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Abstract: Background: treating infectious diseases in elderly individuals is difficult; patient referral
to emergency services often occurs, since the elderly tend to arrive at consultations with advanced,
serious symptoms. Aim: it was hypothesized that anticipating an infectious disease diagnosis by a
few days could significantly improve a patient’s well-being and reduce the burden on emergency
health system services. Methods: vital signs from residents were taken daily and transferred to a
database in the cloud. Classifiers were used to recognize patterns in the spatial domain process
of the collected data. Doctors reported their diagnoses when any disease presented. A flexible
microservice architecture provided access and functionality to the system. Results: combining two
different domains, health and technology, is not easy, but the results are encouraging. The classifiers
reported good results; the system has been well accepted by medical personnel and is proving to be
cost-effective and a good solution to service disadvantaged areas. In this context, this research found
the importance of certain clinical variables in the identification of infectious diseases. Conclusions:
this work explores how to apply mobile communications, cloud services, and machine learning
technology, in order to provide efficient tools for medical staff in nursing homes. The scalable
architecture can be extended to big data applications that may extract valuable knowledge patterns
for medical research.

Keywords: early diagnosis; infections; patients; machine learning; computer systems; internet use;
cloud computing

1. Background and Objectives

The world’s older population is growing at a significant rate. Today, 8.5% of the
population is aged 65 and over; this will increase to 17% by 2050 [1]. Infectious diseases
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are common (and serious) in this group, often requiring the use of emergency services,
degrading their efficiency, and sometimes overburdening them to the point of collapse [2].

The use of digital technology for health supports a patient-centric approach, based
on communication, empathy, and collaboration between patients and practitioners [3].
eHealth provides mobility with portable devices, wearables or smartphones, ubiquitous
services, and adaptive resources with the cloud. eHealth research addresses electronic
records, computerized order entries, e-prescribing, clinical decision support systems
(CDSS), telemedicine, health knowledge management, triage, virtual healthcare teams,
and medical mobility services (mHealth). eHealth is supported by advanced IT, such as
big data, machine learning, artificial intelligence, cloud services, mobile devices, and the
internet of things (IoT) [4–6].

However, technology implementations could clash with practitioners and nurses in
some cases, as they entail additional workloads. In addition, eHealth decision support
systems do not absolve doctors from their accountability [7]. Data-based systems also face
the challenge of scarce and poor-quality data in regard to training the model, sometimes
becoming unaffordable due to ignoring procedures [8]. The long learning curve of a
new eHealth system slows deployment; changes can also be seen as a threat to existing
job conditions.

The hypothesis is that anticipating an infectious disease diagnosis by a few days
could improve a patient’s well-being, alleviate the health system’s resources, and result
in relatives having a “better perception”. Cost-effectiveness is an important driver for
national health systems, i.e., to improve medical services for citizens [9]. The evolution of
an infectious process is characterized by changes in vital signs. These data could be used
to determine the probability of developing an infectious disease [10].

Machine learning (ML) techniques can be used for predictive modeling [11]. They
provide pattern recognition and forecast the evolution of a disease, improving the protocols
of control and care. ML is an area of computer science derived from artificial intelligence.
It provides satisfactory results in eHealth and medicine [12].

This research presents the application of mobile communications, cloud services, and
machine learning technology to provide efficient tools to medical staff in nursing homes in
order to predict the development of infectious diseases. The approach taken by our study
makes it somewhat different from other proposals, due to its particular characteristics. The
patients were not cared for in usual health centers, but were elderly people living in nursing
homes. Three particular infectious diseases were considered: acute respiratory, urinary
tract, and skin and soft tissue infections; a customized biosensor system was developed for
the project; the communications infrastructure for data collection, storage, and analysis
ws based on microservices; and machine learning algorithms were integrated into the
microservices for prediction purposes.

To this end, vital signs from the residents were taken daily and transferred to a
database in the cloud by means of an experimental data capture system. Classifiers were
used to recognize patterns in the spatial domain process of the collected data. In this
context, this research found the importance of certain clinical variables in the identification
of infectious diseases, as we will discuss later. These vital signs were selected because
they may change due to the pathophysiological adaptations that take place in infectious
diseases. Thus, the infection-related inflammation process, stress induced activation of the
sympathetic nervous system, and modifications of the activities of the nuclei that regulate
heart and lung functioning may modify body temperature, electrodermal activity, oxygen
saturation, heart beat rate, and blood pressure.

2. Related Work

The references listed below were selected in relation to the underlying problem of this
study: the possibility of early diagnosis by collecting and processing medical data that
were further analyzed by advanced hardware and software architectures and tools.
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2.1. Early Diagnosis

Given the importance of anticipating the diagnoses of infectious diseases, it is surpris-
ing that this concept remains a novelty. Similar approaches for high-risk and very severe
cardiopathies [13] or pneumopathies [14] have been proposed. However, anticipating
respiratory and urinary infections has not yet been practicable or sustainable, even after
considering the high prevalence. The selected infectious diseases based on their prevalence
in elderly individuals, are acute respiratory infection (ARI), urinary tract infection (UTI),
and skin and soft tissue infection (SSTI).

2.2. Collecting and Processing Medical Data

Sensors used to capture medical signs can be placed in public or private spaces, such as
cameras, barometers, microphones, passive infrared (PIR), ultrasound motion detectors, or
radio frequency identification (RFID). They can also be embedded in mobile devices, such
as accelerometers, magnetometers, or gyroscopes (A/M/G), and be worn, such as smart-
watches or alert necklaces [15]. The last category of sensors are those expressly applied on
the body of the patient, such as body thermometers, pulse oximeters, tensiometers, elec-
trocardiograms (ECGs), or electroencephalograms (EEGs). The sensors can be networked
through wireless sensor networks (WSNs) or body area sensor networks (BASNs).

Once heterogeneous clinical data are collected, they are cleaned, filtered, individu-
alized, and combined. The use of ML, deep learning (DL), artificial intelligence (AI), or
ambient intelligence (AmI) in this context [16] motivates research on the automatic identifi-
cation of the basic activities of daily living. Service provisioning requires self-contention to
ensure nonintrusive technology [17].

The information gathered by large sensor networks, such as the IoT [18], makes the utiliza-
tion of multi-agent management integration [19] and pervasive mobile communications [20],
known as mHealth in the medical field, advisable. This allows for delivering new advanced
services, such as ECG wearable devices [21], accepted portable mobile applications [22],
mobile advisors for drug dosage and adverse reactions [23], medical recommenders for dif-
ferent medical specialties [24–26], fast automatic triage [27], professional medical education
programs [28], and telecare systems [29], among many others.

2.3. Hardware and Software Architectures and Tools

The cloud supplies computing power and data storage on demand as scalable com-
modities under three layers of service: infrastructure (IaaS), platform (PaaS), and software
(SaaS). Security and privacy are key requirements for the cloud due to the sensitive infor-
mation in medical records [5,30].

Microservice architecture is derived from service-oriented architecture (SOA) [31] to
provide flexible and scalable execution properties in the cloud. Each microservice plays
specific roles depending on the database (DB) requirements [32]. External configuration,
microservice discovery, load balancing, central login, metrics, or autoscaling require atten-
tion. There are powerful software tools available for delivering applications rapidly by
adopting the microservice paradigm [33].

With regard to software tools, ML provides a good approach for data-based predictive
analysis [11]. Many algorithms provide knowledge pattern recognition and forecasting,
suggesting the possibility of anticipating the diagnosis of diseases from monitored medical
data. ML has techniques that have been widely applied, with satisfactory results in
eHealth [12].

Some unsupervised learning techniques used in eHealth are K-means, density-based
spatial clustering of applications with noise (DBSCAN), self-organized maps (SOMS),
similarity network fusion (SNF), perturbation clustering for data integration and disease
subtyping (PINS), and cancer integration via multikernel learning (CIMLR), among others.
Common supervised learning algorithms in this domain are support vector machine (SVM),
iterative dichotomizer 3 (ID3), K-nearest neighbor (KNN), Naive Bayes (NB), Bayesian
networks, linear regression, and logistic regression for classification [34].
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3. Materials and Methods

This research provides a complete experimental system for gathering medical infor-
mation from elderly individuals, analyzing the data with predictive ML models.

The experiments performed follow a holistic view, where the data gathering requires
defining the scope of the experiment, the protocol or workflow for the medical personnel,
the mobile set of instruments, the software platform, and the data analysis techniques.

3.1. Participants, Procedure, and Ethical Considerations

This proposal is intended to be applied for institutional residents in nursing homes
that are susceptible to developing infectious diseases. A workflow is defined for nurses to
collect vital signs on a daily basis from their assigned residents. Doctors must report any
infectious disease detected in any of these residents.

The protocol requires that residents or relatives approve its use beforehand due to
normative restrictions and to protect the individual’s privacy.

The assigned nurses must follow the following protocol: seated in front of the resident,
they (1) turn on the app (on the tablet); (2) switch the hub on, as well as the app connection;
(3) select the patient’s ID; (4) deploy the medical sensors on the arms and hands; (5) press
the start button to start the readings; (6) save the data locally once the measurements are
verified; (7) and upload the data to the Cloud DB as soon as the tablet is connected to the
internet (WiFi or telephony). Finally, nurses place the devices back into the cases for the
next residents. Figure 1 shows the workflow of the procedure.

Figure 1. Protocol workflow.

The nurses are to ensure that the batteries of the active sensors, hub, and tablet, are
fully charged for the next day, and to promptly report any incidents observed that could
compromise the data acquisition.

Finally, ethical consideration for setting clear limits for the research and protecting peo-
ple’s privacy was implemented at the beginning of this project, following the instructions
of the founders by means of private statements in their hands.

3.2. Instruments

The nurses use a portable set of biosensors to take the required medical signs from the
residents. The equipment must be comfortable to carry and fast to deploy. The different
components must be resistant to manipulation, and the application must be robust to
perturbances and anomalous events. For general deployment, the equipment must receive
approval from the respective health systems.

It is necessary that the equipment be seen as comfortable to operate by the assigned
personnel and allow for a warm relationship with the resident. The mobile application
that operates the equipment must be fully functional online and offline, avoiding delays in
the process.
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The field equipment used by the nurses are small cases with customized sets of four
sensors obtained from a commercial vendor [35], prepared for the devices and the tablets
used for the mobile applications, as shown in Figure 2.

Figure 2. Customized briefcase to carry the medical sensor set.

The four biosensors collected five vital signs, taking (1) the average, maximum, and
minimum values of the electrodermal activity (EDA) and heart beat rate; (2) the maximum
and minimum oxygen saturation (SPO2); (3) the body temperature when stable; and
(4) both the systolic and diastolic blood pressure. A hub quantifies and multiplexes the
signals and sends them as a mobile application (app) via Bluetooth, as shown in Figure 3.

Figure 3. Medical sensor, hub, and android tablet connections.

After preprocessing the signals, the android-based apps check that the values are
within the expected ranges, store them in the tablet, and try to connect to the internet when
WiFi is available to upload the outstanding records asynchronously to the cloud DB. The
operation does not stop when there is no internet coverage. If there are 19 variables (means,
dates, flags, etc.), and the device needs to reserve memory, considering the same size for all
residents (double precision), and each device is used with 100 residents monitored daily,
the local memory required over 2 years would be 84 MB. The current version of the app
requires 50 M, which is far less the resources of the tablet, i.e., 11 GB [36], or any current
mobile phone.

The hub autonomy is 10 h in streaming mode, and the tablet has a 5000 mAh battery
that lasts approximately 3 h, which is enough for one day if it is fully charged overnight.
Cables are a problem, however, and the main cause of failure, as they are too thin, and the
nurses are in a hurry. Wireless connections for the sensors should work better.

3.3. System Design

This project requires special attention to the software platform, implemented by cloud
services and microservice architecture. The software platform must provide flexibility in
computation resources and functionality to quickly adopt new services and applications.
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Collaboration among different teams must be ubiquitous, and the nature of the data leads
to a need for special attention to its security. The cloud suits the requirements well, but it is
necessary to respond to security, availability, maintainability, and normative issues [37].

Two main scenarios must inspire the deployment of the software platform: (1) for
offline applications, such as medical decision assistants, and (2) for online applications,
such as remote real-time monitoring telecare, which encompass the need for immediate
actions triggered by the alerts [38].

The data stored in the mobile application are exported in CSV format to a database in
the cloud and then remain available for the micro-service-based data analysis tasks.

The SaaS database is asynchronously nurtured from quasi-unlimited concurrent up-
loading sessions set with each mobile application. A small cloud storage package of 100 GB
would support 1190 mobile applications, monitoring 100 residents each, uploading data
for 2 years, yielding a total of 119,000 residents. The cloud provides [39] (1) efficient
multitenancy; (2) sharing data for different goals; (3) elastic scalability, allowing rapid
deployments of complete scenarios, in nonstop ongoing synchronization and self-adapting
to the new demands of resources; and (4) data privacy.

The cloud software [40] is implemented in a layered microservice architecture [41],
because of [42] (1) the low-cost implementation; (2) the options available to develop
different levels of software quality; (3) the scalable and adaptable resource configuration
on demand—each component can be individually duplicated; and (4) the compatibility
with smart devices and several communication protocols. Mobile devices access the API
gateway and user PCs with the web UI. Users call the microservices with their credentials
(“nurse”, “doctor”, or “administrator”). The microservices interconnect themselves to
build a single application for users.

The microservices are classified into three groups, all sharing the data via JSON
request/response HTTP for (1) interfacing with the physical biosensor application; (2) man-
aging the access policies; and (3) synchronously recording the reports by doctors about
patients developing infectious diseases. The architecture uses the representational state
transfer (REST) API for data integration, transference, and storage [43]. The software
applications are split into small purpose-specific programs with UIs for different domains
or APIs to interconnect with third-party applications [44] throughout the infrastructure
layer [32], as shown in Figure 4.

Figure 4. Microservices software architecture for anticipated diagnosis of infectious diseases.

The “things” layer connects the hardware to the network layer and validates the
signals. The network layer opens connections to mobile applications for asynchronous
data transference [45]. The processing layer assigns each device the corresponding access
privileges for their methods to the microservices. The microservices layer provides the
service respontses to the specific queries. The infrastructure layer delivers availability,
scalability, and data integrity for the upper layers, with networking, processing, and storage
resources [46]. It manages data with MapReduce in distributed computing [44] and stores
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data with Apache Hadoop in Cassandra NoSQL DB [47] to improve the error tolerance.
This layer also accepts complex computation tasks from upper layers—authentication or
interoperability—to alleviate their resources for their primary operations [48].

3.4. Analysis by Machine Learning Classifiers

The daily medical data gathered from residents can be treated with ML techniques in
time or spatial domains, also known as longitudinal or cross-sectional studies. The time
approach studies the evolution of certain variables using time series, while the spatial
approach considers the relations among the medical variables of a sample, finding patterns
and making classifications, according to all samples. Time series are good for predicting,
but are not essential. In fact, the spatial domain is more precise for pattern recognition
analysis. The spatial domain works complementarily with the time domain approach.

In this work, we approached the analysis of the clinical data under a spatial approach.
The absence of the time component prevents a predictive approach, but the spatial di-
mension allows for a more precise pattern recognition analysis. In this way, it is possible
to classify a sample measured from an individual as a sample recognized as possibly
indicating an infectious disease. In addition, the information obtained with this approach
will allow us to perform a better predictive analysis based on time series in the future.

The learning phase allows us to know the relative weight of each direct or transformed
feature in the classification or prediction of an infectious disease. The performance of the
classifier can be measured with error performance and the coefficient of determination (R2).

This analysis is coded with an API of the Waikato Environment for Knowledge Analy-
sis (WEKA) [49], Java-based ML software implemented in the Apache Spark development
environment [50], Java Servlet (JS), and Java Server Pages (JSP) [51] for handling the data
entries of the microservices. The Java web service is in Apache Maven [52].

The goal of applying these ML methods was not to compare the prediction rate with
the true incidence, but to be a first approach for data classification integrated on the web
service, to experiment with the influence of the clinical variables on the predictable yielding
success with regard to each type of infection.

4. Results

Spanish health authorities approved running this project in two nursing homes in
Madrid. The main population and resources of these institutions are shown in Table 1.
The data in the table refer to residents participating, where the inclusion criterion was the
ability to understand the purpose of the experiment and volunteering.

Table 1. Monitored population and resources.

Population Cardenal Cisneros Francisco de Vitoria Total

Residents 127 316 443
Participants 20 40 60
Participants (%) 16% 13% 14%
Participants who developed
disease 7 33 40

Minimum age 79 67 67
Maximum age 94 101 101
Average age 88.7 89.7 89.5
Std. deviation 5.1 7.0 6.6

Medical staff 4 14 18

Start collecting 24 March 2018 4 April 2018
End collecting 11 March 2019 11 March 2019

The medical team selected the variables listed in Table 2 and indicated their ex-
pected ranges.



Int. J. Environ. Res. Public Health 2021, 18, 13278 8 of 16

Table 2. Vital signs to monitor and life-compatible ranges.

Vital Sign Valid Range Out of Range

Body temperature (T) 34 ºC < T < 42 ºC T < 34 ºC, T > 42 ºC
Electrodermal activity (EDA) EDA > 0.2 µS EDA < 0.2 µS
Oxygen saturation (SPO2) 70% < SPO2 < 100% SPO2 < 70%
Heart Rate (HBR) HBR > 30 bpm HBR < 30 bpm
Blood pressure (DIA) DIA > 30 mmHg DIA < 30 mmHg
Blood pressure (SYS) SYS > 60 mmHg SYS < 60 mmHg

The mobile application attaches the date and time of the sample and the patient identi-
fication code to the collection of signals; this is manually anonymized by the nurse assigning
the code, and the nurse sets flags to indicate if the record has been successfully uploaded.

4.1. Protocol and Acceptance

The healthcare personnel (doctors and nurses) are trained to know the process, look
after the equipment, and fix minor incidents. The learning process was conducted with
18 volunteers until they could proceed autonomously. After that, they were requested to
simulate, more than once, the process for taking samples and recording the duration. The
purpose of this small experiment was to improve the data collection protocol, not only to
facilitate the work of the personnel, but also to increase the potential number of residents
susceptible to monitoring. Table 3 shows the results.

Table 3. Time (h:min:s) required for training and taking one sample.

Activity Mean Std. Deviation

Learning process 0:07:00 0:02:10

Process execution:
Sensors deployment on the body 0:01:55 0:00:49
APP initialization 0:00:33 0:00:38
Sensors delay 0:01:12 0:00:33
Upload the data to the cloud and resume 0:00:35 0:00:22
Total time consumed per resident 0:04:15 0:01:14

Learning the process takes only 7 min on average. The vital sign collection, on the
other hand, only takes 4 min and 15 s on average, yielding the possibility for one nurse to
monitor 54 patients in 4 h. Greetings and moving to the next room, along with any other
activity could slow down that rate, although practice would compensate and speed up
the process.

The experiment also recorded the volunteers’ ages, ranging from 20 to 70 years, and
digital competency with a self-graded scale from 1 (IT illiterate) to 5 (digital native). Older
volunteers spent slightly more time learning than younger volunteers, but the Kruskal–
Wallis (KWT) [53] test gave a p-value of 0.428, showing that this result is not conclusive.
The KWT—applied for the need to be IT skilled—gave a p-value of 0.088, confirming that
the personnel do not need to be IT literate.

The process is fast and comfortable, as only the arms and hands of the residents are
exposed to the daily test, not requiring undressing or intimate contact. Additionally, the
presence of the nurse helps to generate a friendly environment for caregivers and residents.

The protocol for the doctors does not require anything other than reporting when the
resident is developing a disease, which infection the symptoms are compatible with, the
date of the alert, and if there was a referral to the emergency services.
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4.2. System Efficiency

The software architecture attempts to check its efficiency, integration, compatibility,
and performance, counting errors when the components interact [54]. The testbed has
two Docker containers (1 vCPU, 4 GB, 120 GB Disk, Ubuntu 16.04.6 LTS); Apache for the
endpoint and Nginx as the frontend proxy and load balancer. Nginx receives the user
queries and forwards them to the microservices; Apache JMeter measures the workload [55].
BlazeMeter servers (US East—Virginia, AWS) simulate the workload [54,56]. Microservice
#1 (MS1) provides a search of over 6297 records, and Microservice #2 (MS2) requests
138 records of residents with infectious diseases for 20 and 50 concurrent virtual users. ALL
is the sum of MS1 and MS2. There are two scenarios: EIM-1-FB with frontend–backend “full
stack”, shown in Table 4, and EIM-2-F, frontend-only, shown in Table 5 and two workload
tests of 20 min each with 20 and 50 virtual users (threads), respectively, which gradually
increase the queries per second, reaching 14,602 on average.

Table 4. Workload testing report for EIM-1-FB 20/50. The time measurement is the average in ms.

Label Samples Resp. Time Avg. Hit/s 90% Line 99% Line #Error Avg. Latency Users

ALL 29,939 782 25 755 5247 0 252 20
MS1 14,977 811 13 767 5151 0 280 20
MS2 14,962 752 13 719 5311 0 223 20
ALL 29,227 2003 24 1863 13,759 0 582 50
MS1 14,625 1991 12 1863 13,439 0 627 50
MS2 14,602 2016 12 1871 14,079 0 538 50

Table 5. Workload testing report for EIM-2-FB 20/50. The time measurement is the average in ms.

Label Samples Resp. Time Avg. Hit/s 90% Line 99% Line #Error Avg. Latency Users

ALL 3456 6785 3 15,487 38,911 6 3520 20
MS1 1733 6777 1 15,295 37,375 5 3645 20
MS2 1723 6794 1 15,487 40,703 1 3582 20
ALL 215,825 164 180 53 1047 79,944 85 50
MS1 107,925 147 90 56 1047 39,973 90 50
MS2 107,900 182 90 49 1047 39,971 79 50

4.3. Data Analysis

This research analyzed the performance of three space-based ML algorithms: (1) naive
Bayes (NB) [56], which is easy to implement and is widely used for medical diagnosis
and disease prediction; (2) filtered classifier (FC) [57], which classifies previously filtered
or preprocessed data; and (3) random forest (RF) [58], a supervised classifier that is used
for this work the random tree (RT) technique to build decision trees for the classification.
The reason for choosing these three algorithms is that they allow modifications of the
weight of the attributes. In this way, the medical personnel can assign different significance
levels to the clinical parameters for diagnostic purposes; for example, we can assign more
relevance to body temperature in the classification and analyze how the corresponding
results improve (or not) in other cases. The basic settings of these algorithms were those
provided by default in WEKA to handle problems of similar complexity.

The analysis starts with a web service for NB and FC as a first approach for data
classification, and then a software application to experiment with the weights of the
variables for the RF is developed. The next figures help to visualize the data of patients
developing infections. Figure 5 depicts the vital signs of one resident developing IRA,
Figure 6, one developing a UTI and Figure 7, another developing an SSTI.
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Figure 5. Vital signs evolution of one resident with ARI.

Figure 6. Vital signs evolution of one resident with UTI.

Figure 7. Vital signs evolution of one resident with SSTI.

The WEB service for NB and FC classifies an input sample as a possible ARI, UTI,
or SSTI infection. First, the user selects the algorithm and then uploads the medical data
record of any resident. The trained model classifies the test data into the three types of
infection, providing, as a result, the success rate of the classification (% for the patient
developing any of the infectious processes and identifying which one it is) and the weight
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of each medical parameter affecting the prediction. The model has been trained with other
residents who have developed these diseases.

5. Discussion

The obtained results are quite satisfactory, but they are not accurate enough due to
the short period for sampling. To obtain more accuracy, it is necessary to either extend the
period of the experiment or apply certain techniques for small datasets, such as including
context variables, such as the season, holidays, and weather [59].

With RF, the type of infectious disease is deduced from the independent variables,
considering low entropy, a measure of the amount of possible information disorder or
randomness. All available samples (6277) from all patients (60) are split 95% for the training
dataset (5963) and 5% for the validation dataset (314). Only 129 developed ARI, 95 UTIs,
and 90 SSTI infections. The process is repeated up to 11 times, changing the weights
of the variables according to their importance in the classification. Thus, it is possible
to determine which of the 11 variables is better for medical personnel to concentrate on
when monitoring the patients. With the available data, the minimum heartbeat rate (HBR)
provided the best success rate (%), followed by the average HBR, as shown in Figure 8.

Figure 8. Relative frequency of correct classifications per variable.

Although these figures do not show an impressive performance prediction in general,
the results present a significant difference in predictability for each infection. Figure 9
shows the true positives (%) with respect to the variables for each of the diseases.

Figure 9. Success ratio detecting infectious diseases. (a) Orange: ITU, (b) Gary: PB, (c) Blue: ARI.
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ARI infection is significantly more predictable, yielding 100% success for some vari-
ables. On the other hand, SSTI infections are harder to predict with the selected variables.
It is necessary to note that there are fewer SSTI training records than for ARI, and the
former model was less trained than the latter, again indicating the need to extend the
period of sampling.

Finally, the most important variable for all of the diseases is the average HBR.

6. Conclusions

This research proposes a comfortable, flexible, accessible, and cost-effective eHealth
monitoring system for residents in nursing homes, and analyzes the predictability of
infectious diseases based on the vital signs collected in the pilot study. Its cost-effective
implementation allows disadvantaged areas and less accessible populations to be reached.

This paper has demonstrated that the system is easy to use and that there is no need
for IT skills for nurses. In addition, the protocol is especially resident-friendly, improving
relationships with caregivers.

The microservice-implemented architecture is cost-effective and scalable. The stress
tests indicate when the system experiences saturation. The functionality of the microser-
vices to carry out the optimal service has been tested. The mobile application is an open
standard that can be installed in any android device with minimum changes.

The problems of the cable organization are under research, with a new design of
wireless biosensors ported in a suitcase or a tray. The active elements will be charged
on a contactless surface, releasing the nurses or replacing the exhausted batteries. The
equipment will be approved by the authorities.

Regarding the data analysis, the main contribution of this work lies in the findings
of the importance of certain clinical variables in the identification of infectious diseases.
There was no variable with significant relevance for predicting all of the selected infectious
diseases. However, among these diseases, the HBR showed a higher impact in the classifi-
cation. Moreover, the ARI was proven to be better detected than the others. The size of the
scenario conditions the classification results. Other factors that affect the predictions are
the repeatability of the biosensors, the awareness of the medical personnel, and the type of
infection (among other factors). However, this study shows some valuable results and is a
good starting point for further research.

Other space- and time-based machine learning techniques will follow this study. In
particular,it is interesting to tackle the clinical data analysis under a time series approach.
Moreover, larger datasets should be collected to improve the classifier training and the
time series accuracy.

Author Contributions: Conceptualization, D.R.-P.; data curation, H.C.-G., J.M.G.-P., M.V.-L., J.L.C.-S.,
M.P.A., J.S.-M. and M.-L.P.-L.; formal analysis, A.G.-J., J.M.G.-P. and J.A.G.-P.; funding acquisition,
J.A.G.-P., M.V.-L. and J.S.-M.; investigation, A.G.-J., H.C.-G., J.M.G.-P. and J.A.G.-P.; methodology,
A.G.-J., J.M.G.-P., J.A.G.-P. and J.S.-M.; project administration, J.M.G.-P., J.A.G.-P., M.V.-L., M.P.A. and
J.S.-M.; resources, H.C.-G., J.M.G.-P., M.V.-L., J.L.C.-S. and M.P.A.; software, H.C.-G. and J.L.C.-S.;
Supervision, J.A.G.-P., M.V.-L., M.P.A., J.S.-M. and M.-L.P.-L.; validation, M.P.A.; writing—review
and editing, D.R.-P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the EU Member States and Associated Countries and the
Community of Latin American and Caribbean States (LAC) within the 7th Framework Programme
for Research and Technology Development (FP7-INCO) grant number ELAC2015/T09-0819 (project
SPIDEP: “Design and implementation of a low-cost smart system for pre-diagnosis and telecare
of infectious diseases in elderly people”) and by the Government of Extremadura (Spain) grant
number IB16002.

Institutional Review Board Statement: Ethical review and approval were waived for this study, due
to methodology approved by the research project.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.



Int. J. Environ. Res. Public Health 2021, 18, 13278 13 of 16

Acknowledgments: The authors would like to extend special thanks to all of the clinical and health-
care staff of the nursing homes for the elderly, the Francisco de Vitoria and Cisneros centers of the
Department of Social Policies and Family of the Community of Madrid in Spain, and Ntra. Sra del
Carmen and Carls George in the Dominican Republic, who generously worked with us to obtain the
medical data of the residents. Furthermore, the authors acknowledge the support given by Carlos III
Health Institute, Spain (ISCIII), Fundación para la Investigación Biomédica del Hospital Universitario
Príncipe de Asturias (FIBHUPA), and the National Secretariat of Science, Technology and Innovation
of Panama (SENACYT), under the National Research System (SNI).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:
AI Artificial Intelligence
AmI Ambient Intelligence
ARI Acute Respiratory Infection
BADL Basic Activities of Daily Living
BASN Body Area Sensor Networks
CDSS Clinical Decision Support Systems
CIMLR Cancer Integration via Multi-kernel Learning
DB Database
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DIA Diastolic Blood Pressure
DL Deep Learning
ECG Electrocardiogram
EDA Electrodermal Activity
EEG Electroencephalogram
FC Filtered Classifier
HBR Heart Beat Rate
IaaS Infrastructure as a Service
IADL Instrumental Activities of Daily Living
ID3 Iterative Dichotomizer 3
JS Java Servlet
JSP Java Server Pages
KNN K-Nearest-Neighbor
KWT Kruskal–Wallis
mHealth Medical Mobility Services
ML Machine Learning
MSE Mean Squared Error
NB Naive Bayes
NIST National Institute of Standards and Technology
PaaS Platform as a Service
PINS Perturbation Clustering Approach for Data Integration and Disease Subtyping
PIR Passive Infrared
REST Representational State Transfer
RF Random Forest
RFID Radio Frequency Identification
SaaS Software as a Service
SNF Similarity Network Fusion
SOA Service Oriented Architecture
SOMS Self-Organized Maps
SPO2 Oxygen Saturation
SSTI Skin and Soft Tissue Infection
SVM Support Vector Machine
SYS Systolic Blood Pressure
UTI Urinary Tract Infection



Int. J. Environ. Res. Public Health 2021, 18, 13278 14 of 16

WEKA Waikato Environment for Knowledge Analysis
WSN Wireless Sensor Networks

References
1. Kontis, V.; Bennett, J.; Li, G.; Foreman, K.; Ezzati, M. Future life expectancy in 35 industrialised countries: Projections with a

Bayesian model ensemble. Lancet 2017, 389, 1323–1335. [CrossRef]
2. Gardner, G. The use and abuse of the emergency ambulance service: Some of the factors affecting the decision whether to call an

emergency ambulance. Arch. Emerg. Med. 1990, 7, 81–89. [CrossRef] [PubMed]
3. Adaji, A.; Melin, G.; Campbell, R.; Lohse, C.; Westphal, J.; Katzelnick, D. Patient-Centered Medical Home Membership Is

Associated with Decreased Hospital Admissions for Emergency Department Behavioral Health Patients. Popul. Health Manag.
2017, 21, 172–179. [CrossRef]

4. Liu, Y.; Ren, W.; Qiu, Y.; Liu, J.; Yin, P.; Ren, J. The Use of Mobile Phone and Medical Apps among General Practitioners in
Hangzhou City, Eastern China. JMIR MHealth UHealth 2016, 4, e64. [CrossRef] [PubMed]

5. Fan, L.; Buchanan, W.; Thuemmler, C.; Lo, O.; Khedim, A.S.; Uthmani, O.; Lawson, A.; Bell, D. DACAR platform for eHealth
services cloud. In Proceedings of the 2011 IEEE 4th International Conference on Cloud Computing, Washington, DC, USA, 4–9
July 2011; pp. 219–226. [CrossRef]

6. Souza, P.; Hochhegger, B.; Cavalcanti da Silveira, J.; Pretto, C.; Moralles, C.; Tronchoni, A. MediCloud—Telemedicine System
Based on Software as a Service (SaaS). J. Telemed. EHealth Russ. 2016, 1, 38–40.

7. Keen, J. Digital health care: Cementing centralisation? Health Inform. J. 2014, 20, 168–75. [CrossRef] [PubMed]
8. Kargl, F.; Lawrence, E.; Fischer, M.; Lim, Y. Security, Privacy and Legal Issues in Pervasive eHealth Monitoring Systems. In

Proceedings of the 2008 7th International Conference on Mobile Business, Barcelona, Spain, 7–8 July 2008; pp. 296–304. [CrossRef]
9. Wishner, J.B.; Solleveld, P.A.; Rudowitz, R.; Paradise, J.; Antonisse, L. A Look at Rural Hospital Closures and Implications for

Access to Care: Three Case Studies. Kais. Comm. Medicaid Uninsured 2016, 1–16.
10. Nishiura, H. Early efforts in modeling the incubation period of infectious diseases with an acute course of illness. Emerg. Themes

Epidemiol. 2007, 4, 2. [CrossRef]
11. Alpaydin, E. Introduction to Machine Learning, 3rd ed.; Adaptive Computation and Machine Learning; MIT Press: Cambridge,

MA, USA, 2014.
12. Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [CrossRef]
13. Ong, M.; Romano, P.; Edgington, S.; Aronow, H.; Auerbach, A.; Black, J.; Marco, T.; Escarce, J.; Evangelista, L.; Hanna, B.; et al.

Effectiveness of Remote Patient Monitoring After Discharge of Hospitalized Patients With Failure. JAMA Intern. Med. 2016, 176,
310–318. [CrossRef]

14. Chatwin, M.; Hawkins, G.; Panicchia, L.; Woods, A.; Hanak, A.; Lucas, R.; Baker, E.; Ramhamdany, E.; Mann, B.; Riley, J.; et al.
Randomised crossover trial of telemonitoring in chronic respiratory patients (TeleCRAFT trial). Thorax 2016, 71, 305–311.
[CrossRef]

15. Cornacchia, M.; Ozcan, K.; Zheng, Y.; Velipasalar, S. A Survey on Activity Detection and Classification Using Wearable Sensors.
IEEE Sens. J. 2016, 17, 386–403. [CrossRef]

16. Esch, J.; Rashidi, P. A Survey on Ambient Intelligence in Healthcare. Proc. IEEE 2013, 101, 2467–2469.
6654. [CrossRef]

17. Mohammed, F.; Idries, A.; Mohamed, N.; Al-Jaroodi, J.; Jawhar, I. UAVs for smart cities: Opportunities and challenges. In
Proceedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014;
pp. 267–273. [CrossRef]

18. Uddin, M.Z.; Khaksar, W.; Torresen, J. Ambient Sensors for Elderly Care and Independent Living: A Survey. Sensors 2018,
18, 2027. [CrossRef] [PubMed]

19. Shakshuki, E.; Reid, M. Multi-Agent System Applications in Healthcare: Current Technology and Future Roadmap. Procedia
Comput. Sci. 2015, 52, 252–261. [CrossRef]

20. Kamel Boulos, M.; Brewer, A.; Karimkhani, C.; Buller, D.; Dellavalle, R. Mobile medical and health apps: State of the art, concerns,
regulatory control and certification. Online J. Public Health Inform. 2014, 5, 229. [CrossRef]

21. Rachim, V.P.; Chung, W.Y. Wearable Noncontact Armband for Mobile ECG Monitoring System. IEEE Trans. Biomed. Circuits Syst.
2016, 10, 1–7. [CrossRef]

22. Uqaili, A. Smartphone Use among Young Doctors and Their Impact on Patients of Liaquat University Hospital Jamshoro. Imp. J.
Interdiscip. Res. (IJIR) 2017, 3, 161–164.

23. Apidi, N.; Murugiah, M.; Muthuveloo, R.; Soh, Y.; Caruso, V.; Patel, R.; Ming, L.C. Mobile Medical Applications for Dosage
Recommendation, Drug Adverse Reaction, and Drug Interaction: Review and Comparison. Ther. Innov. Regul. Sci. 2017,
51, 216847901769626. [CrossRef]

24. Bourouis, A.; Feham, M.; Hossain, M.; Zhang, L. An Intelligent Mobile based Decision Support System for Retinal Disease
Diagnosis. Decis. Support Syst. 2014, 59, 341–350. [CrossRef]

http://doi.org/10.1016/S0140-6736(16)32381-9
http://dx.doi.org/10.1136/emj.7.2.81
http://www.ncbi.nlm.nih.gov/pubmed/2390158
http://dx.doi.org/10.1089/pop.2016.0189
http://dx.doi.org/10.2196/mhealth.4508
http://www.ncbi.nlm.nih.gov/pubmed/27220417
http://dx.doi.org/10.1109/CLOUD.2011.31
http://dx.doi.org/10.1177/1460458213494033
http://www.ncbi.nlm.nih.gov/pubmed/25183607
http://dx.doi.org/10.1109/ICMB.2008.31
http://dx.doi.org/10.1186/1742-7622-4-2
http://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593
http://dx.doi.org/10.1001/jamainternmed.2015.7712
http://dx.doi.org/10.1136/thoraxjnl-2015-207045
http://dx.doi.org/10.1109/JSEN.2016.2628346
http://dx.doi.org/10.1109/JPROC.2013.2286654
http://dx.doi.org/10.1109/ICUAS.2014.6842265
http://dx.doi.org/10.3390/s18072027
http://www.ncbi.nlm.nih.gov/pubmed/29941804
http://dx.doi.org/10.1016/j.procs.2015.05.071
http://dx.doi.org/10.5210/ojphi.v5i3.4814
http://dx.doi.org/10.1109/TBCAS.2016.2519523
http://dx.doi.org/10.1177/2168479017696266
http://dx.doi.org/10.1016/j.dss.2014.01.005


Int. J. Environ. Res. Public Health 2021, 18, 13278 15 of 16

25. Biswas, A.; Roy, R.; Bhattacharyya, S.; Khaneja, D.; Bhattacharya, S.; Mukhopadhyay, J. Android application for therapeutic
feed and fluid calculation in neonatal care—A way to fast, accurate and safe health-care delivery. In Proceedings of the 2016
IEEE International Conference on Bioinformatics and Biomedicine (BIBM) Shenzhen, China, 15–18 December 2016; pp. 938–945.
[CrossRef]

26. Rozati, H.; Shah, S.; Shah, N. Smartphone Applications for the Clinical Oncologist in UK Practice. J. Cancer Educ. Off. J. Am.
Assoc. Cancer Educ. 2014, 30, 367–373. [CrossRef]

27. Medina, J.; Castillo Martínez, A.; Gutiérrez Escolar, A.; de Marcos, L.; Sanchez-Pardo, L. Framework for development triages
through mobile applications. In Proceedings of the 24thInternational Conference on Information Systems Development Harbin,
China, 25–27 August 2015.

28. Franko, O.; Tirrell, T. Smartphone App Use Among Medical Providers in ACGME Training Programs. J. Med Syst. 2011,
36, 3135–3139. [CrossRef]

29. Muessig, K.; Pike, E.; LeGrand, S.; Hightow-Weidman, L. Mobile Phone Applications for the Care and Prevention of HIV and
Other Sexually Transmitted Diseases: A Review. J. Med Internet Res. 2013, 15, e1. [CrossRef] [PubMed]

30. Zhang, R.; Liu, L. Security Models and Requirements for Healthcare Application Clouds. In Proceedings of the 2010 IEEE 3rd
International Conference on Cloud Computing, Miami, FL, USA, 5–10 July 2010; pp. 268–275. [CrossRef]

31. Newman, S. Building Microservices: Designing Fine-Grained Systems, 1st ed.; O’Reilly Media, Sebastopol, CA, USA: 2015; p. 280.
32. Francesco, P.; Lago, P.; Malavolta, I. Architecting with Microservices: A Systematic Mapping Study. J. Syst. Softw. 2019, 150,

77–97. [CrossRef]
33. Trihinas, D.; Tryfonos, A.; Dikaiakos, M.D.; Pallis, G. DevOps as a Service: Pushing the Boundaries of Microservice Adoption.

IEEE Internet Comput. 2018, 22, 65–71. [CrossRef]
34. Caballé, N.; Castillo-Sequera, J.; Gomez-Pulido, J.A.; Gómez, J.; Polo-Luque, M. Machine Learning Applied to Diagnosis of

Human Diseases: A Systematic Review. Appl. Sci. 2020, 10, 5135. [CrossRef]
35. Biosignalplux. 2019. Available online: https://www.biosignalsplux.com/en/ (accessed on 17 January 2019).
36. Leotec, “User Manual Version 1.5: Tablet Supernova Qi16 10.1” Quad Core Tablet. 2019. Available online: http://www.leotec.

com/ (accessed on Dec. 2019).
37. Dillon, T.; wu, C.; Chang, E. Cloud Computing: Issues and Challenges. In Proceedings of the 2010 24th IEEE International

Conference on Advanced Information Networking and Applications, Perth, Australia, 20–23 April 2010; pp. 27–33. [CrossRef]
38. Wu, P.L.; Nam, M.Y.; Choi, J.; Kirlik, A.; Sha, L.; Berlin, R. Supporting Emergency Medical Care Teams with an Integrated Status

Display Providing Real-Time Access to Medical Best Practices, Workflow Tracking, and Patient Data. J. Med. Syst. 2017, 41, 1–19.
[CrossRef] [PubMed]

39. Curino, C.; Jones, E.; Popa, R.; Malviya, N.; Wu, E.; Madden, S.; Balakrishnan, H.; Zeldovich, N. Relational Cloud: A Database-
as-a-Service for the Cloud. In Proceedings of the 5th Biennial Conference on Innovative Data Systems Research (CIDR 2011),
Asilomar, CA, USA, 9–12 January 2011; pp. 235–240.

40. Vilaplana, J.; Solsona, F.; Abella, F.; Filgueira, R.; Rius, J. The Cloud Paradigm Applied to e-Health. BMC Med. Inform. Decis. Mak.
2013, 13, 35. [CrossRef]

41. Manoj Kumar, N.; Mallick, P.K. The Internet of Things: Insights into the building blocks, component interactions, and architecture
layers. Procedia Comput. Sci. 2018, 132, 109–117. [CrossRef]

42. Lewis, G.; Lago, P.; Procaccianti, G. Architecture Strategies for Cyber-Foraging: Preliminary Results from a Systematic Literature
Review. In Proceedings of the European Conference on Software Architecture, Vienna, Austria, 25–29 August 2014; pp. 154–169.
[CrossRef]

43. Glushkova, D.; Jovanovic, P.; Abelló, A. MapReduce Performance Model for Hadoop 2.x. Inf. Syst. 2017, 79, 32–43. [CrossRef]
44. Kramer, M.; Frese, S.; Kuijper, A. Implementing secure applications in smart city clouds using microservices. Future Gener.

Comput. Syst. 2019, 99, 308–320. [CrossRef]
45. Simmhan, Y.; Ravindra, P.; Chaturvedi, S.; Hegde, M.; Ballamajalu, R. Towards a data-driven IoT software architecture for smart

city utilities. Softw. Pract. Exp. 2018, 48, 1390–1416. [CrossRef]
46. Choudhary, V. Comparison of Software Quality Under Perpetual Licensing and Software As a Service. J. Manag. Inf. Syst. 2007,

24, 141–165. [CrossRef]
47. Hernandez, R.; Becerra, Y.; Torres, J.; Ayguadie, E. Automatic Query Driven Data Modelling in Cassandra. Procedia Comput. Sci.

2015, 51, 2822–2826. [CrossRef]
48. Bello, O.; Zeadally, S. Intelligent Device-to-Device Communication in the Internet of Things. IEEE Syst. J. 2014, 10, 1–11.

[CrossRef]
49. Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann Series

in Data Management Systems; Morgan Kaufmann: Amsterdam, The Netherlands, 2011.
50. Zaharia, M.; Xin, R.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.; et al.

Apache spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]
51. Poo, D.; Kiong, D.; Ashok, M. Java Servlets; Springer: London, UK, 2008; pp. 259–277. [CrossRef]
52. Miller, F.P.; Vandome, A.F.; McBrewster, J. Apache Maven; Alpha Press: London, UK, 2010.
53. Kruskal, W.; Wallis, W. Errata: Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [CrossRef]

http://dx.doi.org/10.1109/BIBM.2016.7822650
http://dx.doi.org/10.1007/s13187-014-0681-3
http://dx.doi.org/10.1007/s10916-011-9798-7
http://dx.doi.org/10.2196/jmir.2301
http://www.ncbi.nlm.nih.gov/pubmed/23291245
http://dx.doi.org/10.1109/CLOUD.2010.62
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.1109/MIC.2018.032501519
http://dx.doi.org/10.3390/app10155135
https://www.biosignalsplux.com/en/
http://www.leotec.com/
http://www.leotec.com/
http://dx.doi.org/10.1109/AINA.2010.187
http://dx.doi.org/10.1007/s10916-017-0829-x
http://www.ncbi.nlm.nih.gov/pubmed/29039621
http://dx.doi.org/10.1186/1472-6947-13-35
http://dx.doi.org/10.1016/j.procs.2018.05.170
http://dx.doi.org/10.1007/978-3-319-09970-5-15
http://dx.doi.org/10.1016/j.is.2017.11.006
http://dx.doi.org/10.1016/j.future.2019.04.042
http://dx.doi.org/10.1002/spe.2580
http://dx.doi.org/10.2753/MIS0742-1222240206
http://dx.doi.org/10.1016/j.procs.2015.05.441
http://dx.doi.org/10.1109/JSYST.2014.2298837
http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.1007/978-1-84628-963-7-15
http://dx.doi.org/10.1080/01621459.1952.10483441


Int. J. Environ. Res. Public Health 2021, 18, 13278 16 of 16

54. Lonetti, F.; Marchetti, E. Emerging Software Testing Technologies; Elsevier: Amsterdam, The Netherlands, 2018.
2017.11.003. [CrossRef]

55. Calderón-Gómez, H.; Mendoza-Pitti, L.; Vargas-Lombardo, M.; Gómez, J.; Castillo-Sequera, J.; Sanz-Moreno, J.; Sencion-Martinez,
G. Telemonitoring system for infectious disease prediction in elderly people based on a novel microservice architecture. IEEE
Access 2020, 8, 118340–118354. [CrossRef]

56. Murty, M.N.; Devi, V.S. Pattern Recognition—An Algorithmic Approach; Undergraduate Topics in Computer Science; Springer:
Zürich, Switzerland, 2011.

57. Chandrika, G.; Reddy, E. An Efficient Filtered Classifier for Classification of Unseen Test Data in Text Documents. In Proceedings
of the 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Coimbatore, India,
14–16 December 2017; pp. 1–4. [CrossRef]

58. Ho, T. The Random Subspace Method for Constructing Decision Forests. Pattern Anal. Mach. Intell. IEEE Trans. 1998, 20, 832–844.
[CrossRef]

59. Keasberry, J.; Scott, I.; Sullivan, C.; Staib, A.; Ashby, R. Going digital: A narrative overview of the clinical and organisational
impacts of eHealth technologies in hospital practice. Aust. Health Rev. Publ. Aust. Hosp. Assoc. 2017, 41, 646–664. [CrossRef]

http://dx.doi.org/10.1016/bs.adcom.2017.11.003
http://dx.doi.org/10.1109/ACCESS.2020.3005638
http://dx.doi.org/10.1109/ICCIC.2017.8524416
http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1071/AH16233

	Background and Objectives
	Related Work
	Early Diagnosis
	Collecting and Processing Medical Data
	Hardware and Software Architectures and Tools

	Materials and Methods
	Participants, Procedure, and Ethical Considerations
	Instruments
	System Design
	Analysis by Machine Learning Classifiers

	Results
	Protocol and Acceptance
	System Efficiency
	Data Analysis

	Discussion
	Conclusions
	References

