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Abstract: The aim of this study was to develop and test a new fuzzy logic model for monitoring
the udder health status (HS) of goats. The model evaluated, as input variables, the milk electrical
conductivity (EC) signal, acquired on-line for each gland by a dedicated sensor, the bandwidth
length and the frequency and amplitude of the first main peak of the Fourier frequency spectrum
of the recorded milk EC signal. Two foremilk gland samples were collected from eight Saanen
goats for six months at morning milking (lactation stages (LS): 0–60 Days In Milking (DIM);
61–120 DIM; 121–180 DIM), for a total of 5592 samples. Bacteriological analyses and somatic cell
counts (SCC) were used to define the HS of the glands. With negative bacteriological analyses and
SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were
positive or showed a SCC > 1,000,000 cells/mL, glands were classified as not healthy (NH). For each
EC signal, an estimated EC value was calculated and a relative deviation was obtained. Furthermore,
the Fourier frequency spectrum was evaluated and bandwidth length, frequency and amplitude of
the first main peak were identified. Before using these indexes as input variables of the fuzzy logic
model a linear mixed-effects model was developed to evaluate the acquired data considering the HS,
LS and LS ˆHS as explanatory variables. Results showed that performance of a fuzzy logic model,
in the monitoring of mammary gland HS, could be improved by the use of EC indexes derived from
the Fourier frequency spectra of gland milk EC signals recorded by on-line EC sensors.
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1. Introduction

In lactating dairy goats, mastitis is one of the most important factor that can affect animals’ health
status. It can be due by an intramammary infection (IMI), caused by a pathogenic microorganism, and
it may be responsible for important economic losses because it can reduce the yield and quality of
milk. Early detection, during milking, can help farmers improve animals’ health management and
quantity/quality of milk produced. Many indexes have been studied in order to achieve this goal.
Within those, the electrical conductivity (EC) of milk has been widely evaluated for this purpose [1–8].

The EC of milk is usually measured in milliSiemens per cm (mS/cm) and it indicates the ability of
the solution to conduct an electric current between an anode and a cathode with a surface of 1 cm2

at a distance of 1 cm. The anions and the cations present in the milk are the species responsible for
this ability [7]. They are mainly: Na+, K+, and Cl´ [8–10]. The concentration of these ions depends
by different ionic flows that follow both cellular and paracellular pathways [11]. When an IMI is
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present, the milk shows higher concentrations of Na+ and Cl´ [12]. As a consequence, the milk EC
measurement results increase [13].

Nevertheless, for dairy goats, good performance in detecting udder health status (HS) by the
use of milk EC has not been possible. Published studies on this topic are scare and although some
authors have demonstrated that milk EC signals can increase in infected goats [10,14,15], when major
pathogens are the cause of the infection [16], algorithms and multivariate models that are able to
achieve detection performance during milkings, and equal to those already reached for dairy cows, are
still not reported [17].

For example, our research group, studying a univariate model based on evaluations of time
series of gland milk EC data has found a specificity of 65% and a sensitivity of 81% [18]. This low
performance is in line with results of other authors [10,19] which suggest that in order to reach a better
accuracy it is necessary to: (1) consider the intrinsic variation of animals (as in cows); (2) avoid the use
of simple thresholds; and (3) also use other significant factors in the model.

In line with these suggestions, our research group has studied a multivariate model based on
daily milk EC and yield, and developed using fuzzy logic technology [20]. This technology allows one
to develop multivariate models that translate the general knowledge of a specific field into a formal
mathematical model suitable for computer processing [21]. In order to build a fuzzy logic system, three
steps have to be performed: “fuzzification”, “fuzzy inference” and “defuzzification” [22]. The fuzzification
phase consists in the transformation of each input variable of the model into a “linguistic variable”,
where values are terms rather than numbers. A membership function, with an output range from
zero to one and a triangular or trapezoidal shape, is defined for each term. The membership function
describes, for each real value of the input variable, its grade of membership to the fuzzy term. In the
fuzzy inference phase, the available knowledge of the modeled system is used. A set of rules, based
on the “IF . . . THEN” structure, and the linguistic variables identified during the fuzzification phase,
is formalized. The outputs obtained from the application of these rules are transformed back into
real values in the final phase, called defuzzification. This phase is performed through specific areas,
defined through the membership functions of the output variable, which translate the output of the
fuzzy inference in a single numerical value (generally in the range between 0 and 1) using different
calculation techniques (such as the center of gravity).

In dairy cows, this technology has been adopted with interesting results. In a study aimed to
control lameness and mastitis in cows, some authors [23] achieved mastitis detection specificities
that ranged between 88.3% and 77.4% using a fuzzy logic model and different definitions of mastitis.
In another study, carried out to develop a fuzzy logic method to classify mastitis status in cows milked
with an automatic milking system, other authors [24] reported sensitivities that ranged from 83.9% to
92.9% and specificities between 75.8% and 93.9%, and always on the basis of different definitions of
mastitis. Finally, in a research conducted by another group of authors [25] with the target to reduce the
number of FP cases produced by a previously developed detection system [26], a fuzzy logic model
that achieved a sensitivity of 100% and a specificity >99.5% is described. In dairy goats, similar results
have not been reached. In our experience, the use of fuzzy logic technology to evaluate milk EC data,
in comparison with other univariate or multivariate models built with mathematical or statistical
approaches, offer the advantages of being easy to interpret, modify and adapt [20]. The translation
of the general knowledge into membership functions and rules, applied to the selected linguistic
variables, was quite easy and different setups were considered, in order to obtain the better model
accuracy, without any significant problems. Nevertheless, the performance reached was a specificity of
69% and a sensitivity of 81%. Even though better than other models [18,20], this accuracy still cannot
be considered high enough if compared with results obtained in dairy cows [27]. New indexes, able to
better characterize the milk EC signal in the case of not healthy (NH) glands, have to be found and
used in order to improve the accuracy obtained.

In agreement with this target, our research group has applied spectral analysis to milk EC
signals. This analysis allows one to characterize a signal, as well as its pattern, through its spectrum.
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The spectrum is calculated from the signal by specific mathematical operators, such as the Fourier
Transform (FT), the Discrete Fourier Transform (DFT) or the Fast Fourier Transform (FFT), in the case
algorithms, optimized and suitable for computer elaboration, are used. As a result of the spectral
analysis performed, new qualitative and quantitative indexes were identified, namely the bandwidth
length and the three main frequency peaks (FFT Pn, n = 1–3) of the Fourier frequency spectrum of
the milk EC signal [28,29]. These indexes showed significant mean values in the case of NH glands.
In details, the mean value of the bandwidth length increased [29], lower means of frequencies were
observed for all of the three main peaks [28], and higher means of amplitudes were found when all of
the three main peaks were considered [28]. These results describe how the EC signal pattern changed
in the time domain in the case of NH glands: it was generally characterized by slower fluctuations
(due to the lower frequencies of the three main peaks) and by a more irregular trend (due to the
higher amplitudes of the three main peaks and the increased bandwidth length). These results are
in accordance with a previous study carried out on dairy cows [30]. Investigating the relationship
between udder HS and different indexes based on the milk EC, the authors have reported that the
statistical variance of all valid EC measures (σ2

EC) increased from healthy to infected quarters with a
greater difference in the case of clinical infected quarters. Nevertheless, in this study the variations
of the milk EC signal were evaluated through a general index as the statistical variance. The indexes
identified in our studies [28,29] allowed us to better characterize the EC signals, in the case of NH
glands, from a qualitative and quantitative point of view. For this reason, they should be useful to
improve the accuracy of a multivariate model that discriminates the gland HS of dairy goats.

The aim of this study was to develop and test a new multivariate model, using the fuzzy logic
technology, for the monitoring of mammary gland HS of dairy goats. The model considered, as input
variables, the milk EC signal, acquired on-line for each gland by dedicated sensors, the bandwidth
length and the frequency and the amplitude of the first main peak of the Fourier frequency spectra of
the recorded milk EC signals.

2. Materials and Methods

2.1. Animals and Farm Management

Eight second-parity Saanen goats, at the beginning of lactation, were randomly selected for the
trial from a herd of 400 animals. Goats were fed twice a day with a common lactating basal diet for the
entire experimental period on the basis of their nutritional requirements [31]. Goats were milked twice
a day at 7:00 a.m. and 5:00 p.m. A low line side-by-side milking parlor with 16 milking units for each
side was used. A system vacuum of 40 kPa, a pulsation rate of 90 cycles/min, and a pulsation ratio of
60:40 were set.

2.2. Experimental Design, Milk Sample Collection and Analyses

The experiment was carried out for six month. During each morning milking, milk samples were
collected after the teat disinfection (with chlorhexidine-moistened towels) and the discharging of the
first milk streams. From each mammary gland of the animals’ trial group, two individual milk samples
were taken for each day of milking and lactation stage (LS) evaluated (0–60 Days In Milking (DIM);
61–120 DIM; 121–180 DIM).

A total amount of 5592 milk samples were collected during the trial. From these samples,
2796 were used for bacteriological analysis (i.e., one for each gland and day of milking in the LS
considered) according to the International Dairy Federation standard method [32] while the other
2796 were analyzed for somatic cell counts (SCC) and following the International Dairy Federation
recommendations [33].

Milk samples were classified according to the results of microbiological tests and
SCC [10,14,16–18,20,28,29]. In detail, milk samples were considered as from NH glands when:
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(1) bacteriological analyses were positive for IMI;
(2) bacteriological analyses were negative for IMI and SCC were more than 1,000,000 cells/mL on

two or more consecutive sampling days for non-physiological causes. In this context, an increase
of SCC was considered due to physiological causes when: (a) it occurred in both glands in an
isolated analysis that was followed by SCC < 1,000,000 cells/mL in a subsequent analysis; and
(b) the end of lactation was been reached.

The remaining milk samples were classify as from healthy glands. When milk samples were
collected, milk EC signals were also measured and stored by the data acquisition system. Milk EC
signals acquired were from each mammary gland of the animals’ trial group.

2.3. Milk Electrical Conductivity Measures and Data Acquisition System

In order to measure the milk EC from each gland, four experimental milking clusters were
used. These clusters were developed in previous experiments [15,18,20,28,29], modifying commercial
milking units (Vanguard, Interpuls S.P.A., Albinea, RE, Italy). Each milking cluster included two
EC sensors. Each EC sensor was made by a couple of stainless cylindrical electrodes (Figure 1) placed
at the base of each individual teatcup. This hardware allowed the measuring of the specific EC of milk
(in milliSiemens (mS/cm)) while it was flowing from the gland to the milk line. Furthermore, a flow
detector was placed inside each short milk tube of the milking cluster. It was made of an additional
couple of cylindrical stainless electrodes that, measuring a signal proportional to the filling level of
the short milk tube, allowed us to monitor the beginning and the end of each milking and to avoid or
correct possible data errors due to the presence of milk residues in the milking claws.
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Figure 1. Dimensions of the EC sensor head placed at the base of each individual teatcup.

The hardware components used to acquire the EC signals were also the same as in
previous studies [15,18,20,28,29]. In details, four analog conductivity boards (output range
0–10 V, accuracy ˘ 0.1%), placed in a separate room next to the milking parlor and connected
to an analog/digital conversion board installed in a personal computer (DAQCard AI-16E-4,
National Instruments, Austin, TX, USA—with a resolution of 12 bit and a total sampling rate of
250 kS/s), were used to measure the electrical signals from the milking clusters. Furthermore, through
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a customized software application developed using LabVIEW 8.02 (National Instruments), acquired
data were sampled with a rate of 1 Hz and stored as txt files using the goat identity farm number,
date and time to name each file. Other technical details on the milking groups, on the sensors and a
complete block schema of the whole recording system are provided in [28].

In previous studies [28,29], these sensors were shown to measure the EC of milk with mean values
higher than those reported in other experiments. This fact did not affect the results obtained and it was
explained supposing an average quantity of milk, in the measurement chamber of the EC sensors, not
equal to the value expected by the calibration procedure. However, in order to improve the accuracy
of the milk EC measurements, a new round of laboratory tests was carried out before the start of the
experiment. The effects of different milk flow rates on the measurements made by the EC sensors
were checked. A solution of water and chlorine-based detergent for the milking machine was used as
test fluid. The detergent was added to the water to increase its EC up to 6 mS/cm. Two EC sensors
(included in the same milking cluster) were tested at constant liquid flow rates—from 0.4 L/min to
1.2 L/min in incremental steps of 0.2 L/min—using a suitable artificial udder equipped with a flow
regulator. Ten repetitions were made for each flow rate investigated, for a total number of 100 readings
(i.e., 10 repetitions per five flow rates per two sensors). For each repetition performed, approximately
5 L of test fluid passed through the milking cluster and the electrical signals measured from the sensors
were stored by the recording system. As following steps: (1) the mean value of the electrical signal
acquired during each reading was calculated; (2) for each flow rate tested, the mean value of all the
ten repetitions performed was calculated; (3) considering the differences between the mean value
measured at 0.8 L/min and the mean values measured at the other flow rates tested, the measurement
accuracy of the sensor was estimated as the mean value of the errors found. The flow rate of 0.8 L/min
was taken as reference because it was considered as the average milking flow rate expected in the
following field tests.

Similar laboratory tests were also performed in order to check the linearity of the EC sensors and
calibrate them. The same kind of fluid test was used, but in this case, detergent was added to the
water to increase its EC from 4 mS/cm up to 12 mS/cm, by incremental steps of 2 mS/cm. All of the
EC sensors were tested at a constant liquid flow rate of 0.8 L/min. Ten repetitions for each EC level
and for each experimental milking cluster were made for a total of 400 readings (i.e., 10 repetitions per
five EC levels per eight sensors). Also in these cases, for each repetition performed, approximately 5 L
of test fluid passed through the milking cluster and the electrical signals measured from the sensors
were stored by the recording system. As following steps: (1) the electrical mean value of each reading
was calculated; (2) the electrical mean value for each EC level tested was calculated; (3) on the resulting
data, a linear regression was performed for each sensor tested. At the end of these tests, obtained
results allowed the setup of each EC sensor. During the field tests, no other calibration procedures
were performed on the EC sensors used.

2.4. Elaborations of the Acquired EC Signals

The milk EC signals were evaluated by a dedicated Matlab routine (The Mathworks, Natick, MA,
USA). The main steps performed by the software routine (Figure 2), for each EC signal evaluated, were:

(1) Using data from the flow detector included in each short milk tube, sensor samples related to the
start and the end of a milking were deleted from the sequence in order to build the vector Sn.

(2) Through the Matlab function mean, the average value of Sn was calculated and subtracted to each
sample of the sequence to build the vector: S1

n according to the following formula:

S1

n “ Sn ´ Sn

This step was performed in order to have a Fourier frequency spectrum of each EC signal with a
null peak at the frequency of zero, and consequently, a scaled graph in the frequency domain
useful in identifying the most important peaks of the spectrum.
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(3) Using the Matlab function fft, the Fourier frequency spectrum was calculated (Sp f ) applying the
Fast Fourier Transform (FFT) operator. The parameters of the function were the vector S1

n and its
dimension (i.e., the length(S1

n)).
(4) The positive part of the spectrum was obtained (Sp1

f ) considering the values of the vector Sp f
in the range of frequencies between 0 and Fs/2 (where Fs was the EC signal sampling rate, i.e.,
1 Hz) according to the following formula:

Sp1

f “ Sp f with 0 ă f ă
Fs
2

(5) The total energy of the EC signal was evaluated (ETot), translating in Matlab the following formula:

ETot “
Fs

k´ 1

k
ÿ

i“1

ˇ

ˇ

ˇ
Sp1

f ris
ˇ

ˇ

ˇ

2

where: Sp1

f was the positive part of the spectrum, k was the number of samples of the positive

part of the spectrum (i.e., the dimension of the vector Sp1

f equal to the value length(Sp1

f )) and Fs
was the sampling rate of the EC signal (i.e., 1 Hz).

(6) threshold of 95% (T95) of the EC total signal energy (ETot) was selected and the first frequency
that surpassed that level was considered as the last frequency of the signal bandwidth (Figure 2).
The threshold of 95% of the total signal energy was chosen because it was considered a
reasonable value able to highlight the most important information conveyed by each spectrum,
after evaluating the average signal/noise ratio provided by the experimental spectra obtained.
To perform this step:

(a) according to the following formula:

ETot, f “
Fs

k´ 1

f
ÿ

i“1

ˇ

ˇ

ˇ
Sp1

f ris
ˇ

ˇ

ˇ

2

a vector of incremental total energies was calculated, using the Matlab function cumsum
instead of the simple function sum;

(b) according to the following condition:

ETot, f0 ą T95 ˆ ETot

the first frequency ( f0) that surpassed the total signal energy threshold was calculated,
using the Matlab function find applied to the vector ETot, f .

(7) The three highest frequency peaks of each spectrum (FFT_P1,2,3), and for each of them the
corresponding frequency and amplitude, were calculated. To complete this step:

(a) a combination of the Matlab functions diff and find was used as follows:

Sp1

f _local_max “ f indpdi f f pdi f f pSp1

f q ą 0q ă 0q

(b) the first three values of the vector Sp1

f _local_max were selected and considered as the
most representative peaks (FFT_P1,2,3) of the spectrum evaluated.

(8) A figure that summarized the main steps performed by the Matlab routine, and the results
obtained, was built and stored. An example of these figures is shown in Figure 2.
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Figure 2. Example of gauges obtained from the milk electrical conductivity (EC) signals acquired
within a milking. Furthermore, the following graphs report: (A) the sequences without the signal
samples related to the start and the end of milking; (B) the sequences where the mean value of each
sequence have been subtracted to each signal sample acquired; (C) the Fourier frequency spectra of
the previous sequences of signal samples and the three main frequency peaks and (D) the bandwidth
length of the signal (also colored to be easily highlighted).

Before investigating the data acquired during the trial, another elaboration of the EC signals was
performed. For every morning milking and mammary gland, a new EC variable pEC1 q was defined as
the deviation of the EC of the day pECt) from a predicted value

`

EC1

t
˘

calculated through the following
moving-average model:

EC1

t “
1
N

N
ÿ

K“1

ECt´k N “ 10

According to the findings of other authors [34], ten previous days of milking were considered in
the model (N = 10).

2.5. Fuzzy Logic and Model Setup

In this study, the input variables used for the fuzzification phase were: “Maximum EC” (i.e.,
the maximum value of milk EC shown within mammary glands on the same day of milking),
“Deviation EC” (i.e., the relative deviations of milk EC between measured and estimated values),
“Bandwidth Length” (i.e., the first frequency that surpassed the threshold of 95% of the total milk EC
signal energy, acquired for each mammary gland and day of milking), “Peak Frequency” and “Peach
Amplitude” (i.e., the frequency and amplitude of the first highest frequency peak of each Fourier
frequency spectrum—FFT_P1—calculated for each milk EC signal acquired for each mammary gland
and day of milking). The membership functions of the input variables were mainly derived from the
scientific literature [10,16,20,24,25,28,29,35]. Details on the terms and shapes used are given in Table 1.

The determination of the udder HS of goats with membership functions equal to low, middle, high,
and very high probability of NH glands were the outcomes of the combined input variables. All of the
rules, applied to the input variables: maximum EC, deviation EC, bandwidth length, peak frequency and
peak amplitude, are reported in Table 2.
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An example of a rule, used in the fuzzy inference phase and derived from data reported in Table 2,
is reported in Figure 3.

The meaning of the rule reported in Figure 3 is that when maximum EC was high, deviation EC
was very high, bandwidth length was high, peak frequency and peak amplitude were high, the fuzzy logic
model classified the probability to have a case of a NH gland as very high. Using the same logic
structure reported in Figure 3 and data reported in Table 2, all the 324 rules used in the fuzzy inference
can be described.

Through the center of gravity of the area below a specific geometric shape, output values of the
fuzzy inference phase were transformed back into a single number. This geometric shape was obtained
from the superimposition of the membership functions of the output variable and it was dynamically
modified by the output values of the fuzzy inference. The x-axis of the calculated center of gravity
was set as the defuzzified result of the fuzzy system and used in the statistical analyses. All of these
computational evaluations were carried out using the Fuzzy Logic Toolbox of Matlab.

Table 1. Membership functions for the milk electrical conductivity (EC) traits considered in the study.
These traits were: (1) Maximum EC; (2) Deviation EC; (3) Bandwidth Length; (4) Peak Frequency and
(5) Peak Amplitude.

Trait Function Shape Point of Characterization

Maximum EC
Low Trapezoidal (0; 1) (3.5; 1) (7; 0)

Middle Triangular (3.5; 0) (7; 1) (10.5; 0)
High Trapezoidal (7; 0) (10.5; 1) (14; 1)

Deviation in EC

Low Trapezoidal (0; 1) (0.04; 1) (0.11; 0)
Middle Triangular (0.04; 0) (0.11; 1) (0.18; 0)
High Triangular (0.11; 0) (0.18; 1) (0.25; 0)

Very high Trapezoidal (0.18; 0) (0.25; 1) (0.7; 1)

Bandwidth Length
Low Trapezoidal (0; 1) (0.09; 1) (0.13; 0)

Middle Triangular (0.13; 0) (0.17; 1) (0.21; 0)
High Trapezoidal (0.21; 0) (0.25; 1) (1; 1)

Peak Frequency
Low Trapezoidal (0; 1) (0.009; 1) (0.013; 0)

Middle Triangular (0.009; 0) (0.013; 1) (0.017; 0)
High Trapezoidal (0.013; 0) (0.017; 1) (0.025; 1)

Peak Amplitude
Low Trapezoidal (0; 1) (15; 1) (30; 0)

Middle Triangular (15; 0) (30; 1) (45; 0)
High Trapezoidal (30; 0) (45; 1) (60; 1)

EC, electrical conductivity.
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Table 2. Rules of the fuzzy inference phase about the electrical conductivity (EC) traits considered in the study. The rules are applied to the input variables: maximum
EC, deviation EC, bandwidth length, peak frequency and peak amplitude and, with membership functions equal to low, middle, high, and very high, they provide, as outcomes,
the probability to find a not healthy gland.

Fuzzy Inference Rules

Bandwidth Length
Low Middle High

Maximum EC Maximum EC Maximum EC
Low Middle High Low Middle High Low Middle High

Peak
Amplitude

Low
Peak

Frequency

Low Deviation
EC

Low None None None None None None None None None
Middle None None None None None None None None None
High None None None None None None None None Low

Very high None None None None None Low None Low Middle

Middle Deviation
EC

Low None None None None None None None None None
Middle None None None None None None None None Low
High None None None None None Low None Low High

Very high None None Low None Low Middle Low Middle Very high

High Deviation
EC

Low None None None None None None None None Low
Middle None None None None None Low None Low High
High None None Low None Low High Low High Very high

Very high None Low Middle Low Middle Very high Middle Very high Very high

Middle
Peak

Frequency

Low Deviation
EC

Low None None None None None None None None None
Middle None None None None None None None None Low
High None None None None None Low None Low High

Very high None None Low None Low Middle Low Middle Very high

Middle Deviation
EC

Low None None None None None None None None Low
Middle None None None None None Low None Low High
High None None Low None Low High Low High Very high

Very high None Low Middle Low Middle Very high Middle Very high Very high

High Deviation
EC

Low None None None None None Low None Low High
Middle None None Low None Low High Low High Very high
High None Low High Low High Very high Middle Very high Very high

Very high Low Middle Very high Middle Very high Very high Very high Very high Very high

High Peak
Frequency

Low Deviation
EC

Low None None None None None None None None Low
Middle None None None None None Low None Low High
High None None Low None Low High Low High Very high

Very high None Low Middle Low Middle Very high Middle Very high Very high

Middle Deviation
EC

Low None None None None None Low None Low High
Middle None None Low None Low High Low High Very high
High None Low High Low High Very high Middle Very high Very high

Very high Low Middle Very high Middle Very high Very high Very high Very high Very high

High Deviation
EC

Low None None Low None Low High Low High Very high
Middle None Low High Low High Very high Middle Very high Very high
High Low High Very high Middle Very high Very high Very high Very high Very high

Very high Middle Very high Very high Very high Very high Very high Very high Very high Very high
EC, electrical conductivity.
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2.6. Statistical Analyses

Statistical analyses conducted in this study were performed using R (R Core Team, Vienna,
Austria—version 3.2.3, 2015) as the statistical software tool. Relationships between mammary gland
HS and SCC, EC, bandwidth length, frequency and amplitude of the peak FTT_P1 were studied in
order to validate the data acquired. Values of EC and SCC were log transformed (base 10) to normalize
their distributions. The Shapiro-Wilk test was used to confirm the normal distribution of all the
variables under study.

Associations between the explanatory variables and SCC, EC, bandwidth length, frequency and
amplitude of the peak FTT_P1 were evaluated using a linear mixed-effects model (procedure lme [36]
of the package nlme “Linear and Nonlinear Mixed Effects Models”, version 3.1-122). The linear model
fitted was the following:

Yijkl “ µ` HSi ` LSj ` HSˆ LSij ` gkplq ` al ` eijkl

where Y was the SCC or EC, bandwidth length, frequency and amplitude of the peak FTT_P1; µ was
the mean; HSi was the effect of health status (i = 0–1; 0 = healthy; 1 = NH); LSj was the effect of lactation
stage (j = 1–3; 1 = 0–60 DIM; 2 = 61–120 DIM; 3 = 121–180 DIM); HS ˆ LSij was the interaction between
health status and lactation stage; gk(l) was the random effect of the gland (k = 1–2; 1 = left, 2 = right)
nested in the goat (l = 1–8) [37]; al was the random effect of the goat (l = 1–8) and eijkl was the residual
error. Furthermore, an autoregressive covariance structure (correlation = corAR1 [38]) was used to
account for the repeated measurements in the same goat [37,39].

The accuracy reached by the fuzzy logic model was evaluated through comparisons between the
output values of the defuzzification phase and a set of specific cut-off levels. These levels were chosen
considering the range of values of the output variable of the fuzzy logic model. This range was always
from 0 to 1. Therefore, a set of cut-off levels that included values from 0.1 to 0.9, with incremental steps
of 0.1, was considered as a reasonable segmentation of this range able to show the performances of the
fuzzy logic model under study. When the defuzzified value exceeded a specific cut-off level, an alarm
was reported. Otherwise, the predicted status was considered as healthy. For each mammary gland
and day of milking, after the first ten observations, a comparison between the alarms and the observed
status was performed and classified as: true positive (TP), if an alarm was reported by the model and
the corresponding milk sample was classified as from NH gland; false negative (FN), if no alarm was
reported and the corresponding milk sample was classified as from a NH gland. Furthermore, when
milk samples were classified as from healthy glands, each result was considered true negative (TN),
if no alarm was reported or false positive (FP), if an alarm was reported by the fuzzy logic model.

On the basis of all the comparisons performed, sensitivities and specificities achieved by the
fuzzy logic model were calculated. In this context, the sensitivity represents the percentage of glands
correctly identified as NH with respect to all of the cases of milk samples classified as belonging to
NH glands:

Sensitivity “ True Positive{pTrue Positive ` False Negativeqˆ 100

The specificity indicates the percentage of glands correctly identified as healthy in respect to all of
the cases of milk samples classified as belonging to healthy glands:

Specificity “ True Negative{pFalse Positive ` True Negativeqˆ 100

For each cut-off level considered, a pair of sensitivity and specificity was calculated. In order to
define the accuracy reached by the fuzzy logic model, a specific pair of sensitivity and specificity was
selected among those calculated. Generally, the final cut-off level selected for a diagnostic test depends
on the needs and/or on the gold standards, when available, of the specific application. In dairy cows,
an average sensitivity of 80% has been reported [40] as the gold standard of human observation,
although it may be affected by variables such as the skills of the milker and the severity of the case.
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In line with this result, the final cut-off level that was selected in this study was the value that allowed
reaching a sensitivity of at least 80%. As a consequence, a pair of sensitivity and specificity was
identified, among those calculated, and considered as the level of accuracy reached by the fuzzy logic
model under study.

3. Results

The overall EC sensor accuracy in laboratory tests carried out at different flow rates, was 1.46%
with no relevant differences between the two EC sensors evaluated. Within the range of the EC levels
investigated, linear trends were confirmed for all the EC sensors tested. In Table 3, the parameters of
the linear regressions performed are reported. These parameters were used for the recording system
setup before the field tests were carried out.

Table 3. Parameters of the linear regressions performed on the electrical conductivity (EC) sensors used
in the experiment and evaluated at different EC levels, from 4 mS/cm up to 12 mS/cm, by incremental
steps of 2 mS/cm.

Sensor Angular Coefficient R2

1 1.88 0.98
2 1.72 0.99
3 1.73 0.98
4 1.80 0.98
5 1.81 0.97
6 1.76 0.98
7 1.66 0.97
8 1.72 0.97

Eleven milk samples, within those collected, were classified after microbiological evaluation as
contaminated because more than three different bacteriological species were found (probably because
for those samples a wrong sampling procedure had been carried out). The prevalence of positive
samples was 49.3% (N = 1378, Table 4) with Coagulase-negative Staphylococcus as the most prevalent
mastitis agent (41.1%, Table 4). Eight glands, from five different goats, were infected from 91 to
120 days of milking (Table 5). The prevalence of glands with SCC > 1,000,000 and without pathogenic
microorganisms was 1.9% (N = 53, Table 6) and no cases of SCC > 1,000,000 due to physiological causes
were observed. The overall prevalence of samples from NH glands was 51.2% (Table 6) and no cases of
clinical mastitis were observed.

Table 4. Distribution of pathogenic microorganisms found in infected mammary glands.

Isolated Bacterial Strains N %

Coagulase-negative Staphylococcus (CNS) 1148 41.1
Escherichia coli 36 1.3

Streptococcus spp. 136 4.9
Pseudomonas spp. 47 1.7

Contaminated 11 0.3
BC negative 1418 50.7

Table 5. Distribution of infected cases along mammary glands, different goats and ranges of days
of milking.

Glands Goats Days of Milking

2 1 30–60
6 4 60–90
8 5 90–120
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Table 6. Distribution of samples for each mammary gland health status considered.

Health Status
of Glands

N %

Samples with Positive
Bacteriological Analyses

and SCC < 1,000,000
(cells/mL)

Samples with Positive
Bacteriological Analyses

and SCC > 1,000,000
(cells/mL)

Samples with Negative
Bacteriological Analyses

and SCC > 1,000,000
(cells/mL)

N % N % N %

Not healthy 1431 51.2 1155 41.3 223 8.0 53 1.9
Healthy 1365 48.8 – – – – – –

Mean values of SCC were significant higher in NH glands than in healthy ones (5.46 ˘ 0.03
(logSCC) vs. 5.35 ˘ 0.02, Table 7) and showed significantly increased levels during the progress of
lactation (5.30 ˘ 0.02 (logSCC), 5.47 ˘ 0.02 and 5.55 ˘ 0.02, Table 7). The interaction between the HS
and LS was not significant.

Table 7. Overall means and standard errors (S.E.) of SCC (log) of gland milk samples according to
mammary gland health status and lactation stages.

Health Status of
Glands

Days in Milking

0–60
Mean ˘ S.E.

(logSCC)

61–120
Mean ˘ S.E.

(logSCC)

121–180
Mean ˘ S.E.

(logSCC)

0–180
Mean ˘ S.E.

(logSCC)

Not healthy 5.34 ˘ 0.03 5.49 ˘ 0.02 5.58 ˘ 0.03 5.46 A ˘ 0.03
Healthy 5.28 ˘ 0.03 5.43 ˘ 0.03 5.48 ˘ 0.02 5.35 B ˘ 0.02

All 5.30 x ˘ 0.02 5.47 y ˘ 0.02 5.55 z ˘ 0.02 5.40 ˘ 0.02
A,B means in the same column with different uppercase superscripts differ significantly (p < 0.01); x,y,z means in
the same row with different uppercase superscripts differ significantly (p < 0.05).

Not healthy glands showed significantly higher values of milk EC (9.07 ˘ 0.06 (mS/cm) vs.
7.64 ˘ 0.07, Table 8). Furthermore, a significantly lower mean value of milk EC was observed in the
first stage when compared with the other lactation stages (7.01 ˘ 0.06 (mS/cm) vs. 9.32 ˘ 0.07 and
10.22 ˘ 0.01). The interaction between the HS and LS was not significant also for these cases.

Table 8. Overall means and standard errors (S.E.) of electrical conductivity (mS/cm) of gland milk
samples according to mammary gland health status and lactation stages.

Health Status of Glands
Days in Milking

0–60
Mean ˘ S.E. (mS/cm)

61–120
Mean ˘ S.E. (mS/cm)

121–180
Mean ˘ S.E. (mS/cm)

0–180
Mean ˘ S.E. (mS/cm)

Not healthy 7.56 ˘ 0.09 9.57 ˘ 0.08 10.25 ˘ 0.11 9.07 A ˘ 0.06
Healthy 6.55 ˘ 0.07 8.88 ˘ 0.13 10.07 ˘ 0.23 7.64 B ˘ 0.07

All 7.01 X ˘ 0.06 9.32 Y ˘ 0.07 10.22 Y ˘ 0.1 8.48 ˘ 0.07
A,B means in the same column with different uppercase superscripts differ significantly (p < 0.01); X,Y means in
the same row with different uppercase superscripts differ significantly (p < 0.01).

Regarding the spectra evaluated, data showed a normal distribution for the relative parameters
investigated: bandwidth length, frequency and amplitude of the peak FFT_P1. The bandwidth length
showed a significantly higher mean value in NH glands (0.26 ˘ 0.004 (Hz) vs. 0.23 ˘ 0.003; Table 9)
and significantly lower levels between different lactation stages (0.25 ˘ 0.0004 (Hz), 0.24 ˘ 0.004
and 0.22 ˘ 0.006). Mean values of FFT_P1 frequency were significantly lower in NH glands
(11.63 ˘ 0.32 ˆ 10´3 (Hz) vs. 13.66 ˘ 0.42 ˆ 10´3, Table 10) and significantly lower in different
lactation stages (13.72 ˘ 0.38 ˆ 10´3 (Hz), 12.30 ˘ 0.46 ˆ 10´3 and 9.49 ˘ 0.29 ˆ 10´3). The peak’s
mean amplitude was significantly higher in NH glands (37.19 ˘ 0.6 (dB) vs. 30.68 ˘ 0.69, Table 11)
and during the progress of lactation (26.87 ˘ 0.96 (dB), 39.09 ˘ 0.76 and 40.43 ˘ 1.28). However, the
interaction between the HS and LS was always not significant for all the mean values of the relative
parameters investigated: bandwidth length, frequency and amplitude of the peak FFT_P1.
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Table 9. Overall means and standard errors (S.E.) of the bandwidth length, according to mammary
gland health status and lactation stages.

Health Status of Glands
Days in Milking

0–60
Mean ˘ S.E. (Hz)

61–120
Mean ˘ S.E. (Hz)

121–180
Mean ˘ S.E. (Hz)

0–180
Mean ˘ S.E. (Hz)

Not healthy 0.26 ˘ 0.005 0.26 ˘ 0.007 0.25 ˘ 0.008 0.26 a ˘ 0.004
Healthy 0.24 ˘ 0.006 0.23 ˘ 0.005 0.22 ˘ 0.0073 0.23 b ˘ 0.003

All 0.25 X ˘ 0.004 0.24 x ˘ 0.004 0.22 Y,y ˘ 0.006 0.24 ˘ 0.004
a,b means in the same column, with different uppercase superscripts differ significantly (p < 0.05); X,Y means in
the same, row with different uppercase superscripts differ significantly (p < 0.01); x,y means in the some row,
with different lowercase superscripts differ significantly (p < 0.05).

Table 10. Overall means and standard errors (S.E.) of the frequency of the first most representative
spectrum peak (FFT_P1), according to mammary gland health status and lactation stages.

Health Status of Glands
Days in Milking

0–60
Mean ˘ S.E. (Hz)

61–120
Mean ˘ S.E. (Hz)

121–180
Mean ˘ S.E. (Hz)

0–180
Mean ˘ S.E. (Hz)

Not healthy 12.83 ˘ 0.31 ˆ 10´3 11.89 ˘ 0.65 ˆ 10´3 9.30 ˘ 0.29 ˆ 10´3 11.63 a ˘ 0.32 ˆ 10´3

Healthy 14.44 ˘ 0.64 ˆ 10´3 13.03 ˘ 0.55 ˆ 10´3 10.39 ˘ 0.91 ˆ 10´3 13.66 b ˘ 0.42 ˆ 10´3

All 13.72 X ˘ 0.38 ˆ 10´3 12.30 Y ˘ 0.46 ˆ 10´3 9.49 Z ˘ 0.29 ˆ 10´3 12.47 ˘ 0.51 ˆ 10´3

a,b means in the same column, with different uppercase superscripts differ significantly (p < 0.05); X,Y,Z means in
the same, row with different uppercase superscripts differ significantly (p < 0.01).

Table 11. Overall means and standard errors (S.E.) of the amplitude of the first most representative
spectrum peak (FFT_P1), according to mammary gland health status and lactation stages.

Health Status of Glands
Days in Milking

0–60
Mean ˘ S.E. (dB)

61–120
Mean ˘ S.E. (dB)

121–180
Mean ˘ S.E. (dB)

0–180
Mean ˘ S.E. (dB)

Not healthy 28.95 ˘ 0.67 40.71 ˘ 0.96 40.68 ˘ 1.38 37.19 a ˘ 0.60
Healthy 25.07 ˘ 0.69 36.27 ˘ 1.24 39.23 ˘ 3.39 30.68 b ˘ 0.69

All 26.87 X ˘ 0.96 39.09 Y ˘ 0.76 40.43 Y ˘ 1.28 32.97 ˘ 0.59
a,b means in the same column with different lowercase superscripts differ significantly (p < 0.05); X,Y means in
the same, row with different uppercase superscripts differ significantly (p < 0.01).

Lastly, the HS detection accuracy reached by the fuzzy logic model was investigated.
Different cut-off levels were evaluated and for each of them, a pair of sensitivity and specificity
was calculated. Results showed that the best accuracy was: specificity equal to 78% and sensitivity of
80%, with a cut-off level equal to 0.6 (Table 12). The cut-off level was determined in order to reach a
sensitivity of at least 80%. Consequently, the resulting pair of sensitivity and specificity was defined as
the accuracy reached by the multivariate model studied.

Table 12. Accuracy reached by the fuzzy logic model in terms of sensitivity and specificity at different
cut-off levels.

Cut-Off Level Sensitivity (%) Specificity (%)

0.90 56 92
0.80 69 86
0.70 76 83
0.60 80 78
0.50 85 74
0.40 90 68
0.30 93 59
0.20 97 47
0.10 99 27
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4. Discussion

The range of flow rates investigated during laboratory tests showed that the design of the
EC sensor allowed one to isolate a stable quantity of milk and, as a consequence, to achieve a fine
measurement accuracy. This sensor was developed in order to measure the EC signal of milk, on-line
and from each gland, without affecting the flow of milk, the vacuum of the milking system and to
be a device usable in the most existing milking parlors. Having these targets in mind, a low number
of components were added to a commercial milking cluster and no specific element was added
to control the air that could enter through the claw or the teatcups. Nevertheless, the position of
the couple of electrodes at the base of the teatcup, the presence of a flow sensor in the short milk
tube and the sampling rate used to acquire the EC signals limited possible reading mistakes and
allowed us to achieve a fine measurement accuracy in the range of flow rates tested in the laboratory.
Additionally, the relationships between the EC levels and the measurements of the EC sensors showed
a good linearity and allowed us to perform a calibration of each EC sensor through a specific angular
coefficient. These angular coefficients were lower than those found in a previous experiment carried out
by our research group [28]. This result was probably due to the different flow rate used in laboratory
tests, performed at different EC levels (0.8 vs. 0.6), and allowed us to measure, in the following field
tests, a specific EC of milk with a better accuracy.

The percentage of positive samples of the whole study, found after microbiological evaluation
of milk, was high (49.3%). However, the most prevalent mastitis agent was coagulase-negative
Staphylococcus that has the potential to become a chronic infection [41] and consequently to affect the
prevalence of positive samples in a study that involves a small number of animals, managed separately
from the others animals of the farm.

In milk samples from NH glands, mean values of SCC and EC were significantly higher.
Similar results are reported also by other authors [10,14,16] who observed a significant increase
of SCC and EC in case of infected glands. During the progress of lactation, mean values of SCC and EC
showed to increase significantly between the first, the second, and the third lactation stages. Also these
results agree with previous studies in which higher levels of SCC and EC were measured with the
progress of lactation [10,16]. Finally, when a gland was infected, the milk EC values were higher than
the moving average of the ten days before in the 68% of the cases that where continuously classified
as NH.

Nevertheless in this study, EC mean values measured during milkings were higher than those
reported by other authors under similar conditions (i.e., HS and stage of lactation) [8,10,14,16,17,19]
and lower than those found by our research group in some previous studies [20,28]. Although the
small group of animals used in this experiment could explain these results, we think that an additional
factor could be that the average quantity of milk in the measurement chamber of the EC sensors was
not equal to the value assumed by the calibration procedure. This volume is affected by the average
flow rate used in the setup procedure. Therefore, obtained results suggest that: (1) this flow rate was
more correct than the value used in previous studies; (2) it is still not adequate for the average milk
flow rate that can be found in a real milking parlor; and (3) the calibration procedure is crucial, but it
has to be performed simulating, as much as possible, the real operative conditions even though this
could be difficult with an experimental milking system and an artificial udder. Further investigations
will be useful to achieve the best measurement accuracy for these EC sensors. In any case, all these
aspects did not affect the performance of the fuzzy logic model studied. The input variables used
in the model were EC indexes based on relative EC values or elaborations of EC data that involved,
for each sample of the corresponding sequence, the subtraction of the mean value of the milk EC
signal recorded.

Before evaluating the accuracy achieved by the fuzzy logic model investigated, relationships
between EC indexes used as input variables, glands HS, and lactation stages were studied. The results
showed that mean values of bandwidth lengths were significantly higher in the case of NH glands
and lower between the first and the second lactation stage, if compared to the mean value found in
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the third lactation stage. Also mean values of frequency and amplitude of the peak FFT_P1 showed
significant results. Lower values of frequencies were found in the case of NH glands and in different
lactation stages. Higher values of amplitudes were measured in NH glands and during the progress
of lactation. These results were in line with other studies carried out by our research group [28,29].
Furthermore, they confirm how the milk EC signal pattern changes in case of NH glands and during
the progress of lactation. In all of these cases, the signal pattern is generally characterized by slower
fluctuations (due to the lower frequencies of the first main peak) and by a more irregular trend (due to
the higher amplitudes of the first considered peak). Since a better characterization of milk EC signals
could be useful to improve the accuracy of multivariate models that monitor the gland HS of dairy
goats, these results confirm that these EC indexes may be a way to reach this goal.

In order to achieve a sensitivity of at least 80%, the cut-off level selected for the studied fuzzy
logic model was 0.6. With this cut-off level, the resulting specificity and sensitivity of the model were
78% and 80%, respectively. These results were better than those obtained by other univariate and
multivariate models that use the EC of milk to detect mammary gland HS of dairy goats. Diaz et al. [10],
analyzing data from three different farms and using a simple threshold based on the index LEC (base
10 logarithm of the milk EC measurement), reported specificities that ranged between 22% and 47%
and sensitivities between 60% and 93% (with a threshold of 5.20 mS/cm and depending on the farm
considered). In detail, considering different cut-off levels in order to reach sensitivity of at least 80%,
specificities found were 40% with a cut-off of 5.0 mS/cm in farm 1; 27% with a cut-off of 5.1 mS/cm in
farm 2; and 35% with a cut-off of 5.4 mS/cm in farm 3. Romero et al. [14], studying the effect of the
milking fraction on the milk EC measurements, reported that the best performance obtainable was with
a defined threshold of 5.20 mS/cm a specificity of 50% and a sensitivity of 70%. In a subsequent study,
Romero et al. [17] also investigated the ability to detect gland HS of different algorithms based on the
daily measurements of milk EC. In this study, data from 18 goats were collected for a month. After the
first two weeks, animals were exposed to various unfavorable health situations for the mammary
gland that might increase the mastitis probability. After IMI establishment, animals were milked over
the following two weeks and 19 algorithms were evaluated. These algorithms were based on the
EC and the EC ratio of collateral glands of the same goat (RATEC = maximum EC/minimum EC),
and used data recorded before the day of the infection establishment to predict a range of normality
(through an Autoregressive Integrated Moving Average model). The best results obtained in this
study were: (a) for the index EC, a specificity of 75% and a sensitivity of 58.3% considering four days
before establishment of infection as data size and the “rule 1” (i.e., deviations exceeding three standard
deviations) as the cut-off level to identify a “positive case”; (b) for the index RATEC, a specificity of
88.9% and a sensitivity of 44.4% considering 4–8 days before establishment of infection as the data
size and the “rule 1” or “rule 3” (deviations exceeding 5% of the moving average value) as the cut-off
level to identify a “positive case”. Additionally, our research group investigated a similar univariate
model [18]. Considering daily measurements of milk EC and 10 previous values to calculate, through
a moving-average model, relative deviations of EC between measured and estimated values, in this
study we found a specificity of 65% and a sensitivity of 81%, setting as threshold of EC deviations a
cut-off level of 7%. Finally, a multivariate model based on fuzzy logic technology was also tested by
our research group in a previous study [20]. As input variables of the model, relative deviations of
milk EC and milk yield were considered. The accuracy achieved by the model was a specificity of 69%
and a sensitivity of 81%, setting a cut-off level of 0.7.

Although this study has to be considered as a pilot study, its results suggest that the EC indexes
used as input variables of the fuzzy logic model could allow one to achieve a better accuracy in the
detection of dairy goats’ health status. Furthermore, as suggested by other authors [10,19], results
reached in this study confirm that to develop useful monitoring systems: (1) simple thresholds shared
among animals have to be avoided; (2) animals’ intrinsic variability has to be considered using relative
values instead of absolute measurements; and (3) a better characterization of milk EC signals in the
case of NH glands could be a way to improve the accuracy of these types of algorithms.
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Nevertheless, the accuracy obtained by the fuzzy logic model evaluated still cannot be considered
high enough if compared with results obtained in dairy cows. Kramer et al. [23], in a study on the
control of lameness and mastitis in cows, evaluated the accuracy of a fuzzy logic model. Setting the
block-sensitivity to be at least 70%, the authors found in mastitis detection specificities that ranged
between 88.3% and 77.4%, depending on the different definitions of mastitis (e.g., udder treatments,
or udder treatments and/or SCC over 400,000/mL). In this study, block-sensitivity was calculated,
considering as true-positive, the “mastitis blocks” (i.e., uninterrupted sequences of “days of mastitis”)
were one or more alerts were been given in the first five days. Cavero et al. [24], in a study on cows
milked with an automatic milking system, reported for a fuzzy logic method developed to classify
mastitis status specificities from 75.8% to 93.9% and sensitivities that ranged from 83.9% to 92.9%,
depending on the different definitions of mastitis (e.g., udder treatments performed in the case of
SCC > 100,000 cells/mL or SCC > 400,000 cells/mL). De Mol and Woldt [26], in a study designed to
reduce the number of FP cases produced by a previously developed detection model [27], tested a
fuzzy logic method and reported a specificity of 99.5% and a sensitivity of 100%. All clinical cases were
correctly classified, and the resulting number of FP alerts from a subset of 25 cows that did not show
any sign of mastitis was reduced from 1266 to 64 by applying the fuzzy logic method studied.

A possible way to achieve a better accuracy in the monitoring of dairy goats HS could be the use
of the stage of lactation as an input variable of the fuzzy logic model. Electrical conductivity indexes
used in the present study also showed significant trends during the progress of lactation. Therefore, the
use of this parameter could allow a better characterization of milk EC signals and consequently to
permit the development of monitoring systems with better performances. Nevertheless, in order to
use these algorithms in a real milking parlor a “Radio Frequency IDentification” (RFID) system able to
identify each animal, and consequently to record each lactation stage, would be necessary. This could
limit the applicability of the monitoring system developed. For this reason, this parameter was not
included in the fuzzy logic model tested.

As a more general result, this study confirms that fuzzy logic technology is a valid way to develop
multivariate models for the monitoring of dairy goats’ health status. The translation of basic knowledge,
provided by scientific literature and by our previous experiments, into membership functions and
rules applied to the selected linguistic variables was easy and when different membership functions, in
terms of shapes and outputs, and different rules were considered in order to obtain the better setup of
the model studied, no significant problems were found. Therefore, through a better knowledge of the
relationship between the milk EC signal and the mammary gland HS, we think that this technology
would be suitable for the development of monitoring systems able to reach positive results, in terms of
herd management, and also for the goat farming agricultural sector.

5. Conclusions

In the monitoring of udder health status of dairy goats, the present study showed that a fuzzy
logic model could be improved by the use of EC indexes derived from Fourier frequency spectra of
milk EC signals recorded by on-line EC sensors. When bandwidth lengths, frequencies and amplitudes
of the first main peaks were considered as input variables of the model, better results in detecting
mammary gland heath status were reached than those reported for other multivariate models proposed
in the scientific literature.

Author Contributions: The main contributions of each author of the manuscript were as follows:
Mauro Zaninelli—hardware and software development, design of field experiment, analysis and evaluation
of data; Francesco Maria Tangorra, Annamaria Costa, Luciana Rossi and Vittorio Dell’Orto—design of
field experiment, selection/management of the experimental group of animals and field data collection;
Giovanni Savoini—supervision of the whole study. All authors discussed the results and implications,
and everyone provided helpful feedback. The manuscript was written by Mauro Zaninelli and revised by
all co-authors.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2016, 16, 1079 17 of 18

References

1. Lansbergen, L.M.T.E.; Nielen, M.; Lam, T.J.G.M.; Pengov, A.; Schukken, Y.H.; Maatje, K. Evaluation of a
prototype on-line electrical conductivity system for detection of subclinical mastitis. J. Dairy Sci. 1994, 77,
1132–1140. [CrossRef]

2. Maatje, K.; Huijsmans, P.J.M.; Rossing, W.; Hogewerf, P.H. The efficacy of in-line measurement of quarter
milk electrical conductivity, milk yield and milk temperature for the detection of clinical and subclinical
mastitis. Livest. Prod. Sci. 1992, 30, 239–249. [CrossRef]

3. Nielen, M.; Schukken, Y.H.; Brand, A.; Deluyker, H.A.; Maatje, K. Detection of subclinical mastitis from
on-line milking parlor data. J. Dairy Sci. 1995, 78, 1039–1049. [CrossRef]

4. Nielen, M.; Spigt, M.H.; Schukken, Y.H.; Deluyker, H.A.; Maatje, K.; Brand, A. Application of a neural
network to analyse on-line milking parlour data for the detection of clinical mastitis in dairy cows.
Prev. Vet. Med. 1995, 22, 15–28. [CrossRef]

5. Zecconi, A.; Piccinini, R.; Giovannini, G.; Casirani, G.; Panzeri, R. Clinical mastitis detection by on-line
measurements of milk yield, electrical conductivity and milking duration in commercial dairy farms.
Milchwiss. Milk Sci. Int. 2004, 59, 240–244.

6. Tangorra, F.M.; Zaninelli, M.; De Santis, C. Development of HW and SW solutions for milk traceability.
In Computers in Agriculture and Natural Resources; Zazueta, F., Ed.; American Society of Agricultural and
Biological Engineers: Orlando, FL, USA, 2006; pp. 475–480.

7. Zaninelli, M.; Tangorra, F.M. Development and testing of a “free-flow” conductimetric milk meter.
Comput. Electron. Agric. 2007, 57, 166–176. [CrossRef]

8. Stuhr, T.; Aulrich, K. Intramammary infections in dairy goats: Recent knowledge and indicators for detection
of subclinical mastitis. Landbauforschung 2010, 60, 267–279.

9. Nielen, M.; Deluyker, H.; Schukken, Y.H.; Brand, A. Electrical conductivity of milk: Measurement, modifiers,
and meta analysis of mastitis fetection performance. J. Dairy Sci. 1992, 75, 606–614. [CrossRef]

10. Diaz, J.R.; Romero, G.; Muelas, R.; Sendra, E.; Pantoja, J.C.F.; Paredes, C. Analysis of the influence of variation
factors on electrical conductivity of milk in Murciano-Granadina goats. J. Dairy Sci. 2011, 94, 3885–3894.
[CrossRef] [PubMed]

11. Peaker, M. Secretion of ions and water. In Biochemistry of Lactation; Mepham, T.B., Ed.; Elsevier B.V.:
Amsterdam, The Netherlands, 1983; pp. 285–304.

12. Haron, A.W.; Firdaus, F.; Abdullah, J.; Tijjani, A.; Abba, Y.; Adamu, L.; Mohammed, K. The use of Na+ and
K+ ion concentrations as potential diagnostic indicators of subclinical mastitis in dairy cows. Vet. World 2014,
7, 966–969. [CrossRef]

13. Hamann, J.; Zecconi, A. Evaluation of the Electrical Conductivity of Milk as a Mastitis Indicator; Bulletin of IDF
n 334; International Dairy Federation: Brussels, Belgium, 1998.

14. Romero, G.; Pantoja, J.C.F.; Sendra, E.; Peris, C.; Díaz, J.R. Analysis of the electrical conductivity in milking
fractions as a mean for detecting and characterizing mastitis in goats. Small Rumin. Res. 2012, 107, 157–163.
[CrossRef]

15. Tangorra, F.M.; Zaninelli, M.; Costa, A.; Agazzi, A.; Savoini, G. Milk electrical conductivity and mastitis
status in dairy goats: Results from a pilot study. Small Rumin. Res. 2010, 90, 109–113. [CrossRef]

16. Díaz, J.R.; Romero, G.; Muelas, R.; Alejandro, M.; Peris, C. Effect of intramammary infection on milk electrical
conductivity in Murciano-Granadina goats. J. Dairy Sci. 2012, 95, 718–726. [CrossRef] [PubMed]

17. Romero, G.; Reinemann, D.; Alejandro, M.; Díaz, J. R. Goat mastitis detection using daily records of milk
conductivity: comparative results of different algorithms. Czech J. Anim. Sci. 2014, 9, 428–434.

18. Zaninelli, M.; Rossi, L.; Costa, A.; Tangorra, F.M.; Agazzi, A.; Savoini, G. Monitoraggio dello stato di salute
delle capre attraverso l’analisi on-line della conducibilità elettrica del latte. Large Anim. Rev. 2015, 21, 81–86.

19. Romero, G.; Diaz, J.R.; Sabater, J. M.; Perez, C. Evaluation of commercial probes for on-line electrical
conductivity measurements during goat gland milking process. Sensors 2012, 12, 4493–4513. [CrossRef]
[PubMed]

20. Zaninelli, M.; Rossi, L.; Tangorra, F.M.; Costa, A.; Agazzi, A.; Savoini, G. On-line monitoring of milk electrical
conductivity by fuzzy logic technology to characterise health status in dairy goats. Ital. J. Anim. Sci. 2014, 13,
340–347. [CrossRef]

21. Biewer, B. Fuzzy-Methoden; Springer Verlag: Berlin, Germany, 1997.

http://dx.doi.org/10.3168/jds.S0022-0302(94)77049-1
http://dx.doi.org/10.1016/S0301-6226(06)80013-8
http://dx.doi.org/10.3168/jds.S0022-0302(95)76720-0
http://dx.doi.org/10.1016/0167-5877(94)00405-8
http://dx.doi.org/10.1016/j.compag.2007.03.004
http://dx.doi.org/10.3168/jds.S0022-0302(92)77798-4
http://dx.doi.org/10.3168/jds.2011-4187
http://www.ncbi.nlm.nih.gov/pubmed/21787925
http://dx.doi.org/10.14202/vetworld.2014.966-969
http://dx.doi.org/10.1016/j.smallrumres.2012.05.001
http://dx.doi.org/10.1016/j.smallrumres.2010.02.006
http://dx.doi.org/10.3168/jds.2011-4698
http://www.ncbi.nlm.nih.gov/pubmed/22281336
http://dx.doi.org/10.3390/s120404493
http://www.ncbi.nlm.nih.gov/pubmed/22666042
http://dx.doi.org/10.4081/ijas.2014.3170


Sensors 2016, 16, 1079 18 of 18

22. Zimmermann, H.-J. Fuzzy Set Theory and Its Applications, 3rd ed.; Kluwer Academic Publishers: Boston, MA,
USA, 1996.

23. Kramer, E.; Cavero, D.; Stamer, E.; Krieter, J. Mastitis and lameness detection in dairy cows by application of
fuzzy logic. Livest. Sci. 2009, 125, 92–96. [CrossRef]

24. Cavero, D.; Tölle, K.-H.H.; Buxadé, C.; Krieter, J. Mastitis detection in dairy cows by application of fuzzy
logic. Livest. Sci. 2006, 105, 207–213. [CrossRef]

25. De Mol, R.M.; Woldt, W.E. Application of fuzzy logic in automated cow status monitoring. J. Dairy Sci. 2001,
84, 400–410. [CrossRef]

26. De Mol, R.M.; Ouweltjes, W. Detection model for estrus and mastitis in cows milked in an automatic milking
system. In Proceedings of the International Symposium on Robotic Milking, Lelystad, The Netherlands,
17–19 August 2000; pp. 97–107.

27. De Mol, R.M.; Ouweltjes, W. Detection model for mastitis in cows milked in an automatic milking system.
Prev. Vet. Med. 2001, 49, 71–82. [CrossRef]

28. Zaninelli, M.; Agazzi, A.; Costa, A.; Tangorra, F.; Rossi, L.; Savoini, G. Evaluation of the fourier frequency
spectrum peaks of milk electrical conductivity signals as indexes to monitor the dairy goats’ health status by
on-line sensors. Sensors 2015, 15, 20698–20716. [CrossRef] [PubMed]

29. Zaninelli, M.; Rossi, L.; Costa, A.; Tangorra, F.; Agazzi, A.; Savoini, G. Signal spectral analysis to characterize
gland milk electrical conductivity in dairy goats. Ital. J. Anim. Sci. 2015, 14, 362–367. [CrossRef]

30. Nielen, M.; Schukken, Y.H.; Brand, A.; Haring, S.; Ferwerda-Van Zonneveld, R.T. Comparison of analysis
techniques for on-line detection of clinical mastitis. J. Dairy Sci. 1995, 78, 1050–1061. [CrossRef]

31. Council, N.R. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids;
The National Academies Press: Washington, DC, USA, 2007.

32. Federation Internationale de Laiterie—International Dairy Federation. Laboratory Methods for Use in Mastitis
Work; Bullettin of IDF n 132; International Dairy Federation: Brussels, Belgium, 1981.

33. Federation Internationale de Laiterie—International Dairy Federation. Enumeration of Somatic Cells; FIL-IDF
Standard n 148A; International Dairy Federation: Brussels, Belgium, 1995.

34. Cavero, D.; Tölle, K.-H.; Rave, G.; Buxadé, C.; Krieter, J. Analysing serial data for mastitis detection by means
of local regression. Livest. Sci. 2007, 110, 101–110. [CrossRef]

35. Salehi, F.; Lacroix, R.; Wade, K.M. Development of neuro-fuzzifiers for qualitative analyses of milk yield.
2000, 28, 171–186. [CrossRef]

36. Lindstrom, M.J.; Bates, D.M. Newton-raphson and EM algorithms for linear mixed-effects models for
repeated-measures data. J. Am. Stat. Assoc. 1988, 83, 1014–1022.

37. Barkema, H.W.; Schukken, Y.H.; Lam, T.J.; Galligan, D.T.; Beiboer, M.L.; Brand, A. Estimation of
interdependence among quarters of the bovine udder with subclinical mastitis and implications for analysis.
J. Dairy Sci. 1997, 80, 1592–1599. [CrossRef]

38. Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 3rd ed.; Prentice Hall:
Englewood Cliff, NJ, USA, 1994.

39. Schukken, Y.H.; Hertl, J.; Bar, D.; Bennett, G.J.; González, R.N.; Rauch, B.J.; Santisteban, C.; Schulte, H.F.;
Tauer, L.; Welcome, F.L.; et al. Effects of repeated gram-positive and gram-negative clinical mastitis episodes
on milk yield loss in Holstein dairy cows. J. Dairy Sci. 2009, 92, 3091–105. [CrossRef] [PubMed]

40. Hillerton, J.E. Detecting mastitis cow-sided. In Proceedings of the 39th National Mastitis Council Annual
Meeting Proceedings, Atlanta, GA, USA, 13–16 February 2000; pp. 48–53.

41. McDougall, S.; Pankey, W.; Delaney, C.; Barlow, J.; Murdough, P.A.; Scruton, D. Prevalence and incidence of
subclinical mastitis in goats and dairy ewes in Vermont. Small Rumin. Res. 2002, 46, 115–121. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.livsci.2009.02.020
http://dx.doi.org/10.1016/j.livsci.2006.06.006
http://dx.doi.org/10.3168/jds.S0022-0302(01)74490-6
http://dx.doi.org/10.1016/S0167-5877(01)00176-3
http://dx.doi.org/10.3390/s150820698
http://www.ncbi.nlm.nih.gov/pubmed/26307993
http://dx.doi.org/10.4081/ijas.2015.3518
http://dx.doi.org/10.3168/jds.S0022-0302(95)76721-2
http://dx.doi.org/10.1016/j.livsci.2006.10.006
http://dx.doi.org/10.1016/S0168-1699(00)00128-9
http://dx.doi.org/10.3168/jds.S0022-0302(97)76089-2
http://dx.doi.org/10.3168/jds.2008-1557
http://www.ncbi.nlm.nih.gov/pubmed/19528587
http://dx.doi.org/10.1016/S0921-4488(02)00191-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Materials and Methods 
	Animals and Farm Management 
	Experimental Design, Milk Sample Collection and Analyses 
	Milk Electrical Conductivity Measures and Data Acquisition System 
	Elaborations of the Acquired EC Signals 
	Fuzzy Logic and Model Setup 
	Statistical Analyses 

	Results 
	Discussion 
	Conclusions 

