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Abstract

Soil microbial communities are responsible for a wide range of ecological processes and

have an important economic impact in agriculture. Determining the metabolic processes

performed by microbial communities is crucial for understanding and managing ecosystem

properties. Metagenomic approaches allow the elucidation of the main metabolic processes

that determine the performance of microbial communities under different environmental

conditions and perturbations. Here we present the first compartmentalized metabolic recon-

struction at a metagenomics scale of a microbial ecosystem. This systematic approach con-

ceives a meta-organism without boundaries between individual organisms and allows the

in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level.

To characterize the microbial ecosystems, topological properties, taxonomic and metabolic

profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topologi-

cal and optimization algorithms were implemented to carry out the curation of the models,

to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the

metabolite exchange between subcellular compartments. The proposed models provide

specific information about ecosystems that are generally overlooked in non-compartmental-

ized or non-curated networks, like the influence of transport reactions in the metabolic pro-

cesses, especially the important effect on mitochondrial processes, as well as provide more

accurate results of the fluxes used to optimize the metabolic processes within the microbial

community.
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Introduction

Soil represents one of the most diverse and complex natural environments on Earth in terms

of species diversity and community niches [1]. The soil microbial communities contain ap-

proximately 2,000 to 18,000 different genomes per gram of soil, harboring tens of thousands of

Eukaryotic and Prokaryotic taxa [1]. This microbial diversity represents a reservoir of genetic

information, with vast potential for the exploitation of environmental resources and the search

of compounds with possible industrial application [2]. The soil microbial communities are

involved in a wide range of ecological processes with important economic impacts. They play

a key role in the regulation of global biogeochemical cycles, in soil fertility, plant health, and

are responsible for most nutrient transformations on earth. These factors influence agricultural

productivity, plant and animal diversity, and earth’s climate changes [3,4]. Thus, it is impor-

tant to unravel the functions of the microbial communities, the effects of natural and anthro-

pogenic perturbations on them, and their interactions with the soil ecosystem [5].

Metagenomic models of soil microbial ecosystems can provide information about the meta-

bolic potential of a particular environment and how microbial ecosystems respond to environ-

mental perturbations [6]. The major challenge in metagenomic studies is determining the

relationship between microbial composition and the functional diversity of an ecosystem. This

is mainly due to the high variability of metabolic functions present in microbial communities

and the interdependent relationship that exists among their members. Therefore, in order to

understand microbial ecosystems as a whole, and how the interaction between all biological

entities determine the dynamics of the community, it is necessary to develop a compartmental-

ized metabolic model capable of representing all of the microorganisms that make up the com-

munity. Multi-compartmentalized metabolic models provide information about ecosystems

that is generally underestimated in non-compartmentalized networks, providing information

about the metabolic processes in specific organelles and about the effect of transport reactions

between compartments and between the intra and extra-cellular space [7]. Furthermore, they

provide more accurate results of the fluxes used to optimize a specific metabolic process of the

ecosystems, allowing a qualitative and quantitative analysis of metabolic processes carried out

by the microbial communities. These metabolic fluxes show the contributions of diverse meta-

bolic pathways to the general functions of the ecosystem [8]. The extension of genome-scale

flux balance models to a metagenomics-scale can explain the evolution and dynamics of meta-

bolic processes in microbial communities and allow the in silico characterization of ecosystems

under different environmental conditions [9].

Systems biology has made strong efforts to extend metabolic models from individual species

to multiple organisms to understand how microorganisms interact with each other [10]. These

models capture the interactions between individual organisms through artificial microbial ecosys-

tems that allow modeling of these metabolic exchanges, which occur across transport reactions

that connect individual microorganism to a common extracellular environmental compartment

[11]. One of the most recent and important developments of synthetic metabolic large-scale

reconstructions has been the construction of a representation of human metabolism, which

allows the conversion of biological knowledge into a mathematical structure that can subse-

quently be used to construct predictive models [12].

In this study we present the first compartmentalized metabolic reconstruction at a metage-

nomics scale of a microbial ecosystem. From DNA sequencing data we provide a comprehen-

sive image of a microbial community and show an inventory of the metabolic functions

performed by the ecosystem. More specifically, we conducted a systematic analysis of the

microbial ecosystem in rhizosphere soil from a National Park (Parque Nacional Natural de los
Nevados) located in the Colombian Andes, which is considered a biodiversity hotspot that
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contains unique ecosystems currently at risk. This systematic approach allowed us to treat

the microbial communities as a whole, integrating fundamental biological knowledge with

metabolic flux patterns, to create a thorough image of how a microbial community operates.

Furthermore, in this study we provide a refined curation of the metabolic networks, using

topological and optimization algorithms to ensure the correct metabolic exchange between

all sub-cellular compartments and the continuity of fluxes between all metabolic pathways.

This approach allowed us to determine the effect of agricultural intervention on soils, through

diversity, topological, and metabolic patterns, revealing the consequences of natural and

anthropogenic perturbations. We were able to identify the challenges associated with the pro-

cess of compartmentalization in terms of methodological steps and computational costs, to

quantify the effect of agricultural intervention, and to investigate how compartmentalization

of metabolites and reactions affects flux balance predictions.

Materials and methods

The workflow used to carry out the reconstruction and characterization of a compartmental-

ized metabolic network at a metagenomics scale is shown in Fig 1.

Metagenomic characterization

The Colombian Center for Genomics and Bioinformatics of Extreme Environments (Gebix)

provided metagenomics sequencing data of two different soil samples collected from a Colom-

bian Natural park (Parque Natural de los Nevados) located in the South American Andes

mountains, a paramo ecosystem, above the continuous tree line and the permanent snow line.

The first soil sample (S1) was collected at 3,677 meters above sea level from rhizosphere soil

characterized by the following vegetation: Cortaderia selloana, Pernettya prostrata, Buddleja
sp., Lupinus albus, and Dendropanax sp. This area is part of a protected area, and is not inter-

vened by anthropogenic processes. The second soil sample (S2) was collected at 3,612 meters

above sea level from the rhizosphere soil of a potato (Solanum tuberosum) field under conven-

tional management conditions (application of chemicals such as fertilizers and pesticides).

This represented the soil sample intervened by agricultural processes.

The samples were sequenced using the Illumina platform HiSeq2000 with paired-end

reads. Sequences were filtered and trimmed based on length and quality. De novo assembly of

the data was accomplished using the CLC Genomics Workbench version 4.0 [13] using the

default parameters.

Contigs were analyzed using the gene predictor Glimmer MG (Gene Locator and Interpo-

lated Markov Modeler—Metagenomics) [14], a platform for predicting genes from environ-

mental DNA sequences. This algorithm selects the best of all possible combinations for

predicting a gene based on an interpolated Markov model (MM) and identifies coding

sequences with a sensitivity threshold of 99%.

The functional annotation was performed by searching for homologous relationships using

KAAS (KEGG Automatic Annotation Server) [15] and MetaPathway [16]. The functional annota-

tion of KAAS was performed with the BLAST tool (Basic Local Alignment Search Tool), taking

Eukaryotes and Prokaryotes as representative data and using the assignment method BBH (bi-

directional best hit). The functional annotation of MetaPathway was conducted using the BLAST

tool against the MetaCyc database [17], using default parameters. The final functional annotation

was the union of both results (annotations found in at least one of the methods).

Metabolic genes identified were classified based on the Enzyme Commission (EC) catego-

ries. Metabolic reactions catalyzed by the identified enzymes were found using biochemical

and genetic databases such as KAAS [15], Metacyc [17], BiGG [18], and MetaPathway [16] (S1
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Table and S2 Table). The metabolic functional profile was extracted using KAAS [15], which

allows the identification of functional categories and metabolic modules reported in KEGG

taking as a starting point the set of reactions that make up the metagenome.

To carry out the taxonomic analyses of the soil samples, we used the LCA (Lowest Common

Ancestor) algorithm, implemented in MG-RAST [19]. This algorithm, calculates a taxonomic

classification of the sequences in reference to the NCBI taxonomy database. Both metage-

nomics datasets were compared using default parameters: a maximum e-value of 1e-5, a mini-

mum identity of 60%, and a minimum alignment length of 15 bp.

Fig 1. Pipeline used for the compartmentalized metabolic network analysis and functional reconstruction of the

microbial community in agriculturally intervened and non-intervened soils.

https://doi.org/10.1371/journal.pone.0181826.g001
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Metabolic network reconstruction

A metabolic network reconstruction was performed based on the set of reactions identified in

the annotation process. To construct refined metabolic networks (representing the main fea-

tures of the microbial communities) we conducted the following four steps: i] Addition of

information related to mass, charge, and formula, assuming an intracellular pH of 7.2 (for

which data are reported) for each of the metabolites that made up a reaction (S3 Table and S4

Table). This information was obtained from the MetaNetX database [20]. ii) Removal of

generic reactions that contain generic metabolites, i.e. metabolites that do not have specific

stoichiometric coefficients, such as proteins, RNA, DNA, generic lipids, and glycan. iii) Reac-

tion stoichiometry and balancing of mass and charge for each metabolite on both sides of the

reaction. This was done using the MetaNetX database [20], which takes into consideration

protons and water molecules that are often omitted in other biochemical databases. iv) To

determine the directionality of the reactions, we extracted the values of the standard Gibbs free

energy (ΔrG0) of each one of the reactions from the MetaCyc database [17]. For reactions lack-

ing information in the MetaCyc database, we calculated the ΔrG0 by the method of group con-

tribution proposed by [21]. Reaction directionally was assumed reversible when it was not

possible to estimate the ΔrG0 (S5 Table and S6 Table).

Metabolic network compartmentalization

To construct a compartmentalized metabolic network, reactions and proteins were assigned to

specific cellular compartments. Incorrect assignment of the location of a reaction may lead to

additional gaps in the metabolic network and misrepresentation of the network properties

[22]. The prediction algorithm CELLO (Subcellular localization predictor) [23], was used to

predict cellular localization based on characteristics of the amino acid sequences and taking

Eukaryotic organisms as models of subcellular compartmentalization. The CELLO algorithm

has two levels of a support vector machine. The classifiers of the first level are based on differ-

ent combinations of the characteristics of the amino acid sequences such as physicochemical

characteristics: polar, neutral, hydrophobic, acidic, basic, disulfide bridges, aliphatic, etc. The

second level processes the outputs of the first level classifiers, to generate the probability of the

distribution of the sub-cellular localization of a particular sequence [23]. In order to improve

the predictions obtained with CELLO, we analyzed the compartmentalized reconstructions

reported in MetaNetX [20] for organisms considered within our taxonomic profile (S7 Table).

Additional transport reactions were required to describe the exchange of compounds

between the cellular compartments of the metabolic reconstruction, and the extracellular

space and cytosolic compartment. This was required to ensure the exchange of metabolites

among microbial communities and the environment. We carried out a process of data mining

in databases such as BiGG [18] and Metacyc [17] to create a database of transport and ex-

change reactions. The set of reactions added to the models were those entirely composed by

compounds belonging to the metabolic networks analyzed (S8 Table).

Curation of the metabolic reconstructions

Given that the networks had a significant numbers of gaps, i.e., missing reactions and func-

tions, dead-end metabolites were identified by using the algorithm of Gapfind developed by

Kumar et al. [24]. Non-produced metabolites that is, metabolites that were not produced by

any of the reactions or those that could not be imported through any of the existing uptake

pathways were identified. Furthermore, the non-consumed metabolites, metabolites that are

not consumed by any of the reactions in the network or those that were not exported by any of

the secretion pathways were identified [24].

Compartmentalized metagenome metabolic network modeling
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To resolve identified gaps we implemented the GapFilling optimization algorithm [24]. For

this, we created a specific dataset based on the MetaNetX database [20] for each of the net-

works. Using these databases, reactions capable of solving the identified gaps were added to

the metabolic networks. Curation of the compartmentalized models was considerably more

difficult to do than for the non-compartmentalized networks. Curation of the compartmental-

ized model was performed in two steps: first, fluxes among inner compartments and the cyto-

plasm was restored and second, specific gaps for each compartment were resolved. The results

from GapFind/GapFill introduce external metabolic reactions, which might affect the topolog-

ical-properties and the final fluxes in FBA. However, these reactions might be associated to the

large amounts of un-annotated sequences present in metagenomes.

Metabolic characterization of the soil microbial communities

Flux balance analysis. In order to quantify the impact of the agricultural intervention on

the soil samples and the effect of compartmentalization of the models, the mathematical repre-

sentation of the metabolic networks was used to implement a FBA. To identify the flux distri-

bution, we assumed that the metabolic network was optimized with respect to a certain

objective function. The optimization problem is a linear programming (LP) problem; Objec-

tive functions are represented as follow [25] [8]:

Z ¼ cT � v ð1Þ

Where c defines the coefficients or weights for each of the fluxes in v, c is a vector of zeros with

the number 1 in the position corresponding to the objective function reaction. This general

representation of Z, where the elements of c can be manipulated, enables the formulation of a

number of diverse objective functions. The optimization strategy employed by the FBA

attempts to find a solution v that optimizes Z [8] [26].

A canonical FBA calculation can be formally expressed as the following linear programing

problem:

Maximize Z ¼
Pn

j¼1
cj
Tvj ð2Þ

Subject to
Pn

j¼1
Sij vj ¼ 0 8i ¼ 1; . . . ;m ð3Þ

vLBj � vj � vUBj 8j ¼ 1; . . . ; n ð4Þ

Where S is the stoichiometric matrix with m (metabolites) by n (reactions), v is the vector of

metabolic fluxes, vUB is a vector of the upper bounds for all fluxes, vLB is a vector of the lower

bounds for all fluxes and c is the vector defining the contribution of different fluxes to the

objective function. To solve the linear problem, we used the General Algebraic Modeling Sys-

tem (GAMS), a high-level modeling system for mathematical programming problems. The

values for upper and lower bounds were 100 and 0 mmol gDW-1 h-1, respectively, except for

the reversible reactions in which the lower bounds were -1000 mmol gDW-1 h-1. These values

were selected after varying the upper bound from 1000 to 100 mmol gDW-1 h-1, where we

finally obtained an optimal solution that maximized the number of active fluxes.

Topology analysis of the metabolic networks. Topological analyses of the metabolic net-

works were carried out using the plugin Network Analysis [27] in Cytoscape 3.2 [28]. The

main topological parameters evaluated were i) the clustering coefficient to evaluate the number

of interactions among one metabolite and its neighbors and ii)the degree distributions to

determine the number of metabolites directly connected to a given metabolite m. In the

Compartmentalized metagenome metabolic network modeling
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evaluation of the networks, we differentiated between the in-degree distribution (when the

edges target the metabolite m) and the out-degree distribution (when the edges target the adja-

cent neighbors of m) [29] (27)(27)(27). To analyze the compactness of the metabolic networks,

we evaluated the average path length and the network diameter, which indicate the average

and maximum number of links between all pairs of nodes, respectively [27] [29].

Principal component analysis. In order to determine the set of main metabolites in every

sample a Principal Component Analysis (PCA) was conducted. A PCA, is a standard nonpara-

metric statistical analysis with the main goal of finding patterns to reduce the dimensions in

the dataset with minimal loss of information [30]. The PCA was conducted in R using the stoi-

chiometric matrix of the metabolic networks.

Results

Agricultural intervention of soils leads to a loss in the metabolic

capabilities of the ecosystem

As a result of the pre-processing and assembly of reads, 2,001,060 contigs were obtained for the

non-intervened soil with an average length of 426 bp. For the agriculturally-intervened soil, a

total of 1,485,172 contigs were obtained with an average length of 446 bp. After implementing

Glimmer MG, a total of 2,227,616 and 1,660,101 protein-coding regions were obtained for the

non-intervened and agriculturally-intervened soil samples, respectively.

The functional metabolic profile for the non-intervened sample resulted in a network that

contained 2,334 metabolic reactions related to 1,617 unique enzymes. For the intervened soil

sample, the resulting consensus network consisted of 2,082 metabolic reactions associated

with 1,483 unique enzymes. We removed 213 and 66 reactions that contained generic or

ambiguous compounds such as DNA, RNA, glycan, and lipids from the initial models for the

non-intervened sample and for intervened sample, respectively (Table 1).

Metabolic processes were characterized according to the richness (i.e., the number of meta-

bolic processes) and uniformity (i.e. the relative abundance of a particular metabolic process

in a sample) [31]. Most of the metabolic diversity and the relative abundance of the metabolic

processes, i.e., the ratio between the abundance of each metabolic process and the total num-

bers of all metabolic activities of each sample (expressed as a percentage), was maintained in

Table 1. Characteristics of the initial metabolic network reconstructions.

S1 S2

Total reads 205,850,654 153,838,374

Total Contigs 2,001,060 1,485,172

N50 2,124 2,328

Contig mean sequence length 426 ± 433 bp 446 ± 569 bp

Mean GC percent 56 ± 7% 54 ± 9%

Predicted Proteins 2,064,635 1,565,352

Initial reactions 2,334 2,082

Initial metabolites 2,237 2,153

Enzymes 1,617 1,483

Generic reactions removed 213 66

Compartmentalized reactions 3,440 3,235

Compartmentalized metabolites 3,142 2,968

Transport reactions 740 740

S1: Non-intervened soil sample; S2: Agriculturally-intervened soil sample.

https://doi.org/10.1371/journal.pone.0181826.t001
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both ecosystems. In both communities, the reactions were distributed in 140 metabolic mod-

ules, belonging to 11 functional metabolic pathways. Fig 2 shows the relative abundance of the

metabolic pathways in both ecosystems. Over 30% of the mapped reactions in the microbial

communities were associated with carbohydrate metabolism, followed by amino acid (� 23%)

and lipid metabolism (� 14%) in both ecosystems. Although it is possible that the loss in meta-

bolic capabilities is present due to the lower amount of sequences obtained in S2, the similarity

of the metabolic modules and the relative abundance in both ecosystems could indicate that

the low number of enzymes on S2 is related to the agricultural intervention.

The agricultural intervention of soils affects the diversity of

microorganisms responsible for the regulation of biogeochemical cycles

The taxonomic profile obtained by MG-RAST showed that Bacteria are the dominant king-

dom in both ecosystems studied, followed by the Eukarya, Archaea, and Viruses (S9 Table).

The presence of Eukarya in both ecosystems suggests the need to consider the subcellular com-

partments into the modeling of the metabolic networks, since the Eukarya kingdom has sub-

cellular compartments associated to specific organelles.

Using the microbial community diversity, we determined the relation between microbial

soil composition and the regulation of biogeochemical cycles in the ecosystems. We evaluated

the biogeochemical processes of carbon (CO2 fixation and respiration], nitrogen [nitrification,

Fig 2. Comparison between the relative abundance of the metabolic processes performed in the non-intervened

ecosystem (S1) and in the ecosystem intervened by agricultural processes (S2).

https://doi.org/10.1371/journal.pone.0181826.g002
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denitrification, and N2 fixation), and sulfur cycling (sulfate reduction and sulfur oxidation)

[32]. As Bacteria and Archaea contain most of the microorganisms responsible for the regula-

tion of the biogeochemical cycles, we focused on prokaryotes.

In the nitrogen cycle, over 26 genera, 11 families, and 3 orders of nitrogen fixing microbes

were reported in the literature [33]. A total of 24 genera were found in both ecosystems. Over-

all, the non-intervened and agriculturally intervened soil samples, showed a similar percentage

of genera implicated in nitrogen fixation. However, the non-intervened soil sample showed a

higher abundance of diazotrophic microorganisms (S10 Table).

Nitrifying bacteria carry out the process of nitrification, the biological oxidation of ammo-

nia (NH4
+) to nitrite (NO2

-), followed by the oxidation of nitrite to nitrate (NO3
-). Bacterial

genera known to be ammonium and nitrite oxidizers such as Nitrosomonas, Nitrococcus, Nitro-
bacter, and Nitrospira were identified in both ecosystems studied.

In the denitrification process, nitrates get reduced into inert gaseous nitrogen [N2]. This

process could be performed in both microbial communities by bacteria belonging to the genus

Pseudomonas and Clostridium. For all steps of the nitrogen cycle analyzed, we found that the

percentage of microorganisms was higher for the non-intervened ecosystem. However, the

intervened ecosystem showed higher abundances in the genera Nitrospira and Nitrosomonas,
which are involved in the nitrification process.

The sulfur cycle is fundamental as it provides an element that is constituent of cofactors

and proteins and thus, is essential for life. The sulfur atom has the capacity to occur in various

oxidation states ranging from -2 (sulfide) to +6 (sulfate). Most of the sulfur redox reactions are

not spontaneous and are catalyzed by prokaryotes capable of using several inorganic sulfur

compounds in their metabolic processes [34]. For both soil samples studied, several sulfate-

reducing bacteria were found. Among these, were Desulfobacterales, Desulfovibrionales, Syntro-
phobacterales (Deltaproteobacteria), and the genus Desulfotomaculum belonging to the Firmi-
cutes phylum. Additionally, two genera of Archaea, Thermocladium and Caldivirga, capable of

reducing sulfate, were also found. Both analyzed soil samples showed the same profile distribu-

tion of sulfate reducing microorganism (S11 Table).

Oxidation of sulfur to sulfate is one of the major processes in the sulfur cycle. In both soil

ecosystems we found several genera of sulfur oxidizing Bacteria and Archaea. The overall pro-

file of abundances of microorganisms for this process did not show a tendency bias towards

any of the samples analyzed. A representative proportion of contigs (382) affiliated to the phy-

lum Crenarchaeota, class Thermoprotei, which are thermophilic and sulfur-dependent organ-

isms, was found in both soil samples. However, the soil sample collected in the agriculturally

intervened ecosystem showed a 6% increase in the number of sequences associated to this

phylum.

For carbon cycling we found the presence of Cyanobacteria in both metagenomic datasets.

This phylum of bacteria obtain their energy through photosynthesis and fix CO2 using solar

energy mainly by the reductive pentose phosphate cycle [35]. The photosynthesis process iden-

tified in the non-intervened sample coincided with the higher abundance of Cyanobacteria
such as Gloeobacter and Cyanobium, while the intervened soil sample showed higher abun-

dance of Cyanothece and Synechococcus genera. Furthermore, both soil samples contained

autotrophic Bacteria and Archaea with additional carbon fixation pathways. One of these addi-

tional pathways is the reductive citric acid cycle found in the phylum Chlorobi, composed of

aerobic and micro-aerobic bacteria. The taxonomic analysis showed the presence of the non-

sulfur bacterial family Chloroflexaceae, which carry out the 3-hydroxypropionate bi-cycle to fix

carbon. The last additional pathway for carbon fixation is the hydroxypropionate-hydroxybu-

tyrate cycle, found in aerobic Archaea such as Crenarchaeota and Metallosphaer (S12 Table).

In the alternative carbon fixation pathways, both soil samples displayed a similar abundance

Compartmentalized metagenome metabolic network modeling
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distribution of microorganisms. However, the intervened soil sample showed greater abun-

dances of Archaeal genera. In both soil samples analyzed most of the Archaeal taxa corre-

sponded to methanogens within the Euryarchaeota phylum. These represented 82% and 69%

of Archaea in the non-intervened soil and in the intervened soil, respectively.

The metabolic network compartmentalization allows the integration of

the taxonomic profile and the functional characterization of the microbial

communities

Understanding the metabolic interactions of microbial ecosystems is challenging given that

the cellular localization of metabolic functions among the members of the ecosystem is often

unknown. Therefore, it is important to investigate the effects of compartmentalization of

metabolites and reactions over the flux balance predictions, and the topological features and

connections between metabolic pathways in models of the microbial communities. In Fig 3

the cellular compartments taken into account were schematized and compared against the

non-compartmentalized model.

Using our metagenomic annotation we implemented the CELLO algorithm [23] to obtain

preliminary localization of reactions for both datasets. Reactions of the non-intervened soil

sample were localized into nine cellular compartments, while reactions of the agriculturally-

intervened soil sample were localized into seven compartments (S13 Table). The reactions

associated with the vacuole and the lysosome compartments were absent in the soil sample

intervened by agricultural process and were almost negligible for the non-intervened soil sam-

ple [seven reactions were associated with the vacuole and 20 reactions were associated with the

lysosome]. For this reason, we discarded the presence of these two compartments within both

metabolic reconstructions.

To obtain more refined compartmentalized models, we used the taxonomic profiles to

identify the subcellular localization of reactions in specific microorganisms. The species taken

into account were: Saccharomyces cerevisiae, Arabidopsis thaliana, Chlamydomonas reinhardtii,
Cyanothece sp. ATCC 51142, Synechocystis sp., Leishmania major, and Pseudomonas putida.

The metabolic network reconstruction of these species are reported in the MetanetX database

[20]. Only these metabolic network reconstructions were considered given that they are the

unique compartmentalized models included in our taxonomic profiles and are reported in

MetaNetX database.

The resulting consensus networks contained five compartments: cytoplasm, mitochon-

drion, nucleus, peroxisome, and the extracellular space. Due to the abundance of prokaryotic

microorganisms the compartment with greater number of metabolites was the cytoplasm, fol-

lowed by the metabolites related to the mitochondria, which is the organelle that carries out

important energy processes (Table 2).

A total of 740 transport reactions were included initially in both models, of which 571 were

involved in transporting metabolites between the cytoplasm and the extracellular space and

168 reactions involved in the transport of metabolites between the cytoplasm and the other cel-

lular compartments.

The initial compartmentalized network of the non-intervened soil sample S1 (S1_C)

included 3,440 reactions and 3,142 distinct chemical compounds. We differentiated com-

pounds localized in a different cellular compartment (e.g., NAD present in the cytoplasm,

mitochondrion, peroxisome, and nucleus is classified as four different compounds). A total of

45% of the reactions were considered reversible, 33% were irreversible, and 22% were involved

in transport processes. On the other hand, the initial compartmentalized metabolic recon-

struction of the intervened soil sample S2 (S2_C) resulted in a final network of 3,235 reactions

Compartmentalized metagenome metabolic network modeling
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Fig 3. Schematic representation of compartmentalization. A. Compartmentalized metabolic network

representation with four compartments evaluated. B. Non-compartmentalized metabolic network

representation.

https://doi.org/10.1371/journal.pone.0181826.g003
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and 2,968 distinct metabolites. In this model, 47% of the reactions were considered reversible,

30% were irreversible, and 23% were transport reactions.

To address the effect of removing cellular compartments on the model’s capability of pre-

diction, we created an additional non-compartmentalized network for each metagenome. In

these models we considered only two compartments: cytoplasm (where all the metabolic pro-

cesses occur) and extracellular space, to ensure the exchange of metabolites between microbial

communities and the environment. The non-compartmentalized model of the non-intervened

soil (S1_NC) had 2,237 metabolites and 2,603 reactions, while the non-compartmentalized

model of intervened sample (S2_NC) had 2,153 chemical compounds and 2,497 reactions. A

total of 571 transport reactions were involved in the transportation of metabolites between the

cytoplasm and the extracellular space in both samples.

Metabolic network curation is a critical step to restore the metabolic

fluxes within the networks

The first reconstruction step led to a set of reactions that were used as the basis for the con-

struction of a stoichiometric representation of each metabolic model. This representation per-

mitted identifying the gaps in the networks, the calculation of the mass balances around each

metabolite, and the identification of the no-production and no-consumption metabolites. A

total of 1,295 and 1,211 metabolites for the non-intervened compartmentalized network

(S1_C) and for the intervened compartmentalized network (S2_C), respectively, could not be

consumed by any of the reactions in the network.

A total of 1,389 and 1,305 metabolites that could not be produced under any uptake condi-

tion were identified for samples S1_C (non-intervened) and S2_C (intervened), respectively.

As shown in Fig 4A, most of the gaps for both metagenomes are in the cytoplasm, followed by

the mitochondria and extracellular space. The percentage of disconnected metabolites in each

compartment is similar for both soil samples [Fig 4B]. In both microbial communities a con-

siderable number of biochemical reactions and metabolic functions may be missing. Results

revealed that none of the cellular compartments contain completely connected metabolites

(S14 Table).

The GapFill algorithm [24] was used to solve different gaps following three main steps.

First, the gaps found in the cytoplasm were filled; second, exchange reactions between the

cytoplasm and the other compartments were identified and added; and finally, the gaps in the

remaining compartments were completed and curated separately. As shown in Table 3, there

was a high number of common gaps between the cytoplasm and the other cellular compart-

ments. Notably, around 50% of the gaps of the mitochondria and between 9 to 40% of the gaps

Table 2. Number of metabolites associated to each one of the compartments in the initial reconstruc-

tions. Importantly, a metabolite may be present in more than one compartment. This information excludes

generic metabolites (metabolites that do not have specific stoichiometric coefficient: RNA, DNA, generic lipids

and glycan).

Compartments S1 S2

Cytoplasm 1928 1851

Mitochondrion 569 566

Nucleus 276 196

Peroxisome 74 60

Extracellular space 295 295

S1: Non-intervened soil sample. S2: Intervened soil sample.

https://doi.org/10.1371/journal.pone.0181826.t002
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Fig 4. Results of the compartmentalized metabolic network curation. A. Total metabolite problems

found in each one of the compartments evaluated. B. Percentage of reconnection before and after the

Gapfilling process. S1_C: compartmentalized, non-intervened soil sample. S2_C: compartmentalized,

intervened soil sample. S1_NC: non-compartmentalized, non-intervened sample. S2_NC: non-

compartmentalized, intervened sample. S1_CC: compartmentalized and curated, non-intervened sample.

S2_CC: compartmentalized and curated, intervened sample. S1_NCC: non-compartmentalized and curated

non-intervened soil sample. S2_NCC: non-compartmentalized and curated intervened soil sample.

https://doi.org/10.1371/journal.pone.0181826.g004

Table 3. Number of common problem metabolites between the cytoplasm and the inner

compartments.

S1 S2

Cytoplasm Mitochondrion 247 217

Cytoplasm Nucleus 49 28

Cytoplasm Peroxisome 6 6

Cytoplasm Extracellular space 108 86

S1: Non-intervened soil sample; S2: Intervened soil sample.

https://doi.org/10.1371/journal.pone.0181826.t003
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in the inner compartments are shared with the cytoplasm. Therefore, the gaps in the inner

compartments can be solved identifying the production pathways of cytoplasm and adding

adequate exchange reactions.

A total of 1,459 and 1,203 unique reactions of MetanetX database [20] were added to the

initial non-intervened compartmentalized S1_C and intervened compartmentalized S2_C

models, respectively. Additionally, 94 exchange reactions were added to enable the production

and consumption of the metabolites showing gaps. Table 4 shows the total number of metabo-

lites and reactions added to each compartment. As expected, it was necessary to add more

reactions and metabolites to restore the non-intervened compartmentalized network (S1_C),

since this model had a higher number of reactions and metabolites; it was more difficult to

restore the connectivity of the network. Added reactions were manually evaluated in order to

ensure that they were present in previous identified taxa.

The non-intervened soil sample reached a higher number of connected metabolites, com-

pared with the achieved reconnection in the inner compartments of the intervened soil sample.

In the non-intervened soil sample (S1_C) we reached the higher percentage of metabolic cura-

tion, in the extracellular space (89.19%), followed by the nucleus (82.63%), the mitochondria

(66.92%), the cytoplasm (65.08%) and the peroxisome (56.30%). On the other hand, for the

agriculturally-intervened soil (S2_C) the extracellular space also reached a higher percentage

of metabolic curation (91.55%), followed by the cytoplasm (71.04%), the nucleus (44.05%), the

mitochondria (26.38%) and the peroxisome (27.84%) (Fig 4B and S15 Table). The lower per-

centages of metabolite connections within inner compartments in the agriculturally-inter-

vened soil may be explained by at least two reasons: i) that the used database does not contain

the amount of reactions capable of restoring the flow in the inner compartments for the inter-

vened soil sample; ii) that there was not enough information in the curated process for the

exchange reactions between the inner compartments and the cytoplasm for this sample. Con-

sensus networks for both soil samples are shown in Table 4.

We analyzed the effects of the compartmentalization process in the number of gaps and in

the resulting network after the curation process. For the non-compartmentalized network of

the non-intervened soil (S1_NC), 993 no-production metabolites and 895 no-consumption

metabolites, were identified. Meanwhile, for the non-compartmentalized network of the inter-

vened soil (S2_NC), 957 no-production metabolites and 859 no consumption metabolites

were identified. As shown in Fig 4B, around 16.5% and 8% of the connected components in

Table 4. Metabolic characterization of the consensus metabolic networks.

S1_C S2_C S1_NC S2_NC

Total reactions 5,607 4,557 4,060 3,693

Added reactions 2,073 1,322 1,939 1,677

Total transport reactions 834 834 576 569

Total metabolites 3,838 3,376 2,664 2,429

Number of metabolites by compartment

Cytoplasm 2,222 2,110 2,368 2,134

Mitochondria 783 580 NA NA

Nucleus 518 311 NA NA

Peroxisome 119 79 NA NA

Extracellular space 296 296 296 296

S1_C: non-intervened soil sample, compartmentalized. S2_C: intervened soil sample, compartmentalized. S1_NC: non-intervened soil sample, non-

compartmentalized. S2_NC: intervened soil sample, non-compartmentalized.

https://doi.org/10.1371/journal.pone.0181826.t004
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the cytoplasm and in the extracellular space, respectively, were obtained by the non-compart-

mentalized models. The result of the non-compartmentalized models showed less non-con-

nected metabolites compared to the compartmentalized models.

The flux balance analysis showed that fluxes associated with the

nitrogen cycle affect the regulation of the carbon and sulfur cycles

The FBA employs a linear programming (LP) strategy to obtain a metabolic flux distribution

that is optimized towards a specific cellular objective. This analysis is subject to a set of physi-

cochemical and thermodynamic constraints [36]. The flow predictions of FBA are dependent

on the objective function selected for the analysis. The most common objective function

involves the maximization of biomass synthesis. However, the rate of biomass growth is not

necessarily the objective of the microbial ecosystems, because the biological objective of these

communities will probably be to optimize exploitation of nutrients and response to perturba-

tions. Furthermore, based on previous findings by our research group, the objective function

in this type of ecosystem was associated to biogeochemical cycles because of the high content

of minerals in the environment [6]. We evaluated different objective functions associated with

the optimization of nitrogen, carbon, and sulfur cycles and analyzed metabolic pathways such

as the tricarboxylic acid cycle (TCA) and fatty acid elongation in the mitochondria (Table 5).

Through these objective functions we optimized each model and their dependency with the

presence of cellular compartments.

Since most of the microorganisms responsible for the regulation of the biogeochemical

cycles are prokaryotes, we focused on the compartment associated with the cytoplasm to carry

out a comparative study of the biogeochemical features of the ecosystems. We evaluated the

percentage of active flows reached with each analyzed objective function, i.e., we determined

the number of flows different from zero, when optimizing a specific objective function.

Table 5. Objective functions for the carbon, sulfur, and nitrogen cycles.

NITROGEN CYCLE

8 H(+) + 8 reduced ferredoxin + 16 H2O + 16 ATP + 1 dinitrogen < = > 2 NH4(+) + 1 dihydrogen + 8A + 16 ADP + 16 phosphate

1 ubiquinone + 1 H2O + 1 hydroxylamine < = > 1 NH4(+) + 1 O2 + 1 Ubiquinol

5 H(+) + 1 nitrite + 2 ferrocytochrome c = 2 ferricytochrome c + 1 H2O + 1 hydroxylamine

2 H(+) + 2 ferrocytochrome c + 1 dinitrogen oxide < = > 2 ferricytochrome c + 1 H2O + 1 dinitrogen

SULFUR CYCLE

3 H2O + 3 NADP(+) + 1 hydrogen sulfide < = > 1 H(+) + 1 sulfite + 3 NADPH

3 H2O + 3 A + 1 hydrogen sulfide = 8 H(+) + 1 sulfite + 3 reduced ferredoxin

2 H(+) + 2 ferrocytochrome c + 1 sulfate < = > 1 sulfite + 2 ferricytochrome c + 1 H2O

1 hydrogen peroxide + 1 sulfate < = > 1 sulfite + 1 H2O + 1 O2

AMMONIA CYCLE

1 acetyl phosphate[2–] + 1 ADP < = > 1 acetate + 1 ATP

Oxaloacetate[c] < = > Oxaloacetate[m]

Acetyl-CoA[c] < = > Acetyl-CoA[m]

Oxoglutarate[c] < = > Oxoglutarate[m]

Citrate + CoA < = > Acetyl-CoA + H2O + Oxaloacetate

ATP + Oxaloacetate < = > ADP + Phosphoenolpyruvate + CO2

Acetyl-CoA + Enzyme N6-(dihydrolipoyl)lysine < = > CoA + (Dihydrolipoyllysine-residue acetyltransferase) S-acetyldihydrolipoyllysine

FATTY ACID ELONGATION

ATP + Hexadecanoic acid + CoA < = > AMP + Palmitoyl-CoA + Diphosphate

Acyl-CoA + Acetyl-CoA < = > CoA + 3-Oxoacyl-CoA

acetyl-CoA[c]< = = >acetyl-CoA[m]

https://doi.org/10.1371/journal.pone.0181826.t005
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In the case of the nitrogen cycle, 52.92% of the overall metabolism and 44.37% of the reac-

tions of the cytoplasm were activated for the non-intervened compartmentalized soil sample

(S1_C). For the intervened compartmentalized soil sample S2_C, activation was obtained for

45.86% of the global metabolism and 60.75% of the flow in the cytoplasm. The presence of

reactions involved in the cycling of sulfur and carbon is remarkable when the models maxi-

mize the nitrogen cycle. These flow parameters reflect the interdependence of all biogeochemi-

cal cycles in the ecosystems. A greater number of active fluxes related with the carbon and

sulfur cycles in the non-intervened compartmentalized soil sample (S1_C) were found, partic-

ularly fluxes associated with the sulfur cycle. In the sample S1_C 33.33% of the fluxes within

the sulfur cycle remained active, while in the intervened compartmentalized soil sample

(S2_C) only 15.56% of the fluxes were activated, when the model maximized the nitrogen

cycle.

The behaviors of the three steps considered for the nitrogen cycle (i.e. nitrogen fixation,

nitrification, and denitrification were evaluated. In the intervened and non-intervened models,

100% of the fluxes related with the nitrogen fixation and nitrification processes were active. In

the non-intervened compartmentalized soil sample (S1_C) 44.44% of the fluxes were related to

the denitrification process, but only 22.2% of the fluxes were active in the intervened compart-

mentalized soil sample (S2_C) (Table 6).

When the target of the metabolic networks was the optimization of the sulfur cycle, the

non-intervened compartmentalized soil sample (S1_C) reached a total of 53.15% of the overall

reactions and an activation of 44.55% of the cytoplasm’s fluxes. On the other hand, the inter-

vened compartmentalized soil sample (S2_C) showed less activation of the global fluxes

(46.50%), and higher active fluxes associated to the cytoplasm (62.132%). Due to the interde-

pendent relation between all biogeochemical cycles, the activation of a considerable number of

fluxes linked to the cycle of the other evaluated chemical compounds was observed. For the

Table 6. Effect of biogeochemical objective functions on other cycles. S1_C: non-intervened soil sample, compartmentalized.

S1_C [%] S2_C [%] S1_NC [%] S2_NC [%]

NITROGEN OBJECTIVE FUNCTION

Nitrogen cycle 35.90 33.33 28.21 30.77

Carbon cycle 30.95 23.81 15.48 22.62

Sulfur cycle 33.33 15.56 28.89 22.22

Nitrogen fixation 100 100 100 100

Nitrification 100 100 100 100

Denitrification 44.44 22.22 55.56 33.33

SULFUR OBJECTIVE FUNCTION

Nitrogen cycle 28.21 33.33 20.51 15.38

Carbon cycle 27.38 26.19 21.43 22.62

Sulfur cycle 42.22 20.00 28.89 20.00

Assimilatory sulfate reduction 60 40 60 20

Dissimilatory sulfate reduction 100 66.67 100 33.33

Thiosulfate oxidation (thiosulfate-dehydrogenase-rxn] 100 100 100 100

CARBON OBJECTIVE FUNCTION

Nitrogen cycle 20.51 17.95 15.38 15.38

Carbon cycle 28.57 27.38 21.43 22.62

Sulfur cycle 40.00 13.33 22.22 17.78

S2_C: intervened soil sample, compartmentalized. S1_NC: non-intervened soil sample, non-compartmentalized. S2_NC: intervened soil sample, non-

compartmentalized.

https://doi.org/10.1371/journal.pone.0181826.t006
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sulfur cycle the fluxes related with sulfate reduction and sulfur oxidation were analyzed.

Regarding sulfate reduction, assimilatory and dissimilatory pathways were considered. Higher

percentages of coverage for both pathways were found for the non-intervened ecosystem

(Table 6). The absence of fluxes associated with sulfur oxidation in both ecosystems is notable,

despite the presence in the taxonomic profile of microorganisms able to perform this process.

Due to the complexity of the pathways associated with the carbon cycle, we focused on

methane metabolism, carried out mainly by methanotrophs and methanogens in the global

carbon cycle. When the microbial communities optimize this cycle, the non-intervened soil

sample S1_C showed a higher number of active fluxes in the whole network, but less coverage

of fluxes in the cytoplasm compared to soil sample S2_C (Table 6).

In the case of the objective functions associated to the cytoplasm, the effect of compart-

ments in the optimization was not observed, nor was there a significant difference between the

percentages of global coverage of the metabolic fluxes. In order to evaluate the effect of the

presence of compartments in the models, with respect to the flux predictions and to the results

of the optimization process, the objective functions associated to a specific inner compartment

[such as the tricarboxylic acid cycle (TCA) and the pathway for fatty acid elongation, charac-

teristic of the mitochondria) were evaluated. In both cases, the main reactions associated to

each metabolic pathway as well as the exchange reactions required for the transport of metabo-

lites between the cytoplasm and the mitochondria were considered in the objective function

(Table 5).

The optimization of the TCA cycle showed the same values of the objective function for

both ecosystems. These analyses demonstrate the effect of the addition of inner compartments

into the model and the importance of considering existing reactions between the cytoplasm

and the added compartments. The optimal values obtained were higher (3 mmol gDW-1 h-1)

when the main TCA and exchange reactions were included, compared to the results when we

did not consider the interchanges of metabolites between cytoplasm and mitochondria (2

mmol gDW-1 h-1).

To assess the importance of the inner compartments in the construction of the models, we

evaluated the same objective function in the non-compartmentalized networks and obtained

lower values for the optimal solution (1.5mmol gDW-1 h-1) with respect to the compartmental-

ized networks (S16 Table).

In the case of the objective functions associated to fatty acid elongation, the same interde-

pendent relation between the presence of inner compartments and the exchange reactions,

with the results of the optimization process was observed. Notably, the non-intervened soil

sample clearly showed that when the transport of acetyl-CoA from the cytoplasm to mitochon-

dria was not taken into account, the pathway for fatty acid elongation could not be activated,

resulting in a value of objective function equal to zero.

Compartmentalized metabolic networks at a metagenomics scale

intervened and non-intervened by agricultural processes conserved the

main topological characteristics of the non-compartmentalized metabolic

networks at a genomics and metagenomics scale

The topological properties of models used to understand the architecture of metabolic net-

works was examined. In this way, the effect of agricultural intervention on soils and the pres-

ence of compartments on their structural features can be evaluated. As shown in Fig 5, a

graphical representation of the metabolic networks was first established. In metabolic net-

works, the nodes represent the metabolites and the links represent the biochemical reactions.

The models had a significant number of irreversible reactions; therefore, for each node it was
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possible to distinguish between incoming and outgoing links. Compartmentalized and non-

compartmentalized networks contain the same set of unique metabolites. The differences

between both networks are in terms of the metabolites localization more than type of metabo-

lites (Fig 5C).

The main topological characteristic of the network is the degree distribution P(k), which

shows the probability that a particular metabolite has exactly k reactions. The degree distribu-

tion P(k) allows us to distinguish between different types of biological networks. A power-law

degree distribution for the compartmentalized and the non-compartmentalized networks

was obtained. This distribution, characterizes scale free networks, in which the probability

that a metabolite displays k reactions follows P(k)� k−γ, where γ is the degree exponent that

describes the role of the hubs in the system [37]. In directed networks the incoming and outgo-

ing reactions (k) can be distinguished, therefore, a metabolite may participate as a reactant in k

Fig 5. Graph representation of metabolic networks: (A) the compartmentalized, non-intervened soil sample and (B) the non-

compartmentalized, non-intervened soil sample. In metabolic networks, the nodes represent the metabolites and the links represent the

biochemical reactions. (C) Comparison between metabolites in compartmentalized and non-compartmentalized networks. The same color

highlight the same metabolite in both networks.

https://doi.org/10.1371/journal.pone.0181826.g005
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metabolic reactions following the power-law distribution P(k)� k−γin with γin� 1.8, for com-

partmentalized and non-compartmentalized networks. For outgoing links a given metabolite

may be produced by k different metabolic reactions following a similar distribution [37],

P(k)� k−γout with γout� 2 for compartmentalized and non-compartmentalized models. We

obtained values of γ near or equal to 2, indicating that there are hierarchies of hubs, i.e. large

numbers of metabolites with few connections, while highly connected metabolites are scarce.

A common feature of many metabolic networks is their small-world property, where all of

the nodes in the networks are connected by a relatively short path to each other [38]. This

property increases the network efficiency, minimizing the transition times between metabolic

states [39]. This topology feature can be characterized by the average path length and by the

diameter of the network, defined as the average and maximum number of links between all

pairs of nodes, respectively [38]; in metabolic networks these links correspond to the biochem-

ical reactions connecting two metabolites. In compartmentalized metabolic networks, greater

values of diameter than the reported for others metabolic networks were found (Table 7]. The

unique topological significant difference between both soil samples was the network diameter,

higher for the non-intervened soil sample (S1), because this ecosystem has more metabolites

and reactions, therefore more nodes and edges to connect. The average path length for all ana-

lyzed metabolic networks was�3.3.

Another important topological feature of the networks is the average clustering coefficient,

which is a measure of the potential modularity of the network. Contrary to what was expected,

the average clustering coefficient for metagenomic networks was lower than the reported for

the organisms studied by Jeong et al. [37] and for the metabolic network of Escherichia coli
[40]. This might be due to the fact that metabolic networks at a metagenomics scale have an

average clustering coefficient similar to that expected for scale-free networks, characterized for

a large number of nodes with few connections and scarce highly connected nodes.

On the other hand, we ranked each metabolite in the networks according to their topologi-

cal properties, to detect the central and intermediate nodes that determine the topology of the

network (S17, S18, S19 and S20 Tables). As expected according to measures of centralities

such as in-out degree and edge count, the central metabolites for all evaluated networks were

H, H2O, ATP, NAD, NADH, NADP, CO2, Pi, NH4, and O2, which play a central role in the

energetics and central pathways of cells. These results are in agreement with the PCA, which

showed that these were the most central metabolites because they were connected with almost

every other metabolite. Notably, in the compartmentalized models the most connected metab-

olites were distributed between the cytoplasm and the mitochondria, which also showed the

Table 7. Global topological properties. S1_C: non-intervened soil sample, compartmentalized.

S1_C S2_C S1_NC S2_NC

Clustering coefficient 0.178 0.163 0.199 0.188

Network diameter 13 9 9 9

Network radius 1 1 1 1

Characteristic path length 3.718 3.549 3.057 3.087

Avg. number of neighbors 7.639 7.274 7.718 7.754

Number of nodes 3935 3373 2662 2427

γin 1.880 1.790 1.703 1.729

γout 2.090 1.921 1.880 1.913

S2_C: intervened soil sample, compartmentalized. S1_NC: non-intervened soil sample, non-compartmentalized. S2_NC: intervened soil sample, non-

compartmentalized.

https://doi.org/10.1371/journal.pone.0181826.t007
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higher values of intermediation, indicating that these compounds control the fluxes between

the cytoplasm and the mitochondria.

Discussion

Through a systems biology approach, we were able to construct a curated metabolic network

that allowed us to determine the effect of modeling microbial communities as compartmental-

ized meta-organisms in contrast to more simple non-compartmentalized models. The proposed

models highlight specific information about ecosystems that are generally overlooked in non-

compartmentalized models, like the effect of transport reactions between inner compartments

and the cytoplasm in the metabolic processes, and furthermore provide more accurate meta-

bolic flow patterns. Based on these metabolic reconstructions we were able to determine the

effect of agricultural intervention on the metabolic structure, microbial diversity, and the topo-

logical features of soil ecosystems in a Colombian Natural Park. We found that agricultural

intervention of soils leads to a loss of metabolic capabilities of the microbial communities.

The abundance of metabolic processes that occurred in the non-intervened soil sample,

showed a higher numbers of enzymes, reactions, and metabolites, than the agriculturally inter-

vened one. Consequently, the non-intervened soil had higher capabilities to regulate ecological

processes. In both non-intervened and intervened ecosystems over 30% of the reactions were

associated with carbohydrate metabolism, followed by amino acid, and lipid metabolism.

These results are in concordance with those found in a study that investigated the functional

metagenomic profiling of nine biomes [31] and with the analysis of biogeochemical cycles in

metagenomes in a Colombian Natural Park [6], indicating that the two analyzed ecosystems

conserve the same metabolic distribution reported for biomes under different environmental

conditions, regardless of the agricultural intervention processes or extreme environmental fea-

tures. This may be explained by the fact that sequences related to these metabolic pathways are

relatively stable and shared among most individuals that make up the microbial community

[6].

Despite the differences regarding the number of enzymes, reactions, and metabolites, no

significant differences were found between microbial communities in the non-intervened and

agriculturally intervened soil samples. Thus, it was not possible to determine a distinguishing

metabolic profile for each of the analyzed microbial communities. However, the FBA and the

taxonomic profiles, provided information about the main species that were influencing the

biogeochemical cycles on each of the ecosystems. The non-intervened ecosystem had a higher

abundance of microorganisms responsible for the regulation of biogeochemical cycles. Fur-

thermore, the FBA showed that the agriculturally-intervened soil had fewer active metabolic

flows associated with the regulation of biogeochemical processes. The values of the metabolic

fluxes obtained cannot represent the studied ecosystem properties, but the metabolic pathways

related with these fluxes showed the effect of modifying the objective function on the FBA

result. In concordance with other metabolic studies of microbial ecosystems [6], the flow

parameters obtained reflects an interdependence of all biogeochemical cycles in the ecosys-

tems, since we found the strong presence of all biogeochemical metabolism fluxes in all objec-

tive functions evaluated. The nitrogen cycle plays a key role in the microbial communities of

both agriculturally non-intervened and intervened soils. Remarkably, maximization of the

nitrogen cycle significantly contributes to the total metabolic flux of the carbon and sulfur

cycles and displays an important contribution in the activation of the whole metabolic net-

work. These results were supported by the taxonomic analysis that showed that the most

important differences between the non-intervened and agriculturally-intervened soil samples

were related to the abundance of nitrifying bacteria, attributed to the need of transforming
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greater amounts of ammonia, which result from the use of fertilizers in the intervened

ecosystem.

Through the FBA we were able to analyze the effect of modeling the microbial ecosystem as

a compartmentalized meta-organism. The flow parameters associated to a specific compart-

ment showed the importance of considering transport reactions between inner compartments

and the cytoplasm, because these reactions have an important effect in the final results of the

metabolic fluxes obtained. The results of the FBA for the analyzed objective functions showed

an important dependency between the number of active fluxes on each compartment and the

percentage of flux reconnections; this effect can be noted in the intervened compartmentalized

soil sample (S2_C), where less restoration of flows in the inner cellular compartments were

achieved, and therefore, a lower number of associated fluxes.

The topology of the reconstructed metabolic networks followed the power-law of node

degree distribution. This feature of true complex biological networks was previously reported

by our research group in studies of the topology of metabolic networks at a metagenomics scale

[6]. The topological analysis showed that the average path length for all analyzed metabolic net-

works (� 3.3) was the same than that reported for the 43 organisms studied by Jeong et al. [37].

The fact that the networks at a metagenomics scale have the same average path length than the

metabolic networks of individual organisms, is possible only if with increasing network com-

plexity, metabolites are increasingly connected to maintain relatively constant the average path

length of the metagenomic network [37]. The average clustering coefficient obtained for the

metagenomics networks was lower than that reported for the organisms studied by Jeong et al.
[37], as well as for the metabolic network reported for E. coli [40]. Metabolic studies at a geno-

mics scale report high clustering coefficients, suggesting a modular organization of the net-

works. In these metabolic networks the nodes have approximately the same number of links, in

contrast with the features of scale-free metabolic network [41]. Meanwhile, the metabolic net-

works at a metagenomics scale, showed an average clustering coefficient similar to those

expected for scale-free networks, where there is a large number of nodes with few connections

while highly connected nodes are scarce [42]. The topological analysis allowed us to infer two

important characteristics of the evaluated networks: i) There are no significant differences

between the structures of the networks of the intervened and non-intervened soil samples, or

between compartmentalized or non-compartmentalized networks. ii) Metagenomic scale meta-

bolic networks conserve the main characteristics of the metabolic networks at the genomic

scale. The similarity between both ecosystems might reflect limitations in knowledge of the

environments and the large amounts of un-annotated sequences present in their metagenomes.

To address the impact of the metagenomic scale on the metabolic reconstruction process,

we compared the obtained results with those reported for the genome-scale networks of the

non-compartmentalized model of E. coli and the multi-compartment model of S. cerevisiae.
Significant differences between the percentages of disconnected metabolites in the genomic-

scale and metagenomic-scale models were found. Kumar et al. [24] showed that about 10.4%

of all metabolites in the E. coli model were disjointed from the rest of the metabolism, while in

the non-compartmentalized models of the microbial communities about 84.4% of all metabo-

lites were disconnected. In the case of the multi-compartment model of S. cerevisiae, Kumar

et al. [24] reported that approximately 30% of all metabolites in the model were disjointed, in

contrast with 85.1% of all metabolites disconnected in compartmentalized models of microbial

communities. The presence of unbalanced metabolites in the metagenomics models with

respect to the genomic models is not surprising due to the fact that the main gaps were identi-

fied in secondary metabolism pathways, which are more abundant in microbial communities

than in individual microorganisms. Furthermore, E. coli and S. cerevisiae are extensively stud-

ied and well characterized models.
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The effects of the process of compartmentalization on the gaps features of the network con-

nection and in the resulting network after the curation process were assessed. The non-inter-

vened soil sample contained more gaps, possibly due to the fact that this non-intervened

ecosystem has more reactions and metabolites to reconnect. During the curation process, a

higher percentage of reconnections for the non-compartmentalized models was obtained. This

was because non-compartmentalized models did not show problems in the restoration of

flows between inner compartments and the cytoplasm. These results show that the compart-

mentalization processes have a significant impact on the curation process. The reconstruction

of compartmentalized metabolic networks for the microbial genomes is significantly more

challenging than that for individual microorganisms because of the larger size of the networks

and the considerable variation of metabolic activity between microorganisms [43]

Conclusions

The modeling of microbial communities through this systems biology approach highlighted

the main features of the studied ecosystems and the main and more determinant steps in the

metabolic network reconstruction at a metagenomics-scale. One of the most critical steps in

this study was the curation of the metabolic networks. This step had a significant effect on the

results obtained for each model, because the flow restoration affected the interconnection

between the central and the secondary metabolism, as well as the ability to interchange metab-

olites between the inner cellular compartments and the cytoplasm. Another important step in

this metabolic reconstruction was the compartmentalization process given that a detailed dis-

tribution and cellular localization of metabolic functions at a metagenomic scale is very diffi-

cult to determine. This is because of the size of the networks and the considerable variation in

the subcellular compartmentalization of the metabolic processes between different microor-

ganisms. Therefore, the predicted cellular compartments for the metabolic networks may be

improved by using other methods that complement the predictions of CELLO and the litera-

ture review.

The integration of the results of the taxonomic and metabolic profiles of the ecosystems

and of the FBA, indicates that the non-intervened soil had a greater capacity to regulate bio-

geochemical cycles. On the other hand, the topological analysis showed that there were no sig-

nificant structural differences between the compartmentalized and non-compartmentalized

networks in either the intervened and non-intervened soil samples. Results also show that the

metabolic networks at a metagenomics scale conserved the main characteristics of the meta-

bolic networks at a genomics scale. At a metagenomics scale, metabolic networks fit to a type

of scale-free network and conserve the small-world property, minimizing transition times

between metabolic states, thus increasing the network efficiency.

The compartmentalized metabolic networks highlight information of ecosystems that is

generally underestimated in non-compartmentalized models, like the role of metabolic fluxes

involved in the transport between the inner compartments and the cytoplasm and between the

cytoplasm and the extracellular space. Notably, the curation and reconstruction processes of

compartmentalized networks are more challenging and more expensive in terms of time and

computational resources. Therefore, it must be determined if the purpose of the research justi-

fies the resources invested in the process of compartmentalization.
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