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ABSTRACT The phenomenon of a gene expression burst has been attributed to random transitions between the active and
inactive states of a gene. However, the mechanisms underlying regulation of the activation process in response to environmental
changes remain unclear. Here, we model gene activation as a consequence of the competitive cross talk between a weak basal
pathway and an inducible signaling pathway and reveal rich expression dynamics along with intricate dependence of noise and
Fano factor on mean expression levels. These theoretical results are in good agreement with a large experimental data set in
Escherichia coli, yeast, and mammalian cells. Furthermore, both theoretical analyses and supporting biological evidence
converge to demonstrate the existence of a tradeoff that governs the sharp up- and downregulation of gene expression, sug-
gesting an ordered scenario that activates a gene under varying conditions. These regulation modes, together with cross talk
pathways, may provide new guidance for the analysis and interpretation of genetic data in various applications, ranging from
genetic engineering to therapeutic targets of disease.
SIGNIFICANCE A central question in biology has been to understand how genes in single cells respond to environmental
changes. Recent technological advances have generated massive amounts of data on expression dynamics and noise.
Notoriously, achieving a theoretical fit to these data requires synchronous modulation of gene activation and inactivation,
messenger RNA synthesis, and subsequent feedback in mathematical models. We integrated a typically neglected weak
basal pathway into the classical two-state model, which competes with the signaling pathway to activate a gene. We
revealed rich cross talk regulations of the two pathways that show good agreement with experimental data. This simple
framework provides a new, to our knowledge, perspective on the factors that modulate gene activation, which may open
new avenues for future biophysical studies.
INTRODUCTION

Gene expression activation in single cells can be considered
a random process. In virtually all genomic loci, messenger
RNA (mRNA) and protein molecules in active genes are
synthesized in pulsatile bursts in which each episode
of expression activation is interrupted by a period of
inactivation of the gene, or an ‘‘off’’ period (1–3). In the
classical two-state model (3–6), such bursting behavior is
suggested to originate from random transitions between
a gene’s on (active) and off (inactive) states. As shown in
the diagram,
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the system is determined by the first-order kinetic rates l for

gene activation, g for inactivation, vm for mRNA synthesis
in the active state, dm for mRNA degradation, and vp and
dp for the birth and death of protein molecules, respectively.

This two-state model (Eq. 1) implicitly assumes a single
pathway to direct gene activation under environmental
changes. However, for a large class of inducible genes, acti-
vation is usually mediated by two scenarios. First, the weak
and spontaneous basal pathway maintains basal expression
under normal cellular growth conditions (7–9). Second,
when cells receive external cues, the downstream transcrip-
tion factors (TFs) are activated by specific signal transduc-
tion pathways (10–12). In turn, these specific TFs are
forced to compete with other TFs in the basal pathway for
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Cross Talking Model of Gene Regulation
binding at target DNA sites to direct the assembly of the
active transcription complex (13–15). Therefore, cross talk
between these two competitive scenarios could be generated
to initiate gene expression.

Here, we propose a model that integrates these two cross
talking scenarios into the classical two-state model (Eq. 1;
16), based on the multiple-pathway framework (17).

Recent studies have shown that two cross talk pathways
are more likely to generate a bimodal distribution (16) and
high noise (18) in gene transcription levels compared with
a single signaling pathway in the classical two-state model
(Eq. 1). However, deeper understanding of the mechanisms
regulating the cross talk between pathways is lacking. For
instance, it remains unclear whether the cross talk of path-
ways directs more intricate mRNA and protein production
than considered thus far according to intuitive perceptions,
and the mechanism by which parameter rates in pathways
are regulated in response to different external signals has
yet to be clarified. Similar questions regarding the two-state
model have previously been addressed by combining the
model with comprehensive statistical data on mean gene
expression levels, noise (variance over mean squared), and
Fano factor (variance over mean) (19–25). Here, we high-
light the importance of the neglected basal pathway in the
classical two-state model, which helps to uncover a large
spectrum of cross talking regulation modes. This new, to
our knowledge, perspective can shed light on interpretations
of large sets of experimentally obtained gene expression
data under varying conditions.
METHODS

As shown by the diagram,

genes can be activated by two competitive pathways: the weak and stable

basal pathway with strength rate l1 or the stronger and inducible signaling

pathway with strength rate l2, satisfying

0 < l1%l2 <N

We refer to a gene’s off state as O1 if it is transformed to the on state by

the basal pathway and O2 otherwise. Then, the pathway selection probabil-

ities are denoted by

q1 ¼ ProbðO ¼ O1Þ and q2 ¼ ProbðO ¼ O2Þ

satisfying

0 < q1; q2 < 1; q1 þ q2 ¼ 1

The basal pathway is regulated independently by a default or sponta-

neous mechanism, so its strength rate l1 does not vary significantly under
a changing signal (10,26). The inducible activation rate l2 of the signaling

pathway is governed by accessibility of the DNA-binding sites, which can

be modified based on chromatin structure and the binding strength between

the TFs and DNA-binding sites (12,17).

The activation of each target gene is ultimately mediated through the

binding of downstream TFs in the basal pathway or signaling pathway at

the cognate DNA sites in the gene promoter or enhancer regions (13,17).

Accordingly, the selection probabilities q1 and q2 quantify the degree of

competition between the two pathways to form the corresponding TF-

DNA binding configurations. Therefore, the values of q1 and q2 may be

approximated by the concentration and availability of activated TFs in

each pathway (10,14). These cellular parameters are signal related in gen-

eral, suggesting that a given gene may vary greatly in q2 (or q1) and l2 de-

pending on the type and level of signals received. Our calculation and

analysis were performed in two main steps, which are outlined in detail

in the Supporting Materials and Methods. First, we focus on the time-

dependent average levels of mRNA and protein molecules generated by

the cross talking pathways model described above (Eq. 2). Their exact

forms, under arbitrary initial values, can be computed by solving a system

of differential equations derived from master equations corresponding to

the cross talking pathways model. Use of these formulas enabled detailed

mathematical analysis of the modulation of temporal profiles of mean

expression levels, along with the relationship of these profiles from the

mRNA to protein level.

Second, we derive analytical formulas for determining the stationary

expression mean, noise, and Fano factor (i.e., noise strength) generated

by cross talking pathways. These formulas reveal two types of relation-

ships: 1) different theoretical curves of noise and Fano factors against the

mean expression level generated by varying single or multiple parameter

rates and 2) synchronous variation of two parameters against the mean

expression level derived through the reverse calculation of the formulas.

Together with steady-state expression data under varying cellular condi-

tions, these dynamics may help to uncover a large spectrum of regulation

modes that cells utilize in response to environmental changes.
RESULTS AND DISCUSSION

We first explore how the cross talking pathways model (Eq.
2) generates rich dynamics for average gene expression at
both the mRNA and protein levels. We further reveal a cross
talking regulation scenario with a good theoretical fit to a
large data set of steady-state expression under varying con-
ditions. Finally, we compare our cross talking pathways
model (Eq. 2) with the classical two-state model (Eq. 1).
Three dynamical modes of mean expression

Under the classical framework, Hao and Baltimore (27)
quantified gene expression in cultured mouse fibroblasts in
response to stimulation with the cytokine tumor necrosis
factor (TNF), and divided the 180 activated genes into three
dynamical categories characterized by the peak and corre-
sponding time mRNA accumulation level. They found that
the stability of the mRNAs encoded by the three groups of
genes played an unexpectedly key role in the overall expres-
sion dynamics, whereas other transcriptional control factors
were determinants of the observed dynamics. Therefore, we
were motivated to clarify the modulation of cross talking
pathways on the dynamics of mean expression levels and
to determine the interplay of this cross talk with mRNA
Biophysical Journal 119, 1204–1214, September 15, 2020 1205
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stability to generate three distinct temporal gene-induction
modes in mouse fibroblasts.

We denote the probabilities of gene on state and gene off
states Oj, j ¼ 1, 2 as PE(t) and Pj(t) at time t R 0, respec-
tively. The three probability functions are related by the con-
servation law

P1ðtÞþP2ðtÞ þ PEðtÞ ¼ 1:

In addition, we denote the time-dependent average levels
of mRNA and protein molecules as m(t) and a(t), respec-
tively. To characterize the dynamic profiles of m(t) and
a(t) with almost no expression products at the initial time
t ¼ 0 (27,28), we assume that transcription starts from the
gene off state and count only the newly produced mRNA
and protein molecules. This gives the initial values

ðP1ð0Þ;P2ð0Þ;PEð0Þ;mð0Þ; að0ÞÞ ¼ ðq1; q2; 0; 0; 0Þ: (3)

Under this condition, the exact forms of PE(t), m(t), and
a(t) are given as described by formulas 2.1–2.5 of the Sup-
porting Materials and Methods. It can be rigorously shown
that both m(t) and a(t) with the initial condition Eq. 3 either
increase at all times or increase initially until reaching a
peak uniquely at finite times and decrease thereafter.

More precisely, we introduce a real number b > 0 given
by Theorem 2.1 in the Supporting Materials and Methods
and a threshold value L given by

L ¼ l1l2

q1l1 þ q2l2
¼ 1

1
l2
þ q2

�
1
l1
� 1

l2

�˛ðl1; l2Þ; (4)

in which m(t) satisfies (18)�
mðtÞ always increases5LRminfdm;gg;
mðtÞ peaks uniquely5L<minfdm;gg; (5)

and a(t) satisfies Theorem 2.1 in the Supporting Materials
and Methods,�

aðtÞ always increases5LRmin
�
dm; dp; b

�
;

aðtÞ peaks uniquely5L<min
�
dm; dp; b

�
:

(6)

The theoretical result Eq. 5 suggests a plausible regula-
tion mode for m(t) dynamics by varying the selection prob-
ability q2. We first noticed that gene inactivation events
occur more frequently than mRNA degradation events
among thousands of eukaryotic genes evaluated from yeast,
mouse, and human cells (29). Therefore, g > dm, so dm ¼
min{dm, g} in Eq. 5. Note that L, given by Eq. 4, decreases
with respect to q2. The equation L ¼ dm is then solved to
determine the critical value q2 ¼ Lq such that L R dm if
q2 % Lq and L < dm if q2 > Lq. Therefore, under the
assumption g > dm, Eq. 5 can be rewritten as
1206 Biophysical Journal 119, 1204–1214, September 15, 2020
�
mðtÞ always increases5q2%Lq;

mðtÞ peaks uniquely5q2 >Lq;
with

Lq ¼ l1ðl2 � dmÞ
dmðl2 � l1Þ:

(7)

When dm is very small (dm < l1), Eq. 7 indicates that Lq

> 1, and m(t) takes on a gradual growth pattern. Conversely,
if dm is relatively large (dm > l2), then Lq < 0, and m(t)
takes on an up-and-down dynamical profile. For the median
scenario in which dm falls into the region (l1, l2), then Lq ˛
(0, 1) so that q2 is enhanced across Lq, resulting in a switch
of m(t) dynamics from a monotonic increase to nonmono-
tonic behavior.

Here, we use numerical examples to demonstrate how
cross talking pathways cooperate with mRNA stability to
generate distinct expression dynamics in three groups of
mouse fibroblast genes after TNF stimulation based on the
data of Hao and Baltimore (27). Group I genes are those
that peaked quickly within 0.5 h after stimulation, and
then their transcript expression levels sharply decreased,
often reaching the baseline value or lower, by 2 h after stim-
ulation. The half-life of group I mRNA transcripts varied
from 0.2 to 0.9 h. Thus, we set a median half-life of
0.57 h and the corresponding degradation rate as dm ¼
log(2)/0.57 z 1.22 h�1. Group II genes are those that
showed a continual increase in transcription levels up to
2 h after induction and did not decrease sharply thereafter.
These mRNAs were relatively more stable, with half-lives
varying from 1 to 8 h. Thus, we set dm ¼ 0.14 h�1 so that
the half-life has a median value of 4.85 h. Group III mRNAs
are those that also gradually increased in abundance but did
not reach peak levels during the observation period. These
mRNAs were very stable, with half-lives longer than 8 h.
Therefore, we set the half-life of this group to 12 h, corre-
sponding to dm ¼ 0.0578 h�1.

We established a protocol for estimating parameters in the
simulation to capture three main features of transcription
dynamics. To guarantee the up-and-down dynamics in
groups I and II, we take l1 < dm < g and maintain q2 above
the critical value Lq, according to Eq. 7. To simulate the
sharp transcriptional variation observed in group I, we
take a large dm to reach the steady state within a short
time period, use large g and small l1 to push the stationary
value below the baseline, and set large vm- and q2l2-values
to generate a steep up-and-down curve that is balanced with
the large dm- and g-values to maintain a high peak (see
Remark 2.1 in the Supporting Materials and Methods).
Similarly, to fit the more gradual dynamic curves in group
II, we set dm, g, vm, and q2l2 to be relatively small compared
with those in group I. To generate the growth dynamics in
group III, we use l2 > dm and set q2 below the critical value
Lq given in Eq. 7. In addition, we use vm and q2l2 to modu-
late the growth rate in the early time period. In general, the
selection of parameters for group III can be less restricted
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compared with that used for parameters in groups I and II
owing to the disappearance of the transcription level peak
in group III.

The three curves of the average mRNA level m(t), based
on the protocol above to fit representative data in the three
groups, are shown in Fig. 1 a. Integrating the birth rate vp
and death rate dp of a protein naturally gives rise to an inter-
esting question: how does m(t) transit its dynamical profile
to the protein level a(t)? Using Eqs. 5 and 6, we analytically
show that dp dominates this transition (see Remark 2.2 in the
Supporting Materials and Methods). The monotonic
growing pattern of m(t) is always maintained in a(t); the
up-and-down dynamics of m(t) remains in a(t) when dp >
L but switches to the growing pattern once dp%L. To illus-
trate this conclusion, we utilize parameter rates for gener-
ating the three dynamical modes of m(t) in Fig. 1 a and
further compute a(t) under different dp-values. As shown
in Fig. 1 b, when dp is relatively large, the variation rates
for m(t) and a(t) approach the direct ratio (see Remark 2.2
in the Supporting Materials and Methods), indicating that
dynamical features remain intact from the mRNA to protein
level. By contrast, when dp decreases, the growth curve in
group III is maintained, whereas the up-and-down dynamics
in groups I and II is gradually weakened and finally switches
to the growing pattern at the protein level only if dp % L.
Regulation of signaling pathways under varying
conditions

There has been tremendous effort put forward to understand
how genes respond to changing signals at the single-cell
level (5,25), resulting in massive steady-state data on
average expression levels E, the Fano factor (or noise
strength) f, and the noise h for both mRNA and protein
copy numbers (19–24). These data, when mapped as scat-
tered points onto an E-f or E-h plane, provide a statistical
basis for fitting trend lines of f and h against E through
mathematical models (25). Motivated by these pioneering
studies, we were interested in understanding how cross talk-
the mRNA to protein level. Left: when dp is relatively large, the mRNA dyna

the growth curve in group III always maintains its expression, whereas the up-an

level once dp < L. To see this figure in color, go online.
ing pathways influence the curves of f and h vs. E. More
importantly, by fitting experimental data, we sought to
reveal the cross talking modulation mode of pathways in
response to environmental changes.

We first obtained analytical forms for the stationary mean
level E, Fano factor f, and noise h generated by our cross
talk pathways model (Eq. 2) (see formulas 2.15, 2.16, and
3.6–3.8 in the Supporting Materials and Methods). The re-
sults showed that all first-order kinetic rates can be nondi-
mensionalized by dividing by the mRNA degradation rate
dm. Thus, we maintain dmh1 and assume dimensionless pa-
rameters in further discussions of gene expression at the
steady state. Here, we focus on the impact of varying the se-
lection probability q2 and the strength rate l2 in the
signaling pathway to evaluate gene expression regulation
specifically in response to external signals.

When q2 varies, h always decays for E, as shown in Fig. 2
a. To reveal the nonlinear dependence of f on E as observed
in (18), the theoretical framework suggests the need for
either a large inactivation rate g or weak strength l1 in the
basal pathway (see Remark 3.1 in the Supporting Materials
and Methods). As shown in Fig. 2 a, the variation of q2
indeed forces f to increase for small E and to decay down-
ward for large E, in a similar fashion as observed by varying
g in the two-state model (Eq. 1) (see Theorem 3.1 in the
Supporting Materials and Methods). However, this mode
changes when l2 is varied while l1 is kept relatively small
or g is relatively large. As shown in Fig. 2 b, variation of
l2 modulates both f and h to first decay downward and
then to increase for E, which cannot occur by varying
only any single parameter in the two-state model (Eq. 1)
(see Theorem 3.1 in the Supporting Materials and Methods).
Furthermore, when l1 continues to become smaller or g

continues to increase, this down-and-up curve is maintained
for h vs. E but switches to the growing curve for f vs. E
(Fig. 2 b).

The changes in decaying noise and up-and-down Fano
factor against the mean expression level are consistent
with data from experiments in actual cells as reported by
FIGURE 1 Three dynamical modes at the mRNA

and protein levels. (a) Cross talk pathways modulate

transcription dynamics in three groups of fibroblast

genes after TNF stimulation (27). The red line repre-

sents the fit of data in group I (red diamonds) with

vm ¼ 400, dm ¼ 1.22, l1 ¼ 0.03, l2 ¼ 300, g ¼ 90

(h�1), and q2 ¼ 0.925. The green line represents

the fit of data in group II (green squares) with

vm ¼ 45, dm ¼ 0.14, l1 ¼ 0.03, l2 ¼ 15, g ¼ 1.9

(h�1), and q2 ¼ 0.65. The blue line represents the

fit of data in group III (blue triangles) with vm ¼
50, dm ¼ 0.0578, l1 ¼ 0.01, l2 ¼ 1, g ¼ 0.116

(h�1), and q2 ¼ 0.1. (b) Protein degradation rate dp
dominates the transition of dynamical modes from

mic features remain intact at the protein level. Right: when dp decreases,

d-down curves in groups I and II switch to the growing pattern at the protein
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FIGURE 2 Cross talking pathways modulate the dependence of the Fano factor and noise on the mean expression level. (a) Variation of q2 generates an up-

and-down Fano factor against the expression level when g is relatively large or l1 is relatively small and always generates decaying noise against the expres-

sion level. (b) Variation of l2 generates down-and-up curves for both the Fano factor and noise against the expression level when g is relatively large or l1 is

relatively small. The dimensionless parameters g and l1 are embedded in the figures; dm ¼ vp ¼ dp ¼ 1, vm ¼ 500, and l2 ¼ 15 in (a), and q2 ¼ 0.8 in (b). To

see this figure in color, go online.
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(19–21). In a recent study in yeast, Carey et al. (19) in-
serted the ZRT1 promoter, which is a target of the TF
Zap1, upstream of the YFP-coding sequence and further
enhanced the concentration and binding kinetics of Zap1
in the signaling pathway by decreasing zinc induction
levels. As shown in Fig. 3 a, the mean YFP expression level
and noise clustered into a decaying trend line. Similarly, So
et al. (20) and Jones et al. (21) quantified transcription
levels for a large number of Escherichia coli promoters un-
der varying conditions and revealed general up-and-down
trend lines for the Fano factor versus mean level (Fig. 3
b). The activity of these promoters was demonstrated to
be regulated by competitive DNA binding of the repressor
1208 Biophysical Journal 119, 1204–1214, September 15, 2020
LacI and several activators such as CRP (20,21). Therefore,
we used repressors as the downstream TFs in the weak
basal pathway and activators as TFs for modulating the
signaling pathway. Indeed, our theoretical curves gener-
ated by changing the selection probability q2 of the
signaling pathway are in good agreement with the empir-
ical data (Fig. 3, a and b; Table S1). This indicates that
the modulation of q2, controlled by the corresponding TF
concentration and binding kinetics, plays a pivotal role in
gene expression regulation. To further understand the
extent to which the other parameter l2 in the signaling
pathway is modulated, we reversed each data point in
Fig. 3 b to a pair of q2 and l2 while keeping the remaining



FIGURE 3 Modulation of the signaling pathway

in yeast and E. coli. (a) Fit of data for noise against

mean YFP expression in yeast is shown. Blue trian-

gles are the steady-state data from the ZRT1 pro-

moter under different zinc concentrations (19).

Red line is the theoretical curve, generated by vary-

ing the selected probability q2 of the signaling

pathway. (b) Fit of the data for the Fano factor

versus mRNA mean level in E. coli is shown.

Markers represent steady-state data from the pro-

moter Plac under different IPTG and cAMP concen-

trations (green circles) (20) and two constructed

promoters under different repressor concentrations

(red squares and blue triangles) (21). Solid lines

(green, red, and blue) show theoretical curves

generated by varying q2. (c) Markers represent ex-

tracted probability q2 and strength rate l2 of the

signaling pathway as functions of mean mRNA

expression level from the data in (b). Solid lines

show trend lines of markers characterized by varia-

tion of q2 at low mRNA levels and of l2 at high

mRNA levels. The parameter values are shown

in Tables S1 and S2. To see this figure in color,

go online.
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parameters stable (see Remark 3.2 in the Supporting Mate-
rials and Methods; Table S2). This revealed an interesting
regulation mode: q2 is modulated when the expression
level is low, whereas l2 is modulated when the expression
level is higher (Fig. 3 c).

Down-and-up noise dynamics as a function of the mean
expression level has also been observed in recent human
immunodeficiency virus (HIV) studies, in which Dar
et al. (22) and Dey et al. (23) inserted the HIV LTR pro-
moter at random genomic locations of Jurkat T cells and
obtained a large set of expression data. As shown in
Fig. 4, a and b, a good theoretical fit to these data was
achieved by simply changing the activation rate l2 of
the signaling pathway. The invariant rate l1 reinforces
the basal promoter activity as determined by HIV integra-
tion sites (9). However, variation of l2 suggests that HIV
gene expression can be strongly influenced by the local
chromatin environment (9,22), which might be governed
by different levels of chromatin accessibility across the
genome (23). Thus, to further understand the modulating
role of the chromatin environment, we reversed the data
in Fig. 4 b with respect to variations of q2 and l2 against
mean expression levels (see Remark 3.2 in the Supporting
Materials and Methods). In addition, we repeated this pro-
cedure under different values of the other parameter triplet
(vm, g, l1), as shown in Fig. 4 c. This procedure resulted
in two main observations. First, the selection probability
q2 maintains relatively high values, consistent with the
estimated large q2 for the fitting data in Fig. 4, a and b
(also see Table S1). This might be caused by the effect
of TNF stimulation that induces related TFs (e.g.,
NFkB) to become nearly saturated in the nucleus of sorted
GFP-positive cells (23,24). Second, variations of q2 and l2
across the genome show robust behavior against different
triplets (vm, g, l1), with modulation of q2 at low expres-
sion and of l2 when the expression level is higher.
Comparison with the classical two-state model

The proposed cross talking pathways model (Eq. 2) is, in
principle, a generalized two-state model (Eq. 1) that as-
sumes an additional basal pathway that triggers the process
of gene activation. The basal pathway has been generally
ignored in the traditional mathematical framework because
of its very weak and stable strength rate l1, leading to the
assumption that a stronger signaling pathway induced by
extracellular signals may dominate gene activation (10).
However, this intuitive assumption may not be justified in
consideration of the cross talk regulation of the two path-
ways. Consider the gene activation frequency Pon, which
takes the form of (16,18)

Pon ¼ l1l2

q1l2 þ q2l1
¼ 1

q1
l1
þ q2

l2

When the signaling pathway is very strong and
frequently selected, the large l2 gives q2/l2 << 1, whereas
the balance of the small q1 and weak strength of l1 gives
q1/l1 >> q2/l2. This leads to Pon �l1/q1, suggesting that
the gene activation event may be dominated by the basal
pathway even when the signaling pathway is efficiently
induced. This observation shows that the basal pathway
can play a non-negligible role in gene activation and thus
may cooperate with the signaling pathway to produce
expression features that cannot be captured in the model
with a single pathway.
Biophysical Journal 119, 1204–1214, September 15, 2020 1209



FIGURE 4 Modulation of signaling pathways in mammalian cells. (a and b) Fit of data for noise and Fano factor against mean expression levels is given.

Red circles represent steady-state data from the HIV LTR promoter inserted at random locations in the genome of Jurkat T cells (22,23). Blue lines show the

theoretical fit generated by changing the strength rate l2 of the signaling pathway. (c) Red circles represent extracted l2 and selection probability q2 of the

signaling pathway from the data in (b) under different values of the other parameters (vm, g, l1). Blue lines show robust trend lines of red circles, indicating

that q2 is modulated at low mRNA expression levels and l2 is modulated at high expression levels. The parameter values are shown in Table S1. To see this

figure in color, go online.
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For genes that are silenced under normal growth conditions
(27,28,30), the average mRNA and protein levels derived
from the two-state model increase for all time points t >
0 in response to external stresses and approach steady-state
values as t/N (see Remark 2.3 in the SupportingMaterials
and Methods). This suggests that the application of the two-
state model is inadequate to capture the typical up-and-down
expression dynamics for mouse fibroblast genes after TNF
treatment (27); see Fig. 5 a. The monotonic increasing dy-
namic pattern of gene expression thus seems to be a robust
feature induced by a single activation pathway. For instance,
we can extend the two-state model by decomposing the gene
activation into two independent sequential processes (31).
This extension maintains a single pathway, and the mean
expression level either increases monotonically or displays
damped oscillatory dynamics (32). However, such oscillation
behavior is almost invisible because of the rapid exponential
decay and only slightly slows down the increase of the
average level to an amplified steady-state value (32).

The two-state model (Eq. 1) still provides a good fit to
experimental data in the case of monotonically increasing
dynamics, as shown in Fig. 5 a. In this case, we can rule
out the cross talk of two pathways and conclude that gene
activation is directed by a single pathway. However, this
interpretation may require quantifying the stability of
mRNA and protein molecules. From Eq. 7, a lower
mRNA death rate dm results in a higher probability of
increasing dynamics at the average level. To illustrate this
more clearly, we introduce
1210 Biophysical Journal 119, 1204–1214, September 15, 2020
Ld ¼ l1l2

q2ðl2 � l1Þ þ l1
˛ðl1; l2Þ

and rewrite Eq. 7 in the form�

mðtÞ always increases5dm%Ld;
mðtÞ peaks uniquely5dm >Ld;

with g> dm

This suggests that encoded stable transcripts usually
demonstrate a gradual increase in the average level, whereas
less stable transcripts are more likely to exhibit nonmono-
tonic mean dynamics, as observed in experimentally with
the TNF-induced transcription of cultured mouse fibroblasts
(27). When the transcript is extremely stable at dm < l1, its
average level always presents increasing dynamics indepen-
dently of how the signaling pathway is modulated. Such
extreme cases may be achieved by tagging mRNA with
the MS2-GFP fusion protein, which increases the transcript
lifetime (30). Application of this approach produces
increasing dynamics of transcript numbers in living E. coli
cells, even if the upstream Plac,/ara promoter is highly acti-
vated through the cross talk of two pathways that separately
converge on the repressor LacI and activator AraC (30). In
contrast, other experimental approaches such as single-
molecule fluorescent in situ hybridization and reverse tran-
scription-quantitative polymerase chain reaction have
demonstrated up-and-down dynamics for the mean tran-
scription level of c-Fos induced through the MAPK
signaling pathway (28). Given the significant impact of



FIGURE 5 Fit of data through the classical two-

state model (Eq. 1). (a) Dynamical curves of mean

mRNA levels that continuously increase at all time

points and cannot fit the nonmonotonic transcription

dynamics of mouse fibroblast genes (27) are shown.

(b) Decaying noise against the mean expression

levels of the ZRT1 promoter in yeast can be best

described by an increase in the activation rate l

(19). (c) Up-and-down Fano factor dynamics versus

mean expression levels for E. coli promoters can be

generated by decreasing the inactivation rate g

(20,21). (d) Down-and-up noise dynamics against

mean expression levels for the HIV LTR promoter

reveals the modulation of l at low expression levels

and of burst size vm/g when expression is higher

(22,23). The embedded diagrams suggest that g

and the mRNA synthesis rate vm increase synchro-

nously to modulate the burst size and ultimately up-

regulate expression. Markers represent expression

levels, as shown in Figs. 1, 3, and 4. Solid lines indi-

cate the theoretical curves generated by the two-

state model. The parameter values are shown in Ta-

ble S3. To see this figure in color, go online.
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protein stability on the mean expression dynamics (Fig. 1 b),
the discussion above suggests that the impact of cross talk-
ing pathways may be ruled out only when the gene is highly
activated and the average level of encoded unstable tran-
scripts displays monotonic growing dynamics.

Nevertheless, the two-state model (Eq. 1) generates theo-
retical curves to fit the stationary data of noise and Fano fac-
tor versus mean expression level. To explain this
phenomenon, consider the case of YFP expression from
the ZRT1 promoter in yeast, in which the decaying trend
of noise against the mean level can best be described by
an increase in the gene activation rate l (19); see Fig. 5 b.
For the transcription of E. coli promoters, the general up-
and-down Fano factor dynamics as a function of mean
expression level can be achieved by decreasing the inactiva-
tion rate g (Fig. 5 c; (20,21)). However, variation in any sin-
gle parameter rate cannot generate the typical down-and-up
noise dynamic against the mean expression level for the
HIV LTR promoter across integration positions (22,23)
(see Theorem 3.1 in the Supporting Materials and Methods).
Two approaches of parameter estimation have been inde-
pendently applied to identify the modulation mode:
increasing l accounts for suppressing noise at weaker
expression loci, whereas increasing the burst size vm/g ac-
counts for enhancing the noise at stronger expression loci
(22,23); see Fig. 5 d. To separate the mRNA synthesis rate
vm from g, we reversed the data points at stronger expression
loci to variations of vm and g against the mean level (see
Remark 3.2 in the Supporting Materials and Methods).
This reveals a synchronous increase in both vm and g that
upregulates gene expression; see Fig. 5 d.

The good fit of both the two-state model (Eq. 1) and the
cross talking pathway model (Eq. 2) to the same stationary
data sets supports two alternative views. On the one hand,
using the two-state model to fit the data from different pro-
moters requires different regulation modes that alter mRNA
synthesis, gene activation, and inactivation, as shown in
Fig. 5. This implies that gene regulation in response to envi-
ronmental changes is promoter specific because it may act
on some genes individually, but not on others. On the other
hand, the theoretical fit of all data through the cross talking
pathway model (Figs. 3, a and b and 4, a and b) can be
achieved only by modulating the signaling pathway in the
gene activation process. Such a general regulation mode,
as opposed to the promoter-specific scenario that may be
dependent on promoter architecture, reflects global con-
straints such as the binding and unbinding of regulatory el-
ements on the corresponding DNA-binding sites. This
contrast between promoter nonspecific or promoter-specific
regulation is maintained when considering the synchronous
variation of the two system parameters (see Remark 3.2 in
the Supporting Materials and Methods). Figs. 3 c and 4 c
show that all data points can be reversed to an ordered regu-
lation on the selection probability q1 and the strength rate l2
of the signaling pathway. In contrast, using a two-state
model to reverse these data results in different variation
Biophysical Journal 119, 1204–1214, September 15, 2020 1211
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patterns for the combination of the gene activation rate l and
inactivation rate g or the combination of g and the mRNA
synthesis rate vm, which determines the burst size vm/g
(Fig. 6).
CONCLUSIONS

The phenomenon of a burst of gene expression has been
attributed to the random transition between active and inac-
tive states of a gene (3,5). Here, we propose a new, to our
knowledge, model for considering regulation of gene activa-
tion in response to environmental changes and external
stimuli. Activation of a target gene is ultimately mediated
through competitive DNA binding of different TFs in the
promoter region, which may result in a large number of
TF-DNA binding configurations (14,17). We have classified
downstream TFs into two parallel pathways: the basal
pathway regulated by a default or spontaneous mechanism
(7–9) and the signaling pathway that is induced in response
to external signals (10–12). These two pathways competi-
tively converge onto their corresponding TF-DNA binding
patterns to induce gene activation. This observation moti-
vated us to extend the classical two-state model (Eq. 1) by
assuming that a gene can be activated either by the basal
pathway with strength rate l1 and selection probability q1
or by the inducible signaling pathway with strength rate l2
and selection probability q2 ¼ 1 � q1. Our ultimate aim is
to better understand how potential cross talk between these
two competitive pathways modulates downstream gene
expression.

We first theoretically demonstrated that the dynamical
profile of the mean expression level of a gene takes on either
a monotonic growth or up-and-down pattern. We further re-
vealed rich cross talk regulation modes on the mean expres-
1212 Biophysical Journal 119, 1204–1214, September 15, 2020
sion dynamics and found a good theoretical fit to the three
groups of genes classified according to their expression dy-
namics based on experimental observations for 180 TNF-
induced mouse fibroblast genes (27). In particular, sharp
up-and-down dynamics can be achieved by the tradeoff be-
tween a strong and frequently selected signaling pathway
that upregulates expression to rapidly reach a high level
and a rarely selected weak basal pathway that downregu-
lates expression from its peak to the baseline level. To
more explicitly demonstrate the nonmonotonic expression
dynamics, we assumed that the gene inactivation rate is
larger than the mRNA degradation rate, as manifested by
empirical data for a large number of genes in several
different types of eukaryotic cells (29). We derived a
threshold lq given by Eq. 7 for the selection probability q2
of the signaling pathway. The mean expression level ex-
hibited a growing pattern when q2 % Lq and switched to
the up-and-down dynamics once q2 was enhanced above
Lq. Note that the model with a single pathway could not
generate such nonmonotonic expression dynamics. Thus,
our results suggest that natural selection may favor the cross
talk of two parallel pathways for fulfilling two contradictory
requirements: the rapid upregulation of gene expression to
contribute to the adaptation to acute external stresses and
subsequent repression to avoid overexuberant expression,
which may have detrimental side effects, as observed in
the innate immune system of insects when fighting pathogen
invasions (33).

Moreover, the stabilities of mRNA and protein molecules
have a significant influence on the dynamic monotonicity
of their average levels. First, our analytical results showed
that the monotonic growing dynamics are consistently main-
tained from the mRNA to protein level. However, the up-and-
down dynamics at the mRNA level can switch to the growing
FIGURE 6 Different regulation modes revealed

by varying two parameters in the two-state model

(Eq. 1). (a) Synchronous variation of the activation

rate l and inactivation rate g is shown. To upregulate

average mRNA expression, g decreases for all pro-

moters, whereas l increases for the promoter Plac,

decreases initially and then increases for promoters

PlacUV5 and P5DL1, and increases initially and then

decreases for the HIV LTR promoter. (b) Synchro-

nous variation of g and the mRNA synthesis rate

vm is shown. As the average mRNA level is

increased, vm initially decreases and then increases

for Plac, PlacUV5, and P5DL1 and increases for the

HIV LTR promoter, and g varies differently for all

promoters. Markers are extracted parameters from

transcription data obtained in (20,21,23). Solid lines

are the trend lines of markers; other parameter

values, dm ¼ 1, Plac, PlacUV5, P5DL1, and LTR pro-

moters are set to vm ¼ 61, 14, 8, and 200 in (a),

and l ¼ 0.01, 0.1, 0.05, and 0.2 in (b), respectively.

To see this figure in color, go online.
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pattern at the protein level if, and only if, the protein stability
remains above a certain threshold characterized by Eq. 4.
Taking into account the long timescale of protein molecules
for a large number of genes (29,34,35), this suggests that the
average protein level may increase monotonically even if the
transcription can be dynamically downregulated. Second, our
theoretical results and supporting experimental evidence
show that stable transcripts may mask downregulation gov-
erned by cross talking pathways and ultimately exhibit a
gradually increasing average level (27,30). In contrast, less
stable transcripts are more likely to exhibit nonmonotonic
mean dynamics (27,28). This suggests that, for some effi-
ciently induced genes, we may consider ruling out the cross
talking regulation mechanism when the encoded transcripts
are unstable while displaying a dynamically growing average
level.

We further revealed a general cross talking regulation sce-
nario that may explain the stationary expression data of
distinct promoters under varying conditions. That is, we
have demonstrated different stationary curves of noise and
Fano factor against the mean expression level simply by
changing the selection probability q2 or strength rate l2 of
the signaling pathway. As an encouraging observation, our
theoretical results were in good agreement with a large
data set obtained from E. coli, yeast, and mammalian cells
(19–23). This reveals that the regulation of q2 is the main
contributor in the response to external signals and l2 is
strongly modulated across different chromatin environ-
ments. To gain deeper insight into the pivotal roles of q2
and l2 in gene regulation, we focused on the transcription
data for three E. coli promoters (20,21) and the HIV LTR
promoter (23) and then reversed the data set to the variations
of q2 and l2 against mean expression. This process revealed
a robust regulation mode in which q2 is modulated when the
expression level is low, whereas l2 is modulated when the
expression level becomes higher. Such ordered regulation
shows that the accumulation of signal-induced TFs primar-
ily navigates gene activation more frequently through the
stronger signaling pathway. Once the TF concentration
and retention time reach the ceiling, the scenario switches
to increasing the strength rate of the signaling pathway,
such as by enhancing accessibility of DNA-binding sites
hampered by the chromatin structure.

The general regulation mode of the signaling pathway
described above reflects a promoter nonspecific scenario
governed by global cellular constraints such as the binding
of regulatory elements on DNA sites. By contrast, using
the two-state model to fit the steady-state data revealed a
promoter-specific scenario, as different types of promoters
corresponded to distinct regulation modes. Both scenarios
may coexist to produce the final observed expression fea-
tures (25); that is, the general regulation mechanism based
on cross talk of pathways for gene activation may cooperate
with other promoter-specific regulation mechanisms in
response to external changes. The question then remains
as to which regulation mode plays a dominant role and
which has only a secondary effect on a given gene of inter-
est. A plausible way to address this question may require
measuring the expression dynamics with respect to the
average level or overall distribution under different external
induction levels. This could then allow for estimating which
of the two regulation scenarios can better characterize the
variation of dynamical profiles with respect to the induction
strength. In particular, some typical dynamical features such
as the up-and-down mean expression pattern (27,28) or
long-lasting bimodal expression distribution (10,30) may
point to the presence of cross talk regulation (see Fig. 1 a;
(36,37)).

The cross talk regulation mode of the two pathways pre-
sented herein cannot generate different stationary noise for
the same average level of expression (19). In addition, this
model cannot reveal mean expression dynamics character-
ized by more than one peak or with oscillation behavior
(11,38). To capture these features, future work is required
to implement two extensions of the cross talking pathway
model (Eq. 2): 1) integrating a suitable number of parallel
signaling pathways (14,17) or 2) decomposing the signaling
pathway into several sequential processes (31,32).
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