the vari-
ation of milling force at different cutting parameters. Table 1 lists the chemical composition
of the alloy. The machine tool used in the test was vmc-850e of vertical machining center,
with the maximum spindle speed of 8000 rpm and the maximum rated current of the motor
95 A. All the milling tests were conducted without cutting fluid. The hilt is BT40 series
(Where BT represents the tool hilt with a taper of 7/24, and 40 represents the specification,
matching the spindle of the machine tool), the cutting head is 400r-63-22-4t, the diameter
of the cutting tool is 63 mm, and it can carry 4 inserts. The insert is apkt1604pdfr-ma H01
series computer numerical control (CNC) milling blade for aluminum from Korea Chloe
company. The physical properties of the alloy and carbide inserts are shown in Table 2.
The cutting parameters of single-factor milling experiment are shown in Table 3. The
insert is fine grain carbide with good wear resistance and toughness, suitable for fine and
semi-finish processing of aluminum and other non-ferrous metals. The workpiece size is
200 × 100 × 10 mm3. The cutting forces in three directions during milling were measured
by Kistler dynamometer. Experimental Settings are shown in Figure 1.

Table 1. Compositions of the Aluminum-Alloy Die Castings 12 (ADC12) aluminum alloy.

Chemical Compositions (%)

Si Fe Cu Mg Mn Zn Ni Sn Al

9.6–12 <1.3 1.5–3.5 <0.3 <0.5 <1.0 <0.5 ≤0.3 others

Table 2. The material parameters of ADC12 aluminum alloy and cemented carbide tool.

Material Parameter Workpiece Tool

density/kg·m−3 2.67 × 103 15 × 103

Young modulus/GPa 76 800
Poisson’s ratio 0.33 0.2

specific heat/J·kg−1·K−1 962 200
thermal conductivity/W·m−1·K−1 92.6 46

expansion coefficient/K−1 2.06 × 10−5 4.7 × 10−6

Table 3. The cutting parameters setup of high-speed milling experiment.

Cutting Parameters Value

Cutting speed 300~1200 m/min
Feed 0.03~0.11 mm/rev

Cutting depth 0.5 mm
Cutting width 3 mm

2.2. Detailed Experimental Scheme

The Kistler piezoelectric tri-directional dynamometer (type 9257B) was installed on
the machine tool, fixed with a fixture, and the workpiece was fixed on the dynamometer
with screws. Three repeated milling force measurement tests were performed for each
cutting parameter. The cutting force under the last three milling paths was measured when
the milling length reached 2.5 m. The corresponding tool wear morphology was observed
by Phenom desk scanning electron microscope when the milling length reached 2.5 m.
By comparing three groups of cutting force data, the most stable data was selected as the
cutting force under the cutting parameters. The VB can be obtained by measured the wear
land width of the flank face of the tool. This measurement method does not consider the
influence of distortion, which basically does not affect the measurement value of VB. The
tool wear mechanism and the distribution characteristics of chemical elements on the tool
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rake face were analyzed by the tungsten filament scanning electron microscope (SEM) with
energy spectrometer (EDS) when the milling length reached 20 m.
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Figure 1. Experimental setup for high-speed milling.

3. Results and Discussion
3.1. Variation of the Cutting Force in High-Speed Milling

High-speed milling process is a periodic intermittent cutting process. The cutting force
changes periodically as cutting thickness during milling. As the cutting edge periodically
enters and exits the workpiece, the tool undergoes stress and temperature cycles during
the cutting process.

The cutting force components are divided into tangential force, radial force and axial
force in the milling process, which measured by the Kistler dynamometer are Fx, Fy, and
Fz respectively. Figure 2 shows the variation of cutting force by the cutting parameters.
When studying the effect of cutting speed on the cutting force, the feed and cut depth are
0.05 mm/rev and 0.5 mm respectively, and the cutting width is 3 mm. When studying the
effect of feed on cutting force, the cutting speed and cutting depth are 900 m/min and
0.5 mm respectively, and the cutting width is 3 mm. It shows that the tangential cutting
force Fx predominated comparing with the radial force and axial force. With the cutting
speed increasing, tangential cutting force decreased gradually. With the feed per revolution
increasing, tangential cutting force rising gradually.

3.2. Variation of the Wear Land Width of Flank Face

To analyze the tool wear mechanism, the variation of tool wear land width (VB)
during high- speed milling of ADC12 alloy has been studied firstly. By observe the wear
morphology of tool flank face in different milling length, the change curve of wear land
width by milling length at different cutting speed and feed can be obtained as shown
in Figure 3. It shows that the tool maximum wear land width reached about 20 µm at
300 m/min when milling length reached 20 m. With the cutting speed rising, the wear
land width decreasing gradually except for 600 m/min. When the milling length reached
20 m, the wear land width of flank face is the largest at 0.07 mm/rev, which reached about
40 µm, followed by 0.11 mm/rev and 0.03 mm/rev. The wear land width of flank face is
the smallest at 0.09 mm/rev.
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3.3. The Tool Wear Morphology
3.3.1. The Tool Wear Morphology of Rake Face

In order to analyze the wear mechanism of the tool rake face, the chemical element
distribution on the rake face was analyzed by means of tungsten filament scanning electron
microscope. Figure 4a–d shows the wear morphology of rake face when the milling length
reached 20 m at different cutting speed. It illustrates that the severe pit wear and adhesion
were generated on the rake face at 300 m/min. Only the adhesion was generated on the
rake face at other cutting speeds, which includes the adhesion of a single hard particle and
the adhesive layer of a molten state. To analyze the wear mechanism of rake face at different
cutting speeds, the points in the adhered zone and the unadhered zone were selected, and
the EDS results of each point in the Figure 4a–d are shown in Figure 5a–h, respectively.
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Figure 4a shows that pit wear and adhesion were generated on the tool rake face at
300 m/min. Therefore, point A in the pit and point B on the tool face are selected, and
their corresponding EDS spectrum analysis is shown in Figure 5a,b. It can be seen that
point A is mainly aluminum and tungsten, in addition to the presence of oxygen and
magnesium. Point B is mainly tungsten, with aluminum and cobalt. It illustrates that a
small amount of adhered aluminum was generated on the pits at 300 m/min. This is due to
the friction between the cutting tool and the chip during milling, the temperature gradually
increases, the chip accumulated and adhered to the rake face, so that the aluminum element
of the chip appeared on the tool rake face. Meanwhile, the high content of oxygen element
and the appearance of magnesium indicate that oxidation reaction occurs and oxides are
generated. Therefore, the pit wear and the adhesion wear were the main wear mechanism
of the tool rake face at 300 m/min, and the oxidation wear was also present.
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Figure 4b shows that severe adhesion was generated on the rake face at 600 m/min.
As can be seen from the Figure 5c,d, point C in the adhesion zone is mainly aluminum and
oxygen. Point D in the unadhered zone is dominated by tungsten, while oxygen, aluminum
and magnesium are also present. This indicates that adhesive wear was generated on
the rake face at 600 m/min. In addition, the presence of oxygen, iron, and magnesium
indicates the oxidative wear was also present.
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At 900 m/min, it is found that the tungsten element is the main element on the
rake face at the unadhered zone. Adhesion zone is dominated by the aluminum element,
followed by oxygen element and magnesium element, indicating that oxidative wear is
also produced at tool rake face besides adhesive wear. Figure 4d shows that there are also
pits on the rake face in addition to surface adhesion at 1200 m/min. There is also a lot of
adhesive aluminum element in pit G, and others mainly tungsten element of tool matrix.
Adhesion zone point H is dominated by aluminum, oxygen and magnesium, with small
amounts of iron and silicon. This indicates that the adhesive wear and oxidation wear were
the main wear mechanism of the rake face at 1200 m/min.

In summary, the wear mechanism of the tool rake face at different cutting speed is
basically the same, which is dominated by adhesive wear and oxidation wear. What is
more, pit wear occurs on the tool rake face at 300 m/min and 1200 m/min.

Figure 6a–d shows the wear morphology of tool rake face at the feed per revolution
of 0.03 mm/rev, 0.07 mm/rev, 0.09 mm/rev, and 0.11 mm/rev when the milling length
reached 20 m, respectively. It shows that the pit wear was also generated on the rake face
at the feed rate of 0.03 mm/rev. Adhesion was the main wear morphology of rake face at
other feeds.
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The corresponding EDS energy spectrum results of the points on the rake face of
Figure 6a–d was shown in Figure 7a–h respectively. It shows that the point A of the pit
on the rake face mainly composed of tungsten element of the tool matrix and aluminum
element at the same time. The point B is mainly the tungsten element of the tool matrix.
The illustrates that the pit wear and the adhesion wear were generated at the same time.
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The point C in the adhesion zone of rake face is mainly aluminum, followed by magnesium
and oxygen, and iron appears at the same time. The unadhered zone point D is mainly
tungsten element of the tool matrix. Therefore, the adhesion wear and oxidation wear were
the main wear mechanism of the rake face at 0.07 mm/rev.

Materials 2021, 14, x FOR PEER REVIEW 10 of 19 
 

 

 

 
Figure 7. The energy dispersive spectrometer (EDS) results of rake face wear morphology at different feed ((a–h) represent 
the points A~H in the Figure 6 respectively). 

3.3.2. The Wear Morphology of Flank Face 
In the previous section, the wear morphology of the tool rake face under different 

cutting parameters after milling was analyzed. In this section, the wear morphology of the 
tool flank face under different cutting parameters after milling was analyzed. Figure 8a–

Figure 7. The energy dispersive spectrometer (EDS) results of rake face wear morphology at different feed ((a–h) represent
the points A~H in the Figure 6 respectively).



Materials 2021, 14, 1054 10 of 18

It can be seen that the point E of adhesion zone is mainly aluminum, magnesium
and oxygen elements. The point F is mainly tungsten element of the tool matrix. So, the
adhesive wear was the main wear mechanism of rake face at 0.09 mm/rev. At 0.11 mm/rev,
it is found that the adhesion zone is mainly aluminum, oxygen and magnesium, and iron
appears at the same time. The unadhered zone is mainly tungsten element of the tool
matrix. Therefore, the adhesion wear and oxidation wear were the main wear mechanism
of the rake face at 0.11 mm/rev. In summary, it is found that the adhesive wear and
oxidation wear were the main wear mechanism of rake face at different feeds when the
milling length reached 20 m.

3.3.2. The Wear Morphology of Flank Face

In the previous section, the wear morphology of the tool rake face under different
cutting parameters after milling was analyzed. In this section, the wear morphology of the
tool flank face under different cutting parameters after milling was analyzed. Figure 8a–d
shows the wear morphology of the flank face at the cutting speed of 300~1200 m/min
after milling. It can be seen from the figure that severe pit wear appears on the flank face
at 300 m/min. Point A of the wear zone and point B of the unwear zone were selected,
and the corresponding EDS results were shown in Figure 9a,b. It shows that point A is
mainly tungsten element, and point B is also dominated by tungsten, with a small amount
of aluminum. This indicates that the pit wear and adhesion wear were the main wear
mechanism of the flank face at 300 m/min.
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Figure 9c,d shows that point C is dominated by tungsten element and point D is
dominated by aluminum element, with oxygen element and magnesium element. There-
fore, the slight adhesive wear was generated on the flank face at 900 m/min. Figure 9e,f
illustrates that point E is mainly composed of tungsten element of the tool matrix, with
a small amount of aluminum element and oxygen element. Point F is mainly aluminum
element, with a small amount of oxygen and cobalt. Figure 9g,h shows that the pit G is
mainly aluminum element, which indicates that the pit wear and adhesion wear were
simultaneous occurred on the flank face. The point H is mainly the tungsten element of
the tool matrix. In summary, the adhesive wear and a slight oxidative wear were the main
wear mechanism of the flank face after milling at different cutting speed.
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Figure 10a–d shows the wear morphology of the flank face under different feed
after milling. The corresponding EDS results of the Points was shown in Figure 11a–h.
Figure 10a shows that the severe pit wear was generated on the flank face at 0.03 mm/rev.
The EDS results illustrates that the flank face is mainly the tungsten element of the tool
matrix, and a small amount of aluminum and oxygen elements.
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At 0.07 mm/rev, Figure 11c,d illustrates that the flank face is mainly composed of tung-
sten element of the tool matrix, aluminum element and oxygen element. Figure 11e,h shows
that the tool flank face is also mainly tungsten element of the tool matrix at 0.09 mm/rev
and 0.11 mm/rev, which indicates that almost no adhesive wear was generated on the
flank face comparing with the wear mechanism of the rake face.

3.4. The Tool Wear Mechanism Considering the Cutting Force Effect

The wear morphology and the wear mechanism of the rake face and flank face of the
tool under different cutting parameters has been analyzed. The influence of cutting force
on the tool wear mechanism during high-speed milling of aluminum alloy was discussed
in this part.

Figure 12 shows the relationship between the cutting force and the wear land width
(VB) of flank face under different cutting parameters. With the milling length rising, the
wear land width of the flank face gradually increases, and the cutting force shows a trend
of gradual decline. Figure 12a shows that the cutting force gradually decreases with the
increase of cutting speed except for the 600 m/min. Figure 12b shows that the cutting force
gradually increases with the increase of feed, except the 0.07 mm/rev. According to the
tool wear morphology, it is found that severe adhesion wear was generated on the tool
rake face at 600 m/min and 0.07 mm/rev. This means the cutting force has been reduced
to a certain extent owing to the adhesive layer.
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So, with 600 m/min, 1200 m/min, and 0.07 mm/rev as an example, the relationship
between the cutting force and the tool wear mechanism has been discussed, as shown in
Figure 13. It illustrates that the cutting force drops sharply and the wear land width of
flank face increases sharply at 600 m/min when the milling length increases from 7.5 m
to 10 m. The wear morphology of the rake face at this milling length was observed, as
shown in Figure 14a,b. It illustrates that the hard particles adhered to the rake face when
milling length reached 7.5 m. But the adhesive layer is formed on the rake face when the
milling length reached 10 m. It proves that the cutting force decreases sharply and the VB
increases sharply during the transformation from adhesive particle to the adhesive layer.
At the same time, the existence of adhesive layer can protect the tool rake face to some
extent. So, the pit wear has not been generated on the rake face of the tool at 600 m/min.
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Figure 14. The wear morphology of rake face at 600 m/min when the milling length reached (a) 7.5 m; (b) 10 m.

Similarly, the relationship between the cutting force and the wear land width at
1200 m/min was analyzed. It is found that the cutting force decreases sharply and the VB
also increases sharply when the milling length increases from 5 m to 7.5 m. The corre-
sponding wear morphology of the tool rake face is shown in Figure 15a,b. It demonstrates
that the adhesion layer increased significantly on the rake face. Figure 13 shows that both
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cutting force and VB dramatically changed when the milling length increases from 2.5 m to
7.5 m at 0.07 mm/rev. The corresponding wear morphology of tool rake face was shown
in Figure 16a,b. It proves that the adhesive particles adhered to the tool rake face when
the milling length reaches 2.5 m. Both the molten adhesive layer and hard particles coexist
on the tool rake face when the milling length reaches to 7.5 m. This indicates that both
the cutting force and the wear land width of flank face changes dramatically during the
formation of the adhesive layer. The change rate of cutting force and the change rate of the
wear rate of the tool surface tends to be stable when the adhesive layer is formed.
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4. Conclusions

This work focuses on the tool wear behaviors and corresponding cutting force during
high-speed milling ADC12 aluminum alloy with an uncoated carbide tool. The main
conclusions are summarized as follows.

(1) The cutting force in tangential direction is predominant during high-speed milling
of aluminum alloy, which decreases gradually with the increase of cutting speed but
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increases gradually with the feed rising. The wear land width (VB) of flank face increases
with the cutting speed and feed rising. The adhesion-oxidation wear was main wear
mechanism of tool rake face during high-speed milling, while the adhesive wear was the
predominant wear mechanism of flank face. The pit wear was generated on the tool surface
when the milling length reaches 12.5 m at 300 m/min and 1200 m/min, which reduced
tool life.

(2) The formation of adhesive layer on the rake face is from the adhesion of hard
particle—particle melting—forming adhesive layer. The formation process of adhesive
layer leads to a sharp decrease in cutting force and a sharp increase in the VB of the flank
face. The change rate of cutting force and the change rate of the wear rate of the tool
surface tends to be stable when the adhesive layer is formed. The adhesive wear of the
rake face can be reduced by monitoring the cutting force during high-speed milling of
aluminum alloy.

(3) The cutting force and the tool wear morphology were measured after milling per
2.5 m in this paper. The tool cooling due to the interruption of the experiment was ignored,
which is the limitation of this study. In this study, it was found that the shape of adhesive
layer on the tool rake face changed during high-speed milling. This may be related to
the temperature of tool-chip interface during high-speed milling. Later studies focused
on the formation mechanism of adhesive wear analyzing from the variation of cutting
temperature during high-speed milling of aluminum alloy.
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