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Introduction: Identifying the potential firing patterns following different brain regions under 
normal and abnormal conditions increases our understanding of events at the level of neural 
interactions in the brain. Furthermore, it is important to be capable of modeling the potential 
neural activities to build precise artificial neural networks. The Izhikevich model is one of 
the simplest biologically-plausible models, i.e. capable of capturing most recognized firing 
patterns of neurons. This property makes the model efficient in simulating the large-scale 
networks of neurons. Improving the Izhikevich model for adapting with the neuronal activity 
of rat brain with great accuracy would make the model effective for future neural network 
implementations.

Methods: Data sampling from two brain regions, the HIP and BLA, was performed by the 
extracellular recordings of male Wistar rats, and spike sorting was conducted by Plexon 
offline sorter. Further analyses were performed through NeuroExplorer and MATLAB. To 
optimize the Izhikevich model parameters, a genetic algorithm was used. In this algorithm, 
optimization tools, like crossover and mutation, provide the basis for generating model 
parameters populations. The process of comparison in each iteration leads to the survival of 
better populations until achieving the optimum solution.

Results: In the present study, the possible firing patterns of the real single neurons of the 
HIP and BLA were identified. Additionally, an improved Izhikevich model was achieved. 
Accordingly, the real neuronal spiking pattern of these regions’ neurons and the corresponding 
cases of the Izhikevich neuron spiking pattern were adjusted with great accuracy. 

Conclusion: This study was conducted to elevate our knowledge of neural interactions in 
different structures of the brain and accelerate the quality of future large-scale neural networks 
simulations, as well as reducing the modeling complexity. This aim was achievable by 
performing the improved Izhikevich model, and inserting only the plausible firing patterns and 
eliminating unrealistic ones.
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1. Introduction

ne of the pivotal components of the brain’s 
microscopic structure is the neuron cell. 
The importance of this concept has led to 
extensive research studies to understand 
events at the level of individual neurons. 

One of the major findings was that unlike other body 
cells, neurons interact with each other by receiving and 
sending electric pulses or spikes.

Spiking Neural Networks (SNNs), i.e. the third neu-
ral networks generation (Maass, 1995), have been de-
veloped to imitate the natural neural networks. Spiking 
neural networks follow the same trend as computa-
tional neuroscience. The ultimate goal of both of them 

is to represent and configure the functionality of differ-
ent brain areas realistically. The SNNs originated from 
the study of Hodgkin and Huxley (Hodgkin & Huxley, 
1952), in 1952. The fundamental objective of SNNs is 
to encode the information of single spikes rather than 
just their firing rate (Maass & Bishop, 2001). Spiking 
neural networks have been used in numerous studies 
operating different applications. These approaches con-
sist of regression and categorization (Dreiseitl & Ohno-
Machado, 2002), deep learning (Sutskever, Vinyals, & 
Le, 2014), pattern recognition (Taigman, Yang, Ranzato, 
& Wolf, 2014), and behavioral prediction (Shen & Bax, 
2013). Moreover, spiking neural networks facilitate the 
understanding of the human brain for researchers (Kue-
bler & Thivierge, 2014). Computational studies of SNN 
conducted by Maass and Schmitt (Maass, 1995; Maass, 

Highlights 

● We identified the possible firing patterns following the rat BLA and HIP neurons.

● We assigned a precise mathematical model to each recognized firing pattern of the BLA and HIP neurons.

● We explored the optimization parameters of the Izhikevich model based on the HIP and BLA data applying a ge-
netic algorithm.

● We attempted to improve the Izhikevich model accuracy in representing rat data firing patterns.

● We defined the biological implication of changes in Izhikevich model values in optimization process.

Plain Language Summary 

One fundamental concept in understanding the functions of different brain areas, how they are connected to each 
other, and with which rate information transfers between the areas, is to recognize the firing pattern of neurons in those 
structures. These understandings promote the opportunity to successfully cure relevant neural diseases in the sense 
that the firing pattern of neurons in abnormal areas should be brought back to the normal firing activity. Additionally, 
identifying potential firing patterns for different structures of the brain and allocating a mathematical model to them 
reduces a great amount of complexity and implementation costs in the simulation of neural networks, based on the 
biological evidences. So, it is essential to identify the firing patterns that the neurons of different brain areas follow 
under normal and lesioned circumstances. Besides, it is important to develop possible treatments for neural diseases in 
a simulated sphere, as the first stage; the next step is to examine the effectiveness of them in a virtual condition before 
applying them to real-world (patients). To increase the accuracy of applied treatments, e.g., to return the abnormal fir-
ing activity of neurons to the normal one, the neural network should be generated based on the real data and performed 
by a biologically-plausible model. The Izhikevich model is among the best neural models that can represent different 
firing patterns with a fairly simple formulation. We identified the possible firing patterns following the HIP and BLA 
neurons as the primary goal. Second, to assign a mathematical model to each recognized firing pattern, the Izhikevich 
neural model was improved by optimizing its parameters for potential cases. Therefore, in the future simulation of 
neural networks, applying the improved Izhikevich model for the possible firing patterns could increase the accuracy of 
modeling and reduce its complexity. This achievement along with a greater understanding of firing activity of neurons 
under normal verses abnormal conditions results in more accurate simulated treatments based on the biological data; 
consequently, it leads to real world treatments in the future efforts.
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1995a; Schmitt, 1998) have revealed the great efficiency 
of the third neural network generation. 

In each dynamical study, one critical issue is, which 
model can describe the spiking dynamics of the neuron 
more efficiently. The Hodgkin-Huxley model can great-
ly stimulate the biological functioning of a neuron; how-
ever, it involves 12 equations consisting of 4 differential 
equations and 3 parameters to model one neuron’s activ-
ity (Johnson & Chartier, 2017). This complex modeling 
results in a very expensive implementation. Additional-
ly, the Hodgkin-Huxley model fails to exhibit the all-or-
nothing firing mechanism for potential action generation 
(Deng, 2017).

A popular model that consists of a quite desirable 
compromise between computational efficiency and 
biologically-realistic behaviors is the Izhikevich model 
(Izhikevich, 2003). This model is not only biologically 
plausible, similar to Hodgkin-Huxley model, but also 
is computationally as efficient as an integrate-and-fire 
model. The Izhikevich model is also capable of simu-
lating large-scale spiking neurons in real-time (Izhikev-
ich, 2004). Therefore, to empower the neural interaction 
modeling based on real data, elevating the accuracy of 
the Izhikevich model in representing the neurons activ-
ity seems prominent. This will also result in increasing 
the application of Izhikevich model as an efficient model 
in implementing functional neural networks. One of the 
techniques to improve this model and adapt it to the be-
havior of considering real neurons is to optimize its pa-
rameters.

Genetic algorithms were developed according to basic 
concepts in the evolution and imitation of natural pro-
cesses (Holland, 1975). These criteria consist of the mu-
tation, recombination, and assortment of populations in 
a synthetic environment. The substantial components re-
quired in developing genetic algorithms were introduced 
by Bremermann in 1962 (Bremermann, 1962). Deci-
phering complicated problems by applying evolutionary 
techniques consisting of genetic algorithms, increased 
the popularity of these algorithms in the following years 
(Rechenberg, 1973; Schwefel, 1974). Genetic algorithm, 
i.e. one of the most popular evolutionary algorithms are 
applicable in solving optimization problems with a com-
plex fitness landscape (Kellerer, Pferschy, & Pisinger, 
2004; Conroy et al., 2019).

Two leading parts of the brain are the amygdala and 
the hippocampus. The amygdala is an influential area in 
memory pattern formation based on emotions (Tovote, 
Fadok, & Luthi, 2015; LeDoux, 2000), as well as the 

development of fear, anxiety, and corresponded diseases 
(LeDoux, 2000; Beyenburg, Mitchell, Schmidt, Elger, & 
Reuber, 2005). The amygdala plays a pivotal role in cre-
ating organisms’ responses to their environment (Tovote, 
Fadok, & Luthi, 2015; Phelps & LeDoux, 2005). The 
hippocampus is among the major parts of the limbic sys-
tem and an important area in strengthening memories, 
spatial learning, and emotional reactions (El-Falougy & 
Benuska, 2006). Therefore, the firing pattern identifica-
tion of single neurons of these regions under the normal 
activity of the brain is of great importance. Furthermore, 
it is essential to be able to represent the firing activity of 
their neurons with a mathematical and biological model.

Developing an electrophysiological recording of single 
neurons activity provides a basis for exploring the struc-
ture of brain functions. However, the recorded signals are 
mostly contaminated by a high amount of background 
noise, noise from the recording system, or the activity of 
distant neurons. Moreover, the recorded data are related 
to the activity of several neurons adjacent to the record-
ing site (Lewicki, 1998). Analyzing the massive amount 
of neural recordings requires one of the complicated in-
terpretation tools, i.e. recognized as spike sorting. Spike 
sorting is the process of isolating action potentials from 
the background activity, i.e. considered as noise, extract-
ing prominent spike features from the recognized spike 
waveforms, and finally allocating spikes with the same 
features to the neuron originated from that (Takekawa, 
Isomura, & Fukai, 2010; Rutishauser, Schuman, & 
Mamelak, 2006). This process can be conducted by an 
appropriate choice of clustering methods. In this paper, 
we used Plexon offline sorter software, i.e. a great and 
accurate tool for spike sorting.

Thus, one of the leading objectives of this study was 
to identify the possible firing patterns that the neurons 
of the HIP and BLA follow under normal activities. An-
other following noticeable purpose was to improve the 
Izhikevich model to make it more accurate in the sense 
of representing the firing activity of rat brain real data.

2. Methods 

Male Wistar rats were used to investigate neuronal elec-
tric signaling in the normal BLA and HIP. Each rat was 
housed in the animal care facility maintained at 23±1○C 
and a 12:12 h light/dark cycle. Food and water were sup-
plied to them with no limitation. The experimental pro-
cesses were implemented based on the guidelines for the 
care and use of laboratory animals (National Institutes 
of Health Publication No. 80–23, revised 1996). All ex-
periments were conducted in the Neuroscience Research 
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Center, Shahid Beheshti University of Medical Sciences, 
Tehran, Iran, according to the terms and conditions of the 
Research and Ethics Committee of this institute.

The study animals’ anesthesia was achieved using ure-
thane with an initial dose of 1.5 g/kg, Intraperitoneally 
(IP). Additional doses were given whenever required to 
maintain surgical anesthesia depth as checked by foot 
pinch and corneal reflex. To remove the potential pain, 
0.1 mL buprenorphine was injected subcutaneously. 
Conducting tracheotomy, the study rats were located in 
a stereotaxic instrument. Using a heating pad, the rats’ 
body temperature was maintained for the experiment du-
ration. The electrophysiological recordings of the firing 
activity of neurons in the HIP and BLA were performed 
via an acute microelectrode with one channel. Each 
channel records the electric activity of a few neurons ad-
jacent to it; the activity of farther neurons appeared as the 
background noise due to their low amplitude. The micro-
electrode proceeded to the left BLA (AP: -2.52 mm and 
ML: -4.8 mm from the bregma, and DV: -8.4 mm from 
the surface of skull) and the left HIP (AP: -3 mm and 
ML: -1.8 mm from the bregma, and DV: -3 mm from 
the skull surface) according to the rat brain atlas (Paxi-
nos & Watson, 2007). Signals were recorded using a data 
acquisition system, filtered between 300 Hz and 10000 
Hz, and sampled with a rate of 50 kHz. Each recording 
lasted 30 minutes. 

The recorded data from the electric activity of neurons 
were exported to and analyzed via an offline sorter soft-
ware, called Plexon (Plexon Inc., Dallas, TX). Spikes 
were detected through manual amplitude threshold dis-
crimination. The threshold level discerns a trade-off be-
tween the missed spikes and the noise, which may pass 
that level. The threshold was assigned based on the am-
plitudes distribution of background activity and spikes. 
Next, spike sorting was performed to classify the electric 
activity of individual neurons, based on the first to third 
principle components, peak, valley, and other properties 
of signals. The Principle Component Analysis (PCA) is 
among the most effective linear spike feature extractors 
(Adamos, Kosmidis, & Theophilidis, 2008). Finally, 
spike clusters that represented a valid Inter Spike Inter-
val (ISI) histogram (Theodoridis & Koutroumbas, 2009) 
were saved for further analysis. NeuroExplorer (Nex 
Technologies, Colorado Springs, CO) was used to ana-
lyze the firing activity of clusters of neurons. The quality 
of sorted data was validated through auto-correlogram 
analysis. Auto-correlogram displays a single spike train 
against itself. Another tool that compares the arrival 
times of spike trains is a cross-correlogram. Through 
cross-correlogram, the different identified clusters of 

spikes were explored to validate the exact number of 
neurons in each set of recorded data. Finally, the average 
firing rate histograms were generated and verified for all 
neurons, over the entire period of 30 minutes. Then, the 
validated clusters of spikes were exported to MATLAB 
to be used in modeling. This software was also used to 
code our desirable genetic algorithm, Izhikevich model, 
and represent the comparison figures of different firing 
patterns.

The two-dimensional Izhikevich neuronal model 
(Izhikevich, 2003) is defined by three Equations 1, 2 and 
3, as follows:

1. v ̇=0.04v2+5v+140-u+I

2. u ̇ =a(bv-u)

3. if v≥+30 mV,v←c,u←u+d

Where variables and are the membrane potential of the 
neuron and membrane recovery variable, respectively. 
The activation of ionic currents and the inactivation of 
ionic currents can be represented by the variable . This 
variable supplies with a negative feedback. Variable rep-
resents the delivery of synaptic currents. Equation (3) ac-
tivates when the amplitude of action potential reaches the 
threshold and are dimensionless parameters of the model.

Differences in the quantities of the Izhikevich model 
parameters result in the exhibition of various firing pat-
terns that neurons may follow. The parameter traces 
the time scale of recovery variable . Therefore, smaller 
amounts of represent a slower recovery period. The pa-
rameter describes the sensitivity of variable to oscilla-
tions in membrane potential . Based on the values of 
this parameter, the resting potential is volatile between 
-70 and -60 mV (Izhikevich, 2007). The parameter indi-
cates the after-spike reset value of the variable and has 
an amount between -50 and -65, in different patterns. 
Amount -65 determines deep voltage reset, amount -55 
governs high voltage reset, and -50 represents moder-
ate after-spike jump (Izhikevich, 2007). Parameter out-
lines the after-spike reset of the variable . This parameter 
changes in a wider range; its higher values reflect greater 
amounts of the after-spike jump of recovery variable . 
Figure 1 summarizes the mentioned explanations related 
to the parameters in a visual stand.

To simulate 1 ms of the Izhikevich model, the opera-
tion of only 13 floating points is required. This property 
makes the model highly effective in simulating large-
scale networks of neurons (Izhikevich, 2003). Accord-
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ing to both points of view that are biological plausibil-
ity (number of features) and implementation cost (an 
approximate number of floating-point operations), the 
Izhikevich model is fairly in desirable condition to be 
used. Therefore, the model efficiency in representing the 
spiking behavior of rat brain neurons with great accuracy 
can fortify the model. 

The Izhikevich model could exhibit all the firing pat-
terns, i.e. shown in Figure 2. It illustrates various spiking 
patterns of individual neurons, based on their response 
to the applied Direct Current (DC) (Izhikevich, 2010). 
Some of the neuro-computational properties that the 
BLA and HIP neurons provide a similar neuronal behav-
ior with them are also demonstrated in Figure 2. These 
properties are tonic spiking (Nessler, Pfeiffer, Buesing,  
& Maass, 2013), phasic spiking (Malsburg, 1999), 
mixed model (Connors & Gutnick, 1990), integrator, 
rebound spike, threshold variability (Izhikevich, 2003), 
depolarizing after-potentials (Malsburg, 1999), and inhi-
bition-induced spiking (Izhikevich, 2003).

The genetic algorithm is among the well-known evo-
lutionary algorithms that employ the principle of best 
populations’ selection in each iteration for the whole pro-
cess. This property provides the opportunity to select and 
generate individuals that are more adapted to the envi-
ronment and remove the ones with less consistency. By 
repeating the same process for several generations and 
replacing undesirable populations with more adjustable 
ones, the algorithm evolves a population with optimal 
characteristics. The capability of a genetic algorithm in 
operating with continuous and discrete variables, as well 
as linear and nonlinear fitness functions, makes it a great 
candidate in solving complicated optimization problems 
(Hassan, Cohanim, & Weck, 2004). A basic genetic al-
gorithm procedure consists of the following key compo-
nents (Goldberg, 1989; Pelikan, 2010):

Initialization: Genetic algorithms produce the initial 
population of solutions arbitrarily. This generation con-
ducts based on a unique distribution of admissible solu-
tions. Selection: Over the course of each iteration, genet-
ic algorithms select the more adjustable solutions from 
the existing set of populations. This process employs the 
more qualified solutions.

Variation: Two great tools recruited in genetic algo-
rithms are crossover and mutations. Applying these 
tools to selected solutions in prior step, results in the 
generation of new solutions. Crossover is the process 
of recombining different subsections of promising solu-

tions. Likewise, mutation applies instant alternation in 
integrated solutions.

Replacement: In this step, next-generation is produced 
by replacing the primary solutions or some parts of them 
with the new desirable ones, i.e. generated via crossover 
and mutation.

3. Results

As mentioned before, the parameters of the Izhikevich 
model have different values to exhibit different potential 
firing patterns of neurons. In this study, we optimized each 
set of parameters by modifying our optimization problem 
variables, such as maximum number of iterations, cross-
over percentage, mutation rate, etc., in the performed ge-
netic algorithm to minimize the associated error.

In this paper, we recorded data from two regions of the 
rat brain consisting of the BLA and HIP under normal 
activity. By spike detection via Plexon Offline Sorter 
software, the data of each region were divided into 3 
clusters. Based on spike sorting criteria, each cluster rep-
resents the activity of one single neuron adjacent to the 
recording site. Afterward, we compared the firing pat-
terns of the original Izhikevich model, the model with 
optimized parameters and, and the firing behavior of the 
mentioned regions’ real single neurons.

Initially, after spike sorting, we investigated each single 
neuron of the data in terms of following which of the fir-
ing patterns. Accordingly, we traced the activity of each 
neuron in a specific time period and compared them with 
the recognized firing patterns. The next step was to design 
a proper genetic algorithm to optimize the corresponding 
cases of the Izhikevich model parameters. As mentioned 
before, in designing the proper genetic algorithm, the 
values of optimization problem variables depend on dif-
ferent cases of the Izhikevich neural pattern and data. 
Various tests were run with different variable levels. The 
fitness criterion was the error minimization (mean square 
error) of the neural action potential difference between 
the Izhikevich and real neurons. As a case example, con-
sidering the designed genetic algorithm for tonic spiking 
pattern for the BLA neurons, the optimal crossover and 
mutation ratio were assigned 0.7 and 0.8 values, respec-
tively. The algorithm terminated in 150 generations.

We represent the obtained results according to the 
potential firing patterns following the detected single 
neurons. Other cases of Izhikevich pattern that were ex-
cluded from further consideration and explanations in 
this study were as follows: the ones with considerable 
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different spike timing or the number of spikes in a given 
time period. Some of these inconsistencies are shown in 
Figure 2 C-E, for the BLA, as well as Figure 3 E and F 
for the HIP. 

We illustrated the comparison plots of possible firing 
patterns related to different clusters of the HIP and BLA, 
corresponding Izhikevich, and improved Izhikevich pat-
terns in several figures. In all figures, the red/line curve 
is related to the study rats’ real neuron spiking; the black/
dash curve is relevant to Izhikevich neuron, and the blue/
dash-dot curve is related to the improved Izhikevich neu-
ron. Moreover, the study rats’ real neuron spiking plot 
and Izhikevich neuron plot were not matched in most 
cases. Therefore, the Izhikevich model must be improved 
for adjustments. The initial jump in membrane potential 
represented in a few figures was not a spike; however, it 
is a transient mode in the neurons’ firing activities.

The data recording and analysis were conducted on 
several rats and the results were desirably consistent. 
The outcomes of parameter optimization for the BLA 
single neurons in firing patterns are shown in Figures 
1 and 2. According to the figures, the real neurons of 

the BLA greatly adapted with the improved Izhikevich 
neurons. Moreover, the achieved results represented that 
first region cluster may follow a firing pattern of each 
of the improved integrator, phasic spiking, depolarizing, 
rebound spiking, or threshold variability (Figure 1). The 
second and third clusters followed a firing pattern of the 
improved Izhikevich pattern for inhibition-induced spik-
ing and tonic spiking, respectively. The activity pattern 
of these two clusters is presented in Figure 2 A and B.

In Figure 2 C-E, we showed three neural behaviors 
that a real neuron of the BLA was not followed. Then, 
we compared them with either the firing pattern of 
Izhikevich neuron or Izhikevich-improved neuron. The 
mentioned firing behaviors consisted of mixed spiking, 
bistability, and spike frequency adaptation.

Similar to the previous discussed region of the rat 
brain, the HIP neurons have greatly followed the im-
proved Izhikevich pattern for each sorted cluster (Figure 
3 A-D). For all considered rats, the three single neurons 
extracted from data recording of this region had the fir-
ing pattern, as follows: one cluster followed improved 
mixed or tonic spiking, the second cluster followed the 

Figure 1. The BLA first cluster firing patterns comparison 

This figure presents the comparison of the first cluster firing pattern of the rat BLA, possible firing patterns of the Izhikevich 
neuron, and the improved pattern, in distinct plots. The mentioned firing patterns are the integrator, phasic spiking, depolar-
izing after-potential, rebound spiking, and threshold variability. 
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improved inhibition-induced spiking, and the last one 
followed improved tonic spiking. Figure 3 E and F rep-
resent two firing activity which the HIP single neurons 
may not follow. These patterns are bistability and spike 
frequency adaptation.

4. Discussion

Several significant results were achieved based on the 
in vivo electrophysiological data in this study. First, the 
structure behind the firing patterns following the single 
neurons of the rat BLA and HIP were identified. This 
finding improves our understanding of the behavior of 
different structures in the nervous system. Second, a 
precise mathematical model was assigned to each rec-
ognized firing pattern. This aim was achieved using one 
of the most effective neuronal spiking models for large 
scale simulations; Izhikevich model, due to its great 
trade-off between simplicity, computational feasibility, 
and biological plausibility. To reach the proper adjust-
able mathematical model for the BLA and HIP neurons, 
the Izhikevich model parameters were optimized for all 
different possible cases, using a genetic algorithm. This 

achievement increased the Izhikevich model’s accuracy 
in representing a mathematical model for the real neu-
rons of rat brain. These findings greatly impact the fu-
ture modeling of networks of neurons consisting of the 
BLA and HIP in which the unlikely firing patterns can 
be excluded from the consideration. The elimination 
of unrealistic firing patterns and performing the proper 
mathematical model for the probable ones will result in 
elevating the quality of neural network simulations and 
reducing the complexity of the modeling. Finally, the bi-
ological implication of changes in the Izhikevich model 
values in the optimization process was defined.

As mentioned earlier, the Izhikevich model is capable 
of representing the firing pattern of most recognized 
types of cortical neurons according to changes in the val-
ues of its parameters. However, it fails to represent the 
neuronal firing pattern of some specified parts of the rat 
cortex, such as the HIP and BLA, with great accuracy. 
As per the real data in this study, one potential problem 
of the Izhikevich model was its post spike potential; the 
Izhikevich neuron potential returns to the amount of 
parameter, (Figure 1) (Izhikevich, 2003). Nevertheless, 

Figure 2. The possible firing patterns of the BLA neurons 

This figure represents the comparison of the second and third cluster firing patterns of the rat BLA, possible firing patterns 
of the Izhikevich neuron, and the improved patterns, in plots (a) and (b). The second cluster may follow inhibition induced 
spiking, and the third cluster may track tonic spiking. Additionally, three possible firing patterns that may not be followed 
by the BLA neurons are shown in plots (c) to (e). In these plots, the comparison of second and third cluster firing patterns of 
the BLA, mixed spiking, bistability, and spike frequency adaptation from the Izhikevich firing pattern and improved ones are 
illustrated.
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considered cases in current exploration did not follow 
this potential reset. They returned to their initial amount 
(Figures 1-3).

The Izhikevich model is a well-known spiking neuro-
nal model used in numerous computational neurosci-
ence investigations. Some studies that have applied the 
Izhikevich neural model are represented in the follow-
ing. Zhao et al. investigated the probability of detecting a 
weak electric field in neural networks with the presence 
of noise (Zhao et al., 2017). Lv et al. have implemented 
the simultaneous simulations of brain networks based on 
the Izhikevich spiking model (Lv et al., 2014). Mizogu-
chi et al. have developed a silicon neuron circuit based 
on the Izhikevich neuron (Mizoguchi, Nagamatsu, Aiha-
ra, & Kohno, 2011). Nageswaran et al. have demonstrat-
ed an efficient, biologically realistic large-scale spiking 
neural model simulator that runs on a graphics process-
ing unit in their research; the model included Izhikevich 
spiking neuron (Nageswaran, Dutt, Krichmar, Nicolau, 
& Veidenbaum, 2009).

As a result, the Izhikevich neural model has been used 
in various studies and is highly applicable in neural net-

work simulations. The popularity of this model in large 
scale simulations is because of its simplicity in imple-
mentation, as well as its biological plausibility. Accord-
ingly, improving the model by increasing its accuracy 
in adjustment with brain real data spiking activity could 
result in the outcome improvement of studies conducted 
based on this model. Improvements can be reflected 
in either approaching a more realistic result or design-
ing a more reliable neural network. The necessity for 
model modification led us to investigate the potential 
techniques to improve the Izhikevich model. To achieve 
this purpose, one of the best methods represented in this 
paper was to optimize the Izhikevich model parameters. 
This enhancement enables the model to adjust with the 
rat cortex neuron spiking pattern with great accuracy. 
Besides, it promotes the efficiency of investigations 
based on the Izhikevich model.

Optimization is the process of improving a concep-
tion, based on the obtained information. In problem op-
timization, the goal is to achieve the best solution, even 
with the presence of a large amount of noise (Ravazzi 
et al., 2018). This concept declares that there exist sev-
eral solutions to the problem; each has a different value 

Figure 3. The comparison of the HIP neurons firing patterns 

Figure 3 A-D shows the comparison of the possible firing patterns of the rat HIP that are tonic spiking, mixed spiking, and in-
hibition induced spiking mode from Izhikevich firing pattern, and improved patterns. Figure 3 E and F represent unfollowed 
firing patterns that are bistability for the first cluster and spike frequency adaptation for the third cluster of the HIP neuron.
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(Haupt & Haupt, 2004). Solutions should be determined 
by considering the situation and conditions. Optimiza-
tion algorithms divide into 6 categories; some of them 
aim to minimize the cost. Although the minimum seeker 
algorithms are usually fast, they fail to distinguish the 
local minimum solutions from the global ones. In con-
trast, optimization algorithms, like genetic algorithm, are 
more successful in achieving the global minimum while 
decreasing the processing speed (Haupt & Haupt, 2004). 

Complex real-world problems and attempts to find ap-
propriate solutions for them have led scientists to investi-
gate natural phenomena and imitate them for years. Opti-
mization algorithms have been progressively developed 
based on the natural processes in the past decades (Mi-
chalewiez, 1996). Some outstanding algorithms, such as 
evolutionary algorithms (Back & Schwefel, 1996) and 
the genetic algorithms, perform intelligent searches in 
the massive space of solutions considering the required 

Table 1. Comparison of the prior and anterior parameter values of Izhikevich neural model for various firing patterns under 
optimization.

Parameter Parameter  Parameter Parameter Statusvariables

6-650.20.02Without optimization
Tonic spiking

12.46620-66.30830.268010.01877With optimization

4-550.20.02Without optimization
Mixed spiking

10.82459-56.1650.195860.037413With optimization

6-55-0.10.02Without optimization
Integrator

12.16331-59.874-0.10250.1975With optimization

-21-600.21Without optimization
Depolarizing

-4.4429-67.8230.1652591.738625With optimization

6-650.250.02Without optimization
Phasic spiking

19.35829-67.9040.249040.023135With optimization

4-600.250.03Without optimization
Rebound spiking

11.09948-64.01230.251540.038877With optimization

4-600.250.03Without optimizationThreshold vari-
ability 13.03464-62.25650.2512660.067733With optimization

8-60-1-0.02Without optimizationInhibition-induced 
spiking 16.2566-62.0312-1.147210.0090563With optimization

Table 2. Possible firing patterns of rats’ brains single neurons for the BLA and the hippocampus areas.
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statistical techniques. The natural approach followed by 
these algorithms results in achieving optimal solutions 
for natural phenomena, like neurons’ spiking activity. 
Consequently, one of the best optimization algorithms, a 
genetic algorithm, was used in this inquiry. 

To desirably represent the effectiveness of genetic ap-
proach in optimizing the Izhikevich model parameters, 
we compared the firing pattern of model corresponded 
to optimized parameters with the firing pattern related 
to real data recorded from the BLA and HIP neurons. 
Modeling results have indicated that the rat real neurons 
activity and the improved Izhikevich pattern have a de-
sirable adaptation.

The value of Izhikevich model parameters, before and 
after applying optimization is represented in Table 1. 
In all cases, one substantial point related to optimized 
parameters is that the values of parameters and have 
been reinforced with a large rate. Other parameters 
have changed with a relatively slow rate, based on their 
spiking behavior. A larger amount of parameter, i.e. the 
after-spike reset of the variable, suggests a larger after-
spike jump of variable in the behavior of the real single 
neurons. Additionally, larger values of parameter result 
in the faster recovery of variable . Greater values of the 
parameter represent stronger subthreshold fluctuations 
in neurons firing pattern, according to the values of the 
variables and . The parameter has changed in the range 
of -65 to -50. Larger amounts of this parameter result in 
deep voltage reset. In conclusion, in vivo electrophysi-
ological data recorded from the rat HIP and BLA repre-
sented larger after-spike jump of variable, faster recovery 
of variable, increasing or diminishing in low-threshold 
spiking dynamics, and deeper or shallower voltage reset, 
compared to the original Izhikevich neuron. 

As an important result of this study, in the future repre-
sentation of the firing activity of rat HIP and BLA neu-
rons under normal activity, this improved model could 
be applied concerning the optimized values of Izhikev-
ich neuronal model parameters. This could result in a 
great simplification in the simulation of large-scale neu-
ral networks and the development of their hidden layers.

More importantly, our research was the first study in-
vestigating the possible firing patterns following the rat 
HIP and BLA neurons under normal activity and anes-
thesia, from a mathematical point of view. The capa-
bility to assign a distinctive parametric model to each 
potential following firing pattern has a great implication 
in computational neuroscience and is a support for the 
concept that the form of distinctive firing patterns may 

influence representing the neuron’s function. Addition-
ally, future network modeling of spiking neurons based 
on the rat HIP and BLA neuronal activity can be per-
formed by only inserting the possible firing patterns and 
excluding the cases that cannot be followed by the single 
neurons of these brain areas. The potential firing patterns 
of the BLA and HIP single neurons are represented in 
Table 2.

Some of the irrelevant patterns, i.e. not following by 
the HIP and BLA neurons are shown in Figure 2 C-E, 
as well as Figure 3 E and F. In addition to these figures, 
there are also other firing patterns that are not compat-
ible with the normal neural activity of the HIP and BLA 
under anesthesia. Potential reasons for the observed ir-
relevance are differences in spike timings, the number of 
spikes in a specific time period, depolarization and repo-
larization timing and shape, either with or without apply-
ing improvement to the conducted model. We avoided 
further explanations regarded those patterns in this study.

To support the validity of the achieved results, data re-
cording was performed for several rats under anesthe-
sia, and the whole analysis processes were repeated for 
acquired data. The firing activity of all BLA and HIP 
neurons was compared; for the recorded data from each 
region, the obtained results were predominantly consis-
tent. Future research studies may benefit from recording 
data from the BLA and HIP under the effect of drugs 
or in awake animals. They are suggested to investigate 
whether the Izhikevich model or our modified model is 
capable of representing those neural activities. More-
over, it is noteworthy to explore the changes in possible 
firing patterns following neurons under the effect of a 
special drug or awaking in comparison to the normal 
condition under anesthesia. Another interesting future 
study can be the investigation of other optimization al-
gorithms and compare their effectiveness in improving 
the Izhikevich model to represent the neural activity of 
different rat brain areas efficiently.

5. Conclusion 

This study was conducted to elevate our knowledge 
of neural interactions in different structures of the brain 
and accelerate the quality of future large-scale neural 
networks simulations, as well as reducing the modeling 
complexity. This aim was achievable by performing the 
improved Izhikevich model, and inserting only the plau-
sible firing patterns and eliminating unrealistic ones.
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