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ABSTRACT
Background  Colorectal cancers (CRCs) with microsatellite 
instability-high (MSI-H) are hypermutated tumors and 
are generally regarded as immunogenic. However, 
their heterogeneous immune responses and underlying 
molecular characteristics remain largely unexplained.
Methods  We conducted a retrospective analysis of 73 
primary MSI-H CRC tissues to characterize heterogeneous 
immune subgroups. Based on combined tumor-infiltrating 
lymphocyte (TIL) immunoscore and tertiary lymphoid 
structure (TLS) activity, MSI-H CRCs were classified into 
immune-high, immune-intermediate, and immune-low 
subgroups. Of these, the immune-high and immune-low 
subgroups were further analyzed using whole-exome and 
transcriptome sequencing.
Results  We found considerable variations in immune 
parameters between MSI-H CRCs, and immune 
subgrouping of MSI-H CRCs was performed accordingly. 
The TIL densities and TLS activities of immune-low MSI-H 
CRCs were comparable to those of an immune-low or 
immune-intermediate subgroup of microsatellite-stable 
CRCs. There were remarkable differences between 
immune-high and immune-low MSI-H CRCs, including 
their pathological features (medullary vs mucinous), 
genomic alterations (tyrosine kinase fusions vs KRAS 
mutations), and activated signaling pathways (immune-
related vs Wnt and Notch signaling), whereas no 
significant differences were found in tumor mutational 
burden (TMB) and neoantigen load. The immune-low 
MSI-H CRCs were subdivided by the consensus molecular 
subtype (CMS1 vs CMS3) with different gene expression 
signatures (mesenchymal/stem-like vs epithelial/goblet-
like), suggesting distinct immune evasion mechanisms. 
Angiogenesis and CD200 were identified as potential 
therapeutic targets in immune-low CMS1 and CMS3 MSI-H 
CRCs, respectively.
Conclusions  MSI-H CRCs are immunologically 
heterogeneous, regardless of TMB. The unusual immune-
low MSI-H CRCs are characterized by mucinous histology, 
KRAS mutations, and Wnt/Notch activation, and can be 
further divided into distinct gene expression subtypes, 
including CMS4-like CMS1 and CMS3. Our data provide 
novel insights into precise immunotherapeutic strategies 
for subtypes of MSI-H tumors.

BACKGROUND
Over the past decade, there have been 
remarkable advances in our understanding of 
tumor immunology and clinical application of 
immunotherapy in human cancers, including 
colorectal cancer (CRC). While early detec-
tion improves the chances of survival of 
patients with CRC, the development of more 
effective treatment is required for late and 
metastatic cancer, which has increased the 
interest of researchers in immunotherapy.1

Similar to that in other types of cancer, 
patients’ responses to immunotherapy, specif-
ically immune checkpoint blockades (ICBs), 
are heterogeneous in CRCs. The most distinc-
tive feature of responsiveness is the microsat-
ellite instability-high (MSI-H) status, which is 
caused by DNA mismatch repair deficiency 
(dMMR) and comprises approximately 
15% of CRCs. Cancers with MSI-H harbor 
higher neoantigen loads, originating from 
an elevated genome-wide mutation rate.2 
Compared with CRCs with microsatellite-
stable (MSS)/mismatch repair proficiency, 
MSI-H CRCs show increased lymphocytic infil-
tration and upregulation of immune check-
point molecules such as programmed cell 
death protein 1 (PD-1), programmed death-
ligand 1 (PD-L1), cytotoxic T-lymphocyte 
associated protein 4 (CTLA-4), lymphocyte-
activation gene 3 (LAG-3), and indoleamine 
2,3-dioxygenase (IDO).3 Therefore, MSI-H 
CRCs are commonly regarded as immuno-
genic and primarily targeted for ICBs.2 4–6

Despite active clinical applications, the 
response rate to ICBs remains limited 
(approximately 30%–50% towards PD-1 
blockade) in MSI-H CRCs.7–9 Thus, there is 
a demand for more markers that explain the 
variability in immunogenicity and respon-
siveness. Recent studies have identified 
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intertumoral variations in immune infiltration and acti-
vation in MSI-H CRCs,10 11 including heterogeneous 
lymphoid reaction and PD-L1 expression status among 
MSI-H CRCs reported by our group.12 As the differences 
in immunogenic potentials and the tumor immune 
microenvironment are considered the cause of the varied 
efficacy in ICBs,13–15 further stratification of MSI-H CRCs 
is urgently needed. However, the underlying molecular 
factors remain poorly characterized.

Here, we present a comprehensive clinicopatholog-
ical and molecular profile of MSI-H CRCs to identify the 
factors underlying their heterogeneous immunogenicity. 
Using immunohistochemistry (IHC) and histomorphom-
etry, we quantitatively analyzed the tumor immune micro-
environmental parameters of 73 MSI-H CRCs, including 
tumor-infiltrating lymphocytes (TILs), tumor-associated 
macrophages (TAMs), and tertiary lymphoid structures 
(TLSs), to classify tumors into immune-low, intermediate, 
and high subgroups. We then conducted whole-exome 
and transcriptomic analyses of the immune-low and 
immune-high subgroups. We anticipate that the integra-
tive profile will lead to a better understanding of immune 
heterogeneity within MSI-H CRCs and its underlying 
molecular mechanisms and provide a basis for further 
stratification for precision immunotherapy.

MATERIALS AND METHODS
Sample collection
We designed a tissue-based retrospective study to char-
acterize immuno-molecular profiles of MSI-H CRCs. In 
total, 2386 consecutive series of fresh frozen or formalin-
fixed paraffin-embedded (FFPE) primary tissues were 
initially collected from patients who had undergone 
surgical resection for primary CRC at Seoul National 
University Hospital between 2015 and 2017. All 2,386 
CRCs were subjected to MSI testing with fluorescence 
capillary electrophoresis-based DNA fragment analysis 
using the five Bethesda microsatellite markers (BAT-25, 
BAT-26, D5S346, D17S250, and D2S123),16 159 and 2216 
of which were identified as MSI-H and MSS, respectively 
(11 cases failed). Among the samples, 86 MSI-H and 1681 
MSS CRCs were excluded based on the following criteria: 
(1) neoadjuvant chemotherapy and/or radiotherapy, (2) 
discrepant or equivocal MMR expression using IHC with 
antiMLH1/MSH2/MSH6/PMS2 antibodies, (3) insuf-
ficient number of residual FFPE tissues after diagnostic 
pathologic processes, and (4) inadequate quantity or 
quality of either tumor or normal fresh tissue (figure 1A). 
Finally, 73 MSI-H (as a test group) and 535 MSS (as a 
control group) CRCs were included in the study cohort 
and subjected to further analyses.

Patient and public involvement
This was a retrospective, tissue-based observational study 
that neither interacted nor intervened with patients. 
Thus, neither patients nor the public was directly involved 
in this study.

Clinical data collection and histopathological assessment
Detailed methods are described in online supplemental 
methods.

IHC
IHC was conducted on a representative whole slide 
section or on a tissue microarray (TMA) section of each 
of the 73 MSI-H and 535 MSS CRCs. For TMA construc-
tion of each case, two 2 mm cores were extracted from the 
invasive margin (IM) and center of tumor (CT) areas of 
a representative FFPE tissue block. Thus, a total of four 
cores (two IM and two CT cores) were obtained from 
each of the 73 MSI-H CRCs. The antigens detected using 
IHC of whole slide sections included CD3, CD8, and 
PD-L1, whereas those using TMA sections included CD68, 
CD163, FoxP3, MLH1, MSH2, MSH6, PMS2, HLA class I 
(HLA-I), β -2-microglobulin (B2M), and CD200. All IHC 
procedures were performed using automated immunos-
tainers (Ventana BenchMark XT, Roche, Basel, Switzer-
land; or Bond-III, Leica Biosystems, Wetzlar, Germany). 
Information on the primary antibodies used for IHC in 
this study is listed in online supplemental table 1.

Quantification of tumor-infiltrating immune cells
The density of tumor-infiltrating immune cells was 
measured based on computational quantification of 
immunohistochemically stained slides (for CD3+ and 
CD8+ T cells) and multicore TMA (for FoxP3+ T cells 
and CD68+, CD163+ macrophages). For whole slide-based 
quantification, immunohistochemically stained slides 
were scanned using an Aperio AT2 slide scanner (Leica 
Biosystems, Buffalo Grove, Illinois, USA) for compu-
tational quantification using QuPath, validated open-
source software for digital pathology analysis,17 18 and 
each virtual slide was retrieved. The region of interest 
(ROI) was manually delineated in such a way that it 
encompassed the entire tumor and peritumoral stroma 
within a 1 mm distance, while excluding the area of extra-
cellular mucin pool, necrosis, abscess, mucosa-associated 
lymphoid tissue, and TLS. The ROI was segmented into 1 
mm×1 mm tiles, and the frontmost tiles were designated as 
invasive margins; the definition of the ‘frontness’ resulted 
from the consensus of three pathologists (JHK, JAL, and 
S-YY). The tiles that were not annotated as the IM were 
termed as the CT, as recommended by the consensus 
statement on assessing TILs.19 Lymphocytes were iden-
tified by using the positive cell detection functionality 
of QuPath, and TILs at the IM and CT were quantified 
in terms of the average number of lymphocytes per tile 
(cells/mm2) (online supplemental figure 1A).

For TMA-based quantification, tumor-infiltrating 
CD68+ cells (regarded as pan-macrophages), CD163+ 
cells (regarded as M2 macrophages), and FoxP3+ cells 
(regarded as regulatory T cells) at the IM and CT were 
quantified in four different tumor microarrays (TMAs; 
two from IM and two from CT) (online supplemental 
figure 1B). In contrast to CD3+/CD8+ cells, the single-
cell staining patterns of CD68+/CD163+/FoxP3+ cells 
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were occasionally irregular and variable, and the precise 
identification of each single cell from CD68+/CD163+/
FoxP3+ cells can prove difficult through image analysis. 
Thus, we used the conversion method of the total stained 
area for cell counts. Using QuPath, the area occupied by 
positively stained cells was obtained for each TMA core. 
The tumor area in each TMA core was also retrieved to 

compute the proportion of the area occupied by the cells. 
Subsequently, to obtain cell counts, the stained area was 
divided by the average area of one cell from each cell 
type. The calculated cell numbers per TMA core were 
finally converted into a standard density unit (cells/mm2) 
by dividing with the tumor area of each TMA core. Aver-
aging the values of two IM and two CT cores resulted in 

Figure 1  Heterogeneity and correlations of immune microenvironmental parameters in MSI-H CRCs. (A) First scheme of 
this study: from sample selection to quantitative tumor immune microenvironment analysis. (B) Wide ranges of quantified 
immune parameters in the 73 MSI-H CRCs. The density of CD3+, CD8+, FoxP3+, CD68+, or CD163+ cells is an average value 
throughout the invasive margin and center of tumor areas in an MSI-H CRC. PD-L1 expression score is the sum of two PD-L1 
H-scores from immune cells and tumor cells in an MSI-H CRC. Bilateral whiskers, a central box, a cross line within the box, 
and a small dot within the box indicate a minimum to maximum range, an IQR, a median value, and a mean value, respectively. 
(C) Comparison of major antitumor immune parameters (CD3+ TIL, CD8+ TIL, and TLS) between MSI-H (n=73) and MSS 
(n=535 for TIL and n=411 for TLS) CRCs. Note the wider ranges of immune parameters in MSI-H CRCs than in MSS CRCs and 
the presence of MSI-H CRCs showing a lower value (red-lined boxes) than the median value (vertical red dot lines) in MSS 
CRCs. (D) Correlation heatmap between various immune parameters of the 73 MSI-H CRCs. (****, p<0.0001). CRCs, colorectal 
cancers; IHC, immunohistochemistry; MSI-H, microsatellite instability-high; MSS, microsatellite-stable; PD-L1, programmed 
death-ligand 1; TAM, tumor-associated macrophages; TIL, tumor-infiltrating lymphocyte; TLS, tertiary lymphoid structure; TMA, 
tissue microarray.
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six metrics per case, as follows: CD68+ cell density at the 
IM, CD68+ cell density at the CT, CD163+ cell density at 
the IM, CD163+ cell density at the CT, FoxP3+ cell density 
at the IM, and FoxP3+ cell density at the CT.

PD-L1 expression scoring
Detailed methods are described in online supplemental 
methods.

Histomorphometric assessment of TLS activity
Detailed methods are described in online supplemental 
methods.

Analyses of KRAS/BRAF mutations and CpG island methylator 
phenotype
Detailed methods are described in online supplemental 
methods.

Immune subgroup classification
Each of the 73 MSI-H CRCs was classified into one of 
the three immune subgroups (immune-low, immune-
intermediate, and immune-high) based on the combined 
status of TIL density and TLS activity. To rate TIL density, 
we employed Galon’s Immunoscore (I0–I4),14 20 21 (online 
supplemental figure 2) based on measured CD3+ and 
CD8+ TIL densities in the IM and CT areas. These area-
specific TIL densities produced four parameters: CD3+ 
TIL at IM, CD3+ TIL at CT, CD8+ TIL at IM, and CD8+ 
TIL at CT. Immunoscore was assigned as I0 (low densi-
ties in all four parameters), I1 (low densities in three 
of the four parameters), I2 (low densities in two of the 
four parameters), I3 (high densities in three of the four 
parameters), or I4 (high densities in all four parameters) 
(online supplemental figure 2). The final subgroup was 
determined based on the following criteria: immune-
low=I0 and TLS-inactive; immune-high=I4 and TLS-active; 
otherwise, cases were classified as immune-intermediate.

Whole-exome sequencing
Approximately 0.1–0.5 µg of fragmented DNA was 
prepared to construct libraries with the SureSelect Human 
All Exon Kit V5 (Agilent Technologies, Santa Clara, Cali-
fornia, USA) according to the manufacturer’s protocol. 
Briefly, the qualified genomic DNA sample was randomly 
fragmented using the Covaris focused-ultrasonicator 
system (Covaris, Woburn, Massachusetts, USA), followed 
by adapter ligation, purification, hybridization, and PCR. 
Captured libraries were subjected to an Agilent 2100 
Bioanalyzer (Agilent Technologies) to estimate the quality 
and were loaded onto the NovaSeq 6000 sequencing 
system (Illumina, San Diego, California, USA) according 
to the manufacturer’s recommendations. The average 
depth ranged from 85× (range, 71 to 107) and 167× (135 
to 212) paired-end reads (2×101 bp) for matched normal 
and tumors, respectively. After sequencing, the quality of 
the sequencing read was assessed using FastQC (http:// 
www.​bioinformatics.​babraham.​ac.​uk/​projects/​fastqc).

RNA-sequencing
We used 100 ng total RNA from all subjects to prepare 
sequencing libraries using the TruSeq stranded total 
RNA sample preparation kit (Illumina), which combines 
RiboZero ribosomal RNA depletion with a strand-specific 
method similar to the dUDP method. The quality of 
these complementary DNA libraries was evaluated with 
the Agilent 2100 Bioanalyzer (Agilent Technologies) 
and quantified using the KAPA library quantification kit 
(Kapa Biosystems, Massachusetts, USA) according to the 
manufacturer’s library quantification protocol. Following 
cluster amplification of denatured templates, sequencing 
was performed as paired-end (2×101 bp) using the Illu-
mina NovaSeq 6000 platform.

Exome and transcriptome data analysis
Detailed methods are described in online supplemental 
methods.

Prediction of neoantigen load
Detailed methods are described in online supplemental 
methods.

Next-generation sequencing-based classification of MSI 
status and molecular subtypes
The MSI status of all samples was verified using the 
MANTIS22 and MSIsensor23 algorithms using whole-
exome sequencing (WES) data. In the MSIsensor, a score 
of 3.5, which was the cut-off score provided in the orig-
inal paper, or higher was classified as MSI; otherwise, the 
score was classified as MSS. The sample was determined 
as MSI when either of the two algorithms predicted MSI.

CRC subtypes were classified using four different 
conventional classifiers: consensus molecular subtype 
(CMS),24 colorectal cancer assigner (CRCA),25 colon 
cancer molecular subtype (CCMS),26 and colorectal 
cancer intrinsic subtype (CRIS).27 CMS classification 
was performed using the CMSclassifier R package, and 
the nearest single sample predictor was determined.24 
CRIS classification was carried out using the CMScaller 
R package with CRIS template genes28 and determined 
using the nearest template predictor algorithm and a 
false discovery rate) of  <0.05. For CRCA classification, 
each sample was assigned to one of the five CRC subtypes 
with the highest correlation with the prediction analysis 
of microarrays (PAM) centroids using the published 786-
gene CRCassigner signature and script downloaded from 
Github (https://​github.​com/​syspremed/​correlation_​
CRCassigner). The CCMS assignment was carried out 
using the Citccmst R package. The pan-cancer immune 
subtype classification proposed by Thorsson et al. was 
performed.29

Next-generation sequencing-based analyses of molecular 
signatures and tumor microenvironment composition
Enriched molecular signatures were analyzed using 
single-sample gene-set enrichment analysis (ssGSEA) 
with MSigDB hallmark gene sets30 and CRC signatures 
used in the CRC subtyping consortium (CRCSC).24 To 
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identify differentially enriched signatures, each gene 
set was compared using the Mann-Whitney U test. The 
immune cytolytic activity (CYT) score was calculated as 
the mean of GZMA and PRF1 expression as proposed by 
Rooney et al.31 We constructed a gene set using LM22 (the 
leukocyte gene signature matrix) gene list from CIBER-
SORT,32 and subsequently performed ssGSEA on normal-
ized expression data (vst). The microenvironment cell 
population (MCP)-counter was used to validate the infil-
tration scores.33 The consensus tumor microenvironment 
(consensusTME) cell estimation method was also applied 
to accurately and robustly infer immune cell abundance.34 
Fifty-three immune cycle-related gene sets were curated 
(online supplemental table 2) from gene set signatures 
related to immune cycle, immune predictive signatures, 
and immune-related pathways. Functional enrichment 
analysis using gene-set enrichment analysis (GSEA) and 
ssGSEA was performed for one subtype versus the other 
groups. Pairwise subtype-specific differentially expressed 
genes (DEGs) were performed to identify genes that 
could drive immune evasion for each subtype with criteria 
of p<0.05 and |log2 fold change|>2.

Exploration of immuno-oncological targets
Detailed methods are described in online supplemental 
methods.

Statistical analyses
All statistical analyses were conducted using GraphPad 
Prism V.9.0.0 (GraphPad Software, San Diego, California, 
USA, www.​graphpad.​com) or R V.4.0.2 (The R Foundation 
for Statistical Computing, www.​R-​project.​org). Categor-
ical variables were compared using the χ2 test or Fisher’s 
exact test. Continuous variables were compared using the 
Mann-Whitney U test (for two groups) or Kruskal-Wallis 
test (for  ≥3 groups). All p values were two-sided, and 
results were determined to be significant at p<0.05.

RESULTS
Variability of tumor immune microenvironment features in 
MSI-H CRCs
To investigate the tumor immune microenvironment 
features of primary MSI-H CRCs, major immune parame-
ters, including CD3+ TILs, CD8+ TILs, FoxP3+ TILs, CD68+ 
TAMs, CD163+ TAMs, PD-L1 expression, and TLS activity, 
were quantitatively assessed by image analysis of IHC or 
H&E-stained tissue slides of 73 MSI-H (test cohort) and 
535 MSS (control cohort) CRCs (figure 1A). In contrast 
to the generally accepted immunogenic characteristics 
of MSI-H CRCs, we found that their immune parame-
ters were highly disparate within the cohort (figure 1B). 
The densities of CD3+ TILs ranged from 18.7 to 1536.0 
cells/mm2 with an average of 447.1, showing up to an 
82-fold difference between samples. Similarly, the densi-
ties of CD8+ TILs, FoxP3+ TILs, CD68+ TAMs, and CD163+ 
TAMs, PD-L1 expression scores, and TLS activity indices 
were distributed over dispersed ranges (figure  1B). In 

addition, comparison of the degrees of TIL densities and 
TLS activities of the 73 MSI-H CRCs with those of the 
535 MSS CRCs identified a notable overlap and the pres-
ence of MSI-H tumors below the median levels of MSS 
tumors (figure  1C, red boxes), indicating the presence 
of an MSS-like immune-cold subset in MSI-H CRCs. We 
also found that all immune parameters in MSI-H CRCs 
showed weak to strong positive correlations (Pearson’s 
R=0.1–0.96; figure 1D). Taken together, the wide disper-
sion in the degrees of immune parameters in MSI-H 
CRCs, and their positive inter-correlations, suggest the 
possibility of further subgrouping of MSI-H CRCs based 
on a representative subset of these parameters.

Immune subgroup classification of MSI-H CRCs based on TIL/
TLS heterogeneity
Based on our observations and the known major roles of 
TILs and TLSs in antitumor immunity,35 we attempted to 
employ both TIL Immunoscore and TLS activity values, 
which represent intratumoral and peritumoral lympho-
cytic responses, respectively, for MSI-H CRC subgroup 
classification. The usefulness of these two features in 
the immunological classification of CRCs has been 
described previously by Galon’s group20 (online supple-
mental figure 2) and Ueno’s group36 (online supple-
mental figure 3). We combined these two parameters to 
define three immunological subgroups for MSI-H CRCs: 
immune-low, immune-high, and immune-intermediate. 
The immune-low subgroup was defined as comprizing 
tumors with an Immunoscore of I0 and an inactive TLS 
score, and the immune-high subgroup was defined in 
terms of scores of I4 and active TLS; all others were clas-
sified as immune-intermediate. Consequently, 15 (21%), 
17 (23%), and 41 (56%) of the 73 MSI-H CRCs were 
designated as immune-low, immune-high, and immune-
intermediate, respectively (figure  2A). As expected, 
the three immune subgroups exhibited significantly 
different levels of TILs and TLSs (figure  2B–C). More-
over, we found that the levels of immune parameters not 
incorporated into the classification, including FoxP3+ 
TIL density, CD68+ TAM density, CD163+ TAM density, 
and PD-L1 immune cell expression, were also clearly 
distinct between the subgroups (online supplemental 
table 3). In addition, the TIL density and TLS activity of 
the immune-low subgroup of MSI-H CRCs were closer 
to those of the immune-low or immune-intermediate 
subgroups of MSS CRCs than to those of the immune-
high MSS CRCs (figure 2B–C). Again, these results justify 
our immune subgrouping of MSI-H CRCs.

Clinicopathological features of MSI-H CRC immune subgroups
We assessed the differential clinicopathological and 
molecular features according to the immune subgroups 
of the 73 MSI-H CRCs. Among the clinical parameters, 
distant metastasis or early recurrence was more frequently 
represented in the immune-low subgroup (33% vs 0% 
in immune-low vs immune-high, p=0.015) (table  1). 
With regard to pathological features, greater tumor size 
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(p=0.021), mucinous histology (73% vs 0% in immune-low 
vs immune-high, p<0.001), non-medullary histology 
(p=0.003), and signet ring cell histology (p=0.015) were 
significantly associated with the immune-low subgroup 
(table  1). Next, we assessed the associations between 
major molecular factors and immune subgroups and 
found that KRAS mutations were highly enriched in the 
immune-low subgroup (73% vs 29% in immune-low vs 
immune-high, p=0.013) (online supplemental table 4).

Genomic features of MSI-H CRC immune subgroups
Next, we conducted whole-exome and RNA-sequencing 
analysis on 21 MSI-H CRCs (8 immune-high and 13 
immune-low), wherein high-quality matched tumor and 
normal tissues were available (figure 2A).

First, we assessed whether there were distinct genomic 
characteristics between the immune-low and high 
subgroups (figure 3A). From the WES data, we calculated 
and compared tumor mutational burden (TMB; non-
synonymous mutations per megabase); no difference was 
observed between the immune-low and immune-high 
subgroups (p=0.66; figure  3B left). Similarly, no signifi-
cant differences were found in neoantigen loads (p=0.54; 
figure  3B middle) and copy number variation (CNV) 
loads (p=0.91; figure  3B right). Analysis of mutational 
signatures (COSMIC v3) also showed that signatures 

related to dMMR (SBS6, SBS14, SBS15, SBS20, SBS21, 
SBS26, and SBS44) and deamination of 5-methylcytosine 
(SBS1) were universally present in both the immune-low 
and immune-high samples, without subgroup-specific 
signatures (figure 3C and online supplemental figure 4). 
These results collectively show that the degree of TMB, 
neoantigen load, and CNV load are not key factors of 
immune heterogeneity within MSI-H CRCs, and that 
dMMR-mediated hypermutated characteristics are main-
tained in immune-low MSI-H CRCs.

We further investigated the subgroup-associated genetic 
mutations. As shown in the preceding analysis, enrichment 
of KRAS mutations in the immune-low subgroup was repro-
duced in the next-generation sequencing-based analysis 
(p=0.002; figure 3D upper). Similarly, RNF213 (p=0.007), 
ZNF236 (p=0.007), and ASXL1 (p=0.008) were more 
frequently mutated in immune-low tumors (figure  3A 
and online supplemental figure 5). Further analysis of 
structural variations in MSI-H CRCs revealed that tyro-
sine kinase domain-preserving gene fusions, including 
NCOA4-RET, ETV6-NTRK3, TPM3-NTRK1, SFPQ-NTRK1, 
and TRIM24-BRAF, were significantly enriched in the 
immune-high subgroup (p=0.014; figure  3D lower and 
online supplemental figure 6). Except for KRAS muta-
tions, other major driver mutations, including APC, TP53, 

Figure 2  Immune subgroup classification of MSI-H CRCs. (A) Second scheme of this study: from the immune subgroup 
classification to next-generation sequencing analysis. (B) Comparison of the average TIL densities (average densities of CD3+ 
TILs and CD8+ TILs at the invasive margin and center of tumor areas) between the three immune subgroups of the 73 MSI-H 
CRCs and those of the 535 MSS CRCs. (C) Comparison of TLS activities (maximum diameters of peritumoral TLS) between 
the three immune subgroups of the 73 MSI-H CRCs and those of the 411 MSS CRCs. (****, p<0.0001; ***, p<0.001; **, 0.001≤p 
< 0.01; *, 0.01≤p < 0.05; ns, not significant). Immune-low, immune-low; immune-intermed, immune-intermediate; Im-high, 
immune-high. CRCs, colorectal cancers; MSI-H, microsatellite instability-high; MSS, microsatellite-stable; TIL, tumor-infiltrating 
lymphocyte; TLS, tertiary lymphoid structure.

https://dx.doi.org/10.1136/jitc-2021-003414
https://dx.doi.org/10.1136/jitc-2021-003414
https://dx.doi.org/10.1136/jitc-2021-003414
https://dx.doi.org/10.1136/jitc-2021-003414
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Table 1  Comparison of clinicopathological features between immune subgroups of 73 microsatellite instability-high colorectal 
cancers

Variable
Immune-
low (N=15)

Immune-
intermediate 
(N=41)

Immune-
high 
(N=17)

P value 
(overall)

P value 
(immune-low 
vs others)

P value 
(immune-
low vs high)

Age Older (≥66 years) 6 (40%) 24 (59%) 10 (59%) 0.434 0.196 0.288

 �  Younger (<66 years) 9 (60%) 17 (41%) 7 (41%)

Sex Male 8 (53%) 20 (49%) 4 (24%) 0.149 0.406 0.082

 �  Female 7 (47%) 21 (51%) 13 (76%)

Tumor location Right-sided colon 11 (73%) 33 (80%) 13 (76%) 0.834 0.728 1

 �  Left-sided colon or rectum 4 (27%) 8 (20%) 4 (24%)

Gross tumor type Polypoid or fungating 9 (60%) 26 (63%) 11 (65%) 0.96 0.786 0.784

 �  Ulceroinfiltrative 6 (40%) 15 (37%) 6 (35%)

Tumor size Larger (≥6.2 cm) 8 (53%) 17 (41%) 2 (12%) 0.035 0.141 0.021

 �  Smaller (<6.2 cm) 7 (47%) 24 (59%) 15 (88%)

Depth of invasion 
(pT)

Within the proper muscle 
(pT1/pT2)

0 (0%) 7 (17%) 4 (24%) 0.154 0.105 0.104

 �  Beyond the proper muscle 
(pT3/pT4)

15 (100%) 34 (83%) 13 (76%)

Lymph node 
metastasis (pN)

Absent (pN0) 10 (67%) 31 (76%) 13 (76%) 0.768 0.516 0.699

 �  Present (pN1/pN2) 5 (33%) 10 (24%) 4 (24%)

Distant metastasis 
or early recurrence

Absent 10 (67%) 38 (93%) 17 (100%) 0.006 0.008 0.015

 �  Present 5 (33%) 3 (7%) 0 (0%)

Lymphatic invasion Absent 10 (67%) 31 (76%) 10 (59%) 0.427 0.76 0.647

 �  Present 5 (33%) 10 (24%) 7 (41%)

Venous invasion Absent 15 (100%) 36 (88%) 15 (88%) 0.367 0.332 0.486

 �  Present 0 (0%) 5 (12%) 2 (12%)

Perineural invasion Absent 12 (80%) 33 (80%) 14 (82%) 0.983 1 1

 �  Present 3 (20%) 8 (20%) 3 (18%)

Tumor grade 
(differentiation)

Low-grade (well or 
moderately differentiated)

13 (87%) 27 (66%) 9 (53%) 0.124 0.121 0.06

 �  High-grade (poorly 
differentiated)

2 (13%) 14 (34%) 8 (47%)

Mucinous 
histology

Non-mucinous carcinoma 4 (27%) 34 (83%) 17 (100%) <0.001 <0.001 <0.001

 �  Mucinous carcinoma 11 (73%) 7 (17%) 0 (0%)

Medullary 
histology

Absent 15 (100%) 33 (80%) 9 (53%) 0.005 0.031 0.003

 �  Present 0 (0%) 8 (20%) 8 (47%)

Signet ring cell 
histology

Absent 10 (67%) 35 (85%) 17 (100%) 0.031 0.041 0.015

 �  Present 5 (33%) 6 (15%) 0 (0%)

Tumor budding Low (BD1) or intermediate 
(BD2)

10 (67%) 33 (80%) 11 (65%) 0.354 0.516 0.907

 �  High (BD3) 5 (33%) 8 (20%) 6 (35%)

Poorly 
differentiated 
clusters

Grade 1 or 2 9 (60%) 28 (68%) 5 (29%) 0.024 0.828 0.082

 �  Grade 3 6 (40%) 13 (32%) 12 (71%)
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NRAS, HRAS, PIK3CA, PTEN, SMAD4, CTNNB1, RNF43, 
and FBXW7, were not associated with a specific immune 
subgroup (figure  3A). Mutations in genes involved in 

immune evasion pathways, including B2M, HLA-A/-B, 
JAK1/2, NLRC5, RFX5, SERPINB4, TAP1/2, TAPBP, and 

Figure 3  Differential genomic and transcriptomic profiles between immune subgroups of MSI-H CRCs. (A) An oncoplot 
presenting genetic alterations in major driver genes and immune evasion-related genes (top) and clinical parameters (bottom). 
Each row in the oncoplot represents different genes, which are clustered into six categories. Each column represents an 
individual case. Genes with * represent significant differences in mutation enrichment between the immune subgroups (*, 
p<0.005; Fisher’s exact test). (B) Comparison of TMB, neoantigen load, and CNV load between the immune-low and immune-
high subgroups of MSI-H CRCs. P values were calculated using the Mann-Whitney U test (ns, not significant). (C) Comparison 
of the most dominant mutational signatures between the immune-low and immune-high subgroups of MSI-H CRCs. P value 
was calculated using the Fisher’s exact test (ns, not significant). (D) Comparison of proportions of KRAS mutations and 
oncogenic gene fusions between the immune-low and immune-high subgroups of MSI-H CRCs. P values were calculated 
using the Fisher’s exact test. (E) A heatmap showing RNA expression-based tumor immune microenvironmental profiles of 
the immune subgroups of MSI-H CRCs. Immune infiltration was inferred using ssGSEA z-score with the LM22 gene set of 
CIBERSORT. Difference of composition of cell types between immune-high and immune-low tumors was identified using false 
discovery rate correction of Mann-Whitney U test P values. (F) Heatmaps showing differently activated signaling pathways 
between the immune-high and immune-low subgroups of MSI-H CRCs. Gene sets were adopted from ssGSEA gene sets 
cancer Hallmark (upper left) and CRC subtyping consortium (upper right). The two lower-left boxplots represent expression 
differences in the Wnt/β-catenin and Notch signaling pathways between the immune-high and immune-low subgroups. The 
two lower-right boxplots represent expression differences in the Wnt/β-catenin and Notch signaling pathways between the 
immune-high CMS1, immune-low CMS1, and immune-low CMS3 subgroups. P values were calculated using the Mann-Whitney 
U test (for two groups) or Kruskal-Wallis test (for three groups). (G) Top DEGs identified by using the RF-RFE model are used 
to classify the two immune subgroups of MSI-H CRCs. Left: top DEGs by the degree of importance. Right: heatmap and 
correlation coefficient of CYT score and DEGs. Correlation coefficient was calculated using the Spearman correlation analysis. 
CCMS, colon cancer molecular subtype; CMS, consensus molecular subtype; CNV, copy number variation; CRC, colorectal 
cancers; CRCA, colorectal cancer assigner; CRIS, colorectal cancer intrinsic subtype; CYT, cytolytic activity; DEG, differentially 
expressed genes; dMMR, mismatch repair deficiency; MSI-H, microsatellite instability-high; ssGSEA, single-sample gene-set 
enrichment analysis; TMB, tumor mutational burden.
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TAPBPL, were relatively enriched in the immune-high 
subgroup (figure 3A).

Gene expression signatures of MSI-H CRC immune subgroups
RNA-sequencing data were used to confirm the distinct 
immune features of the immune subgroups. We applied 
three independent computational algorithms (ssGSEA, 
MCP-counter, and consensusTME) to profile the abun-
dance of tumor-infiltrating immune cells using transcrip-
tome data. These analyses clearly showed the depletion 
of most immune cell types in the immune-low subgroup 
(figure 3E and online supplemental figure 7).

We also investigated the association between signaling 
pathways and the immune subgroups. Both ssGSEA on 
molecular signatures from MSigDB Hallmark (figure 3F 
upper left) and the CRCSC (figure  3F upper right) 
showed significant downregulation of immune-associated 
pathways such as interferon α/γ, interleukin 2-STAT5, 
and interleukin 6-JAK-STAT3 in the immune-low 
subgroup (all, p<0.05). In contrast, Wnt/β-catenin and 
Notch signaling pathways were significantly activated in 
the immune-low subgroup (all p<0.05; figure 3F lower).

Next, we attempted to extract a minimal subset of DEGs 
that could classify the immune subgroups. Using random 
forest recursive feature elimination, we identified 21 
genes that were downregulated in the immune-low 
subgroup and confirmed that the expression of these 
21 genes was sufficient to distinguish the 2 immune 
subgroups (figure 3G left). The majority of the 21 DEGs 
were interferon/cytolysis-related genes and their expres-
sion strongly correlated with CYT score (figure  3G 
right, all, Spearman R>0.75 and p<8.21×10−5), indicating 
that different antitumor immune responses are the 
most distinctive feature between the immune-high and 
immune-low MSI-H CRCs.

Inter-relation of immune subgroups with CRC molecular 
subtypes
To determine the interconnectivity between MSI-H CRC 
immune subgroups and various gene expression-based 
CRC molecular classifications, including the CMS, CRCA, 
CCMS, CRIS, and pan-cancer immune subtype (C1–
C6),24–27 29 we applied each of the molecular subtyping 
methods to the 21 MSI-H CRCs and analyzed how their 
subtype statuses were interrelated with the immune 
subgroups (figure 4A).

Among the CRC molecular subtyping systems, CMS 
classification conferred the most explicit and explain-
able secondary stratification. All immune-high tumors 
were assigned to CMS1 (MSI-immune type), which is 
concordant with the expected characteristics of MSI-H 
CRCs. In contrast, the immune-low subgroup was subdi-
vided into two subtypes: CMS1 (46%) and CMS3 (meta-
bolic type) (54%) (figure  4A). Consequently, the 21 
MSI-H CRCs could be reclassified into three subtypes: 
immune-high-CMS1 (n=8), immune-low-CMS1 (n=6), 
and immune-low-CMS3 (n=7).

The different molecular bases of immune-CMS subtypes 
were further investigated. We found that stem-like and 
goblet-like CRCA subtypes were enriched in immune-low 
CMS1 (67%) and immune-low-CMS3 (86%), respectively, 
while the major CRCA subtype in immune-high CMS1 
was inflammatory type (63%) (figure 4A lower). Differen-
tial expression of stem-like genes (ZEB1 and SFRP2) and 
goblet-like genes (TFF2, TFF3, and MUC2) in immune-low 
CMS1 and CMS3 tumors was also confirmed (figure 4B). 
In addition, predominance of C1 ‘would healing’ immune 
subtype and depletion of C2 ‘IFN-γ dominant’ subtype 
were the key signatures of immune-low CMS1 that were 
distinct from the immune-high CMS1 (figure 4A lower).

Integrative stratification of MSI-H CRCs for precision 
immunotherapy
Based on the immune subgrouping and integrative strati-
fication, we assessed whether the heterogeneous response 
to ICB-based immunotherapy in patients with MSI-H CRC 
could be explained by the variable molecular mechanisms 
and levels of immune evasion among MSI-H CRCs.

We conducted ssGSEA and GSEA using 53 gene signa-
tures (online supplemental table 2) related to the immune 
cycle, including antigen presentation, priming and activa-
tion of antigen-presenting cells and T-cells, trafficking of 
T-cells to tumors, T-cell infiltration, recognition of cancer 
cells, tumor killing, and immune predictive signatures 
(figure 4C–D). Immune repressive signatures that affect 
the early stages of the immune cycle were observed in 
immune-low tumors. Hence, potential immune evasion 
mechanisms were observed throughout the entire 
immune cycle for immune-low tumors (all, p<0.005 and 
|log2 fold change|>0.5). Moreover, activation of mesen-
chymal signatures, including endothelial cells, fibro-
blasts, angiogenesis, and cancer-associated extracellular 
matrix (C-ECM), was observed in the immune-low CMS1 
tumors (figure 4C–D and online supplemental figure 8); 
these are characteristics of the CMS4 subtype.24 On the 
other hand, strong epithelial signatures were observed in 
the immune-low CMS3 (figure 4C–D). Further analysis of 
the subtype-specific DEGs (p<0.05, |log2 fold change|>2) 
identified genes that potentially drive immune evasion 
for each subtype (online supplemental figure 9). Notably, 
POSTN, which is known to mediate transforming growth 
factor-β (TGF-β)-induced epithelial-mesenchymal tran-
sition in cancer cells,37 was specifically activated in 
immune-low CMS1 tumors (figure 4E).

Finally, we investigated potential immuno-oncological 
targets in each subtype to determine their suitability 
for combinational or alternative treatments. Immune-
high CMS1 exhibited higher levels of TIM-3, TIGIT, and 
KLRC1 immune checkpoints. In contrast, FLT1 (VEGFR1) 
and CD200 were activated in immune-low CMS1 and 
immune-low CMS3 tumors, respectively (figure  4F), 
and CD200 protein was significantly overexpressed in 
immune-low CMS3 tumor tissues (figure 4G), suggesting 
the possibility of combinatorial antiangiogenesis or anti-
CD200 treatment in immune-low MSI-H CRC subtypes.

https://dx.doi.org/10.1136/jitc-2021-003414
https://dx.doi.org/10.1136/jitc-2021-003414
https://dx.doi.org/10.1136/jitc-2021-003414
https://dx.doi.org/10.1136/jitc-2021-003414
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Figure 4  Combined immune CMS subtyping of MSI-H CRCs and its immuno-oncological implications. (A) Molecular 
subclassification of the immune subgroups of MSI-H CRCs using various molecular subtyping systems. Each column cluster 
is the representative CRC molecular classification, including the CMS, CRCA, CCMS, CRIS, or pan-cancer immune subtype 
classification. The upper row represents the distribution pattern of each classification in the immune-high and immune-low 
subgroups. The lower row represents distribution pattern of each classification in the immune-high CMS1, immune-low CMS1, 
and immune-low CMS3 subtypes. (B) An expression heatmap of stem-like and goblet-like genes according to the immune CMS 
subtypes. Each column cluster represents the immune-high CMS1, immune-low CMS1, and immune-low CMS3 subtypes. 
Each row represents the gene expression pattern of stem-like and goblet-like genes. (C) A heatmap of immune cycle and 
immune response predictive signature scores using single-sample gene-set enrichment analysis, according to the immune CMS 
subtypes. Each column cluster represents the immune-high CMS1, immune-low CMS1, and immune-low CMS3 subtypes. Each 
row represents the expression pattern of a curated gene-set, clustered into six immune cycles and one predictive signature. 
(D) GSEA results of immune cycle and immune response predictive signatures according to the immune CMS subtypes. Each 
column cluster represents the immune-high CMS1, immune-low CMS1, and immune-low CMS3 subtypes. Each row represents 
the expression pattern of the curated gene-set. Each GSEA was performed between one subtype vs two other subtypes. (E) 
Comparison of POSTN expression between the three immune CMS subtypes. (**, 0.001≤p < 0.01; *, 0.01≤p < 0.05; Mann-
Whitney U test) (F) Comparison of DEG expression between the three immune CMS subtypes. DEGs were selected from the 
immuno-oncological target list. (***, p<0.001; **, 0.001≤p < 0.01; *, 0.01≤p < 0.05; ns, not significant; Mann-Whitney U test). (G) 
Representative photomicrographs of CD200 IHC of immune-high CMS1 and immune-low CMS3 tumors (left; scale bar, 200 µm). 
Comparison of proportions of the CD200-high subgroup between the three immune subtypes (right). CD200-high or CD200-
low subgroups were classified using a cut-off value of an average of CD200 IHC H-scores. CCMS, colon cancer molecular 
subtype; CMS, consensus molecular subtype; CRC, colorectal cancers; CRCA, colorectal cancer assigner; CRIS, colorectal 
cancer intrinsic subtype; DEG, differentially expressed genes; IFN, interferon; IHC, immunohistochemistry; MSI-H, microsatellite 
instability-high; GSEA, gene-set enrichment analysis; TGF, transforming growth factor.



11Kim JH, et al. J Immunother Cancer 2021;9:e003414. doi:10.1136/jitc-2021-003414

Open access

DISCUSSION
In this study, we conducted a comprehensive and quan-
titative analysis of MSI-H CRCs to explore the clini-
copathological and genomic basis of heterogeneous 
immune responses. A wide variety in the tumor immune 
microenvironment, including TILs, TAMs, and TLS, 
their intercorrelation, and their regional homoge-
neity, justified immunological subgrouping of MSI-H 
CRCs. Subgrouping was executed using combinatorial 
assessment of CD3+ and CD8+ TIL densities and TLS 
activity. We showed that the three subgroups (immune-
high, immune-intermediate, and immune-low) were 

successfully distinguished in terms of clinical parameters, 
histology, and genetic factors. Finally, we showed that 
immune-low MSI-H CRCs were heterogeneous in terms 
of transcriptomic features. The MSI-H CRCs were further 
divided into CMS1 and CMS3, forming three immune 
subgroups: immune-high CMS1, immune-low CMS1, and 
immune-low CMS3. The total clinicopathological and 
genomic/transcriptomic features of the subgroups are 
summarized in figure 5.

In general, the source of the immunogenic heteroge-
neity in MSI-H CRCs is presumed to fall within one of the 
two areas: (1) differences in TMB and/or neoantigens 

Figure 5  Schematic summary of this study. CMS, consensus molecular subtype; CRC, colorectal cancers; ICB, immune 
checkpoint blockade; IFN, interferon; IL, interleukin; MMR, mismatch repair; MSI-H, microsatellite instability-high; PD-1, 
programmed cell death protein 1; PD-L1, programmed death-ligand 1; TKI, tyrosine kinase inhibitor; 5-mC, 5-methylcytosine.
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that initiate T cell immunity, and (2) genetic alterations 
that affect the machinery and signaling pathways that 
mediate early to late immune responses. For instance, 
the association between TMB and the response to ICBs 
in MSI-H patients has been reported in a previous study.38 
Nevertheless, in this study, no factors that evidently prede-
termined the overall behaviors were observed. Instead, 
our findings indicate that the immunogenic heteroge-
neity of MSI-H CRCs is formed by a complex interplay of 
genetic, transcriptomic, and microenvironmental factors, 
thereby presenting multiple intrinsic subtypes. Similar 
to the generally accepted subtypes in other cancers, 
immune subgroups of MSI-H CRCs would be determined 
by multiple parameters, such as gene signatures, rather 
than a single discriminating factor.6 39 This is in line with 
recent evidence of inconsistency and tumor-type depen-
dency of TMB in immunotherapy responses.40–42

Interestingly, the Wnt/β-catenin and Notch signaling 
pathways were significantly activated in the immune-low 
subtype of MSI-H CRCs (figure  3F). Previous investiga-
tions have suggested that specific oncogenic signaling 
pathways are closely associated with immune evasion in 
various cancers, and consistent with our findings, Wnt 
or Notch pathway activation has been identified as a 
cancer type-agnostic factor correlated with poor immune 
responses.43 44 Our finding is important because the 
suppression of tumor immunity due to specific oncogenic 
pathway activation may overcome the beneficial effect of 
high TMB on antitumor immune responses. Therefore, 
efforts to predict tumor responses to immunotherapy 
must consider the status of major oncogenic pathways in 
addition to TMB.

The clinical application of immune subtypes of MSI-H 
CRCs is clearly the next important step in this field, which 
can be achieved by accurate subgroup classification and 
assignment of precise treatments. Among the three 
subgroups, immune-high CMS1 is expected to show a 
good response rate to current ICBs, as shown by its dense 
lymphocytic infiltration and high PD-L1 expression. 
Moreover, enriched targetable fusions and upregulation 
of immune checkpoint molecules (ie, TIM-3, TIGIT, and 
KLRC1) would confer more therapeutic options such 
as tyrosine kinase inhibitors and combination immuno-
therapies (figure 5).45 46 On the other hand, immune-low 
CMS1 shows poor prognosis and immune desert-like 
features, manifesting the opposite characteristics to those 
expected in typical MSI-H CRCs. These characteristics 
pose substantial risks for imprecise treatment. From this 
perspective, accurate identification of immune-low CMS1 
would be of the highest priority in clinical application and 
is crucial to the successful stratification of MSI-H CRCs. 
In addition, screening of immune-low subtypes would 
provide additional opportunities for the development of 
new therapeutic strategies by identifying novel, subgroup-
specific targets. For example, inhibition of FLT1 and 
CD200, which are specifically upregulated in immune-low 
CMS1 and CMS3 tumors, can lead to improved responses, 
as shown in the cases of bevacizumab (angiogenesis 

inhibitor) in CRCs47 48 and CD200-inhibitor in multiple 
tumors (figure 5).49 50

Developing clinical-level diagnostic procedures is 
one of the goals of this study. Building a standard oper-
ating protocol requires robust measurement parame-
ters, including sample collection, defining the region 
of interest, and setting up classification criteria. In this 
regard, our multiregional quantitative analysis of in situ 
immune infiltrates provides promising evidence for the 
robustness of the method, including regional homo-
geneity of major immune responses (such as CD3+ and 
CD8+ TILs) throughout intratumoral regions and the 
high correlation of TIL and TAM densities between the 
IM and CT areas. In addition, the intercorrelation of 
immune parameters supports the stability of the measure-
ments obtained in this study. Moreover, constructing a 
classification model should be conducted using larger 
cohorts to combine immune parameters and genetic 
features. As the genetic features cover both mutations 
(eg, KRAS mutation) and gene expression signatures, we 
expect that more sophisticated bioinformatics analysis 
will be required to resolve issues with multidimensionality 
and normalization to finalize the classification model, 
especially in the form of single sample predictors.

The frequency of MSI-H CRCs is known to be low 
(approximately 15% or less in overall CRCs), which 
affected the relatively small number of our study samples. 
Furthermore, the samples to be included in this study 
were selected using strict criteria (figures  1A and 2A) 
because both exome and transcriptome sequencing 
analyses had to be performed, contributing to the small 
number of final sequenced samples. Although our study 
has limitations in study size, we successfully identified 
key findings that are important clues to understanding 
the molecular basis of immune heterogeneity in MSI-H 
tumors. The genomic and transcriptional features of 
immune subgroups of MSI-H CRCs identified in our study 
need to be validated in multi-institutional larger cohorts.

In conclusion, although most MSI-H CRCs are immu-
nogenic hypermutated tumors, their immunological 
features are heterogeneous. According to our data, 
differences in TMB or neoantigen load cannot elucidate 
intertumoral immune heterogeneity in MSI-H CRCs. 
Instead, mucinous histology, KRAS mutations, and Wnt/
Notch pathways activation characterize an immune-low 
subgroup of MSI-H CRCs. Immune-low MSI-H CRCs are 
further divided into different gene expression subtypes, 
including (CMS4-like) CMS1 and CMS3. Our results 
suggest that tailored immunotherapeutic strategies for 
each immune-CMS subtype will be potentially effective 
for the treatment of MSI-H CRCs.
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