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Abstract 

Background:  Due to the lack of enough interaction data among compositions, targets and diseases, it is difficult to 
construct a complete network of Traditional Chinese Medicine (TCM) that comprehensively reflects active composi-
tions and their synergistic network in terms of specific diseases. Therefore, mapping of the full spectrum of interaction 
between compounds and their targets is of central importance when we use network pharmacology approach to 
explore the therapeutic potential of the TCM.

Methods:  To address this challenge, we developed a large-scale simultaneous interaction prediction approach (SiPA) 
integrated one interaction network based simple inference model (SIM), focusing on ‘logical relevance’ between 
compounds, proteins or diseases, and another compound-target correlation space based interaction prediction 
model (CTCS-IPM) that was built on the basis of the canonical correlation analysis (CCA) to estimate the position of 
compounds (or targets) in compound-protein correlated space. Then SiPA was applied to discover reliable multiple 
interactions for interaction network expansion of a TCM, compound Salvia miltiorrhiza. By means of network analysis, 
potential active compounds and their related network synergy underlying cardiovascular diseases were evaluated 
between expanded and original interaction networks. Part of new interactions were validated with existing experi-
mental evidence and molecular docking.

Results:  As evaluated with known test dataset, the established combination approach was proved to make highly 
accurate prediction, showing a well prediction performance for the SIM and a high recall rate of 85.2% for the 
CTCS-IPM. Then 710 pairs of new compound-target interactions, 24 pairs of new compound-cardiovascular disease 
interactions and 294 pairs of new cardiovascular disease-protein interactions were predicted for compound Salvia 
miltiorrhiza. Results of network analysis suggested the network expansion could dramatically improve the complete-
ness and effectiveness of the network. Validation results of literature and molecular docking manifested that inferred 
interactions had good reliability.

Conclusions:  We provided a practical and efficient way for large-scale inference of multiple interactions of TCM 
ingredients, which was not limited by the lack of negative samples, sample size and target 3D structures. SiPA could 
help researchers more accurately prioritize the effective compounds and more completely explore network synergy 
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Background
Traditional Chinese Medicine (TCM) has held, and con-
tinues to occupy, an important position in health care 
within China and other East Asian countries, and has 
increasingly aroused broad attention in scientific com-
munities throughout the world. The revival of interest 
in TCM partly stems from the hope that TCM can act 
in a synergistic manner to improve therapeutic efficacy, 
because of its “Multi-components and multi-targets” 
property. However, the complicated compositions of the 
TCM have posed a great challenge to identify the active 
combinations of chemical constituents and to prove their 
mechanism of actions [1]. To address this issue, network 
pharmacology approach currently provides an alterna-
tive way to systematically investigate therapeutic effects 
of dozens of constitutes in TCM [2–6]. In practice, this 
concept has been regarded with many skepticism by the 
fact that a comprehensive pharmacointeraction network 
of TCM is constructed, in many cases, with great diffi-
culty, as a result of the insufficient information about all 
the possible composition-target interactions in one TCM 
prescription [7, 8]. Therefore, mapping of the full spec-
trum of interaction between compounds and their targets 
is of central importance when we use network pharma-
cology approach to explore the therapeutic potential of 
the TCM.

Considering that numerous chemical compositions, 
and diverse cellular targets are involved in the synergis-
tic or antagonistic effects of TCM, the trial-and-error 
experimental approaches are rather time- and money-
consuming to identify novel composition-target interac-
tions. Recently, computational approaches like chemical 
similarity search [9], pharmacophore model [10], reverse 
molecular docking [11], machine learning [12] and com-
bination of multiple approaches [13] were developed 
for the inference of interactions between compositions 
and targets. Meanwhile, various online tools have been 
developed to provide valuable supports for identifying 
potential targets of compounds, for example, Similarity 
Ensemble Approach (SEA), identifing targets based on 
chemical 2D similarity [14]; ChemMapper, predicting 
targets and mode of action for small molecules based on 
3D similarity computation [15]; PharmMapper, a Phar-
macophore model based prediction [16]; TarfisDock, 
using reverse ligand–protein docking to seek poten-
tial protein targets by screening an appropriate protein 

database [17]; idTarget, predicting possible binding tar-
gets of a small chemical molecule via a divide-and-con-
quer docking approach [18]; and drugCIHPER, using 
machine learning approach [19]. However, these methods 
have their own limitations. Chemical similarity search 
and pharmacophore model cannot obtain high accuracy. 
Docking approach is restricted by the numbers of targets 
and computational resources. Only when there is suffi-
cient annotated information as training data and certain 
amounts of numbers of targets or special chemical space, 
does machine learning perform well. Such methods 
are not suitable for large-scale data inference for TCM. 
Therefore, to obtain more comprehensive each new inter-
action was considered only and accurate prediction for 
massive interactions between multi-components and 
multi-targets, still requires no small effort.

Herein, an approach for large-scale multiple interac-
tions inference as well as TCM network expansion was 
proposed. We developed a simultaneous interaction 
prediction approach (SiPA) that combined two essential 
models, a simple inference model (SIM) that focused on 
‘logical relevance’ between compounds, proteins or dis-
eases within interaction network, a compound-target 
correlation space based interaction prediction model 
(CTCS-IPM) that calculated the position of compound 
or protein on the compound-protein correlated space, 
and more specifically, this space was constructed by 
canonical correlation analysis (CCA) to predict the vast 
interactions between multiple compounds, multiple 
targets and multiple diseases simultaneously for TCM 
network expansion. In this study, compound Salvia milti-
orrhiza, also known as Fu-fang Danshen in Chinese, an 
important prescription with a long history of extensive 
usage in the treatment of cardiovascular diseases (CVD) 
[20, 21], was used as model drug to verify the availabil-
ity of our approach. In practice, the effectiveness of func-
tional modules of the expanded interaction network of 
compound Salvia miltiorrhiza, which was built using a 
combination of known and predictive compound-target 
interactions, was thoroughly analyzed.

Methods
Data collection and collation
Data related to compound Salvia miltiorrhiza including 
compounds, targets, diseases and their interactions were 
obtained from public database sources and literatures. 

of TCM for treating specific diseases, indicating a potential way for effectively identifying candidate compound (or 
target) in drug discovery.

Keywords:  Traditional Chinese medicine, Network pharmacology, Interaction prediction, Simple inference model, 
Compound-target correlation space based interaction prediction model, Canonical correlation analysis
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Credible compounds were downloaded from Chinese 
Academy of Sciences Chemical Database (http://chemd​
b.sgst.cn/scdb/main/find_db.htm), or retrieved from lit-
eratures; active targets of the specific compound were 
obtained from PubChem (https​://pubch​em.ncbi.nlm.
nih.gov/) by searching CAS number of compounds; 
active targets associated protein–protein interactions 
were obtained from PharmGKB (https​://www.pharm​
gkb.org/); protein-cardiovascular disease interactions 
were obtained from OMIM (https​://www.omim.org/), 
and UniProt (https​://www.unipr​ot.org/) was used for 
retrieving complete protein information. Representa-
tions of each data from different sources were unified 
by mapping to common identifiers, for instance, com-
pounds were represented by general name, alias, CAS, 
Formula, PubChem CID, and proteins were represented 
by Entry Gene, Symbol, Gene name, Synonym, HGNC 
ID, Uniprot ID, and cardiovascular diseases were repre-
sented by disease name, OMIM ID, MESH ID. Finally, 
duplicate or incomplete records were removed according 
to compound structures and Entry ID respectively. Only 
those data which have been validated by literatures were 
considered.

Simple inference model (SIM)
SIM mainly focused on the ‘logical relevance’ between 
compounds, targets or diseases within interaction net-
work to infer new interactions, on the basis of two 
threads, targets centered inference and compounds/dis-
eases centered inference, together with following princi-
ples (Fig. 1): Principle A, Targets centered inference: 1. If 
Compound 1 can work on Target A that connects Disease 
1, it suggests that Compound 1 can affect Disease 1; 2. If 
Compound 1 can work on Target A that connects Target 
B, it suggests that Compound 1 can affect Target B; 3. If 
Target B can work on Target A that connects Disease 1, it 

suggests that Target B can affect Disease 1. Furthermore, 
principle B, Compounds/diseases centered inference: 4. If 
Compound 1 can interact with Disease 2 and Target A, 
it provides a possibility that Target A can interact with 
Disease 2; 5. If Compound 2 can interact with Disease 
1 that is related with Target A, it provides a possibility 
that Compound 2 can interact with Target A. However, 
compounds/diseases centered inference was still doubt-
ful with more false positive interaction data than that of 
targets centered inference. Therefore, in order to reduce 
false positive results caused by compounds/diseases 
centered inference, each new interaction was consid-
ered only when it was inferred more than twice by dif-
ferent known interaction data in a prediction (as shown 
in Fig. 1, Prediction 5 could be inferred through Disease 
2 and Disease 3, respectively). Thus, novel interactions 
among compounds, targets and diseases could be reliably 
inferred based on the known interaction data.

Molecular descriptor selection
Compounds and proteins can be characterized by molec-
ular descriptors, which are the final result of a logical and 
mathematical process that encoded the chemical infor-
mation into a useful number or some of the standardized 
experimental results of the molecular symbol represen-
tation [22]. The digitized information provides more 
insights into the interpretation of the molecular proper-
ties and/or is able to take part in a model for the predic-
tion of some interesting properties of other molecules 
[23].

The compound and protein molecular descriptors 
were calculated using molecular operating environment 
(MOE) and ProFeat software, respectively. Subsequently, 
these molecular descriptors were pre-processed by sev-
eral criteria to remove redundant data, which not only 
interfered with the model accuracy, also resulted in the 

Fig. 1  Simple inference model (SIM)

http://chemdb.sgst.cn/scdb/main/find_db.htm
http://chemdb.sgst.cn/scdb/main/find_db.htm
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.pharmgkb.org/
https://www.pharmgkb.org/
https://www.omim.org/
https://www.uniprot.org/
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increasing calculation amount and low calculation speed. 
These removal criteria contain: the molecular descriptors 
of compound or protein with missing values, the molecu-
lar descriptors with reproducibility of values more than 
80%, the molecular descriptors with relative standard 
deviations less than 0.05, and one of the pair of molecu-
lar descriptors with the correlation coefficient more than 
0.9. Subsequently, feature descriptors were extracted 
using CCA model based on training data to identify opti-
mal combination of compound and protein descriptors 
for prediction model.

Compound‑target correlation space based interaction 
prediction model (CTCS‑IPM)
In order to further efficiently explore new interactions 
between multiple compounds and multiple targets, 
especially for compounds (or targets) with less interac-
tion information available, CTCS-IPM was established 
by calculating position of compounds and targets in 
compound-protein correlation space constructed by 
CCA. CCA is a multivariate statistical analysis method 
that uses the correlation between comprehensive vari-
ables to reflect overall relevance between the two sets of 
metrics, providing an effective way to measure the linear 
relationship between two multidimensional data sets [24, 
25]. For two multidimensional variables, it can find the 
best linear transformation to achieve the maximum cor-
relation between them [26]. Usually, only a few pairs of 
typical variables can reflect the overall relevance between 
two variable sets. Here, compound and protein molecu-
lar descriptors can be regarded as two variable sets of 
CCA respectively. Thus, interactions of compounds and 
proteins can be represented by the correlation between 
two sets of variables. Typical correlation variables with 
larger correlation coefficient suggest that the connections 
between protein and compound, both characterized by 
these descriptors, are much more closer [27]. Here, CCA 
was applied using SPSS software (version 20) to calculate 
the typical correlation coefficient between two variable 
sets of compound and protein molecular descriptors. 
Then, these descriptors with larger correlation coefficient 
were extracted for the characterization of compound and 
protein space as well as the construction of prediction 
model.

To predict compound-protein interactions, Euclidean 
distance, which refers to the real distance between two 
points in m-dimensional space, or the natural length 
of the vector, was introduced as a representative meas-
ure to define position of compounds or proteins in the 
compound or protein space respectively. Compounds, 
acting on the same target in the compound-protein 
correlation space, would constitute the compound 

space of the target, vice versa (target space of the com-
pound). For a target (or a compound), Euclidean dis-
tances between all compound pairs (or protein pairs) in 
the compound space of this target (or target space of 
this compound) were calculated and a threshold of this 
target (or compound) was defined, which was the upper 
limit of confidence interval with a 95% confidence 
level of all distances in the compound space (or target 
space). Therefore, all targets can have their own thresh-
old in one model. If the Euclidean distance between one 
compound to be predicted and each compound in the 
compound space of the target is within the threshold, it 
is considered that the compound to be predicted could 
act on the target (Fig.  2). Taken together, the interac-
tions between multiple compounds and multiple pro-
teins could be predicted using CTCS-IPM.

Interaction prediction and network construction 
of compound Salvia miltiorrhiza
The interactions among compounds, targets (pro-
teins), and cardiovascular diseases were predicted by 
SiPA. The compound-target interactions predicted 
using CTCS-IPM were integrated with expansion data 
obtained from SIM and original known interactions to 
construct the expanded interaction network. As a con-
trast, the network only using known interaction data 
was also constructed. The networks were visualized by 
Cytoscape software (version 3.7.1) for further analysis.

Network analysis for original and expanded network 
of compound Salvia miltiorrhiza
Network analysis was considered as an effective way 
for discovering more potential biological information 
from the established network. In order to evaluate the 
effectiveness of our approach, results of network anal-
ysis were compared between expanded network and 
original network on three aspects, including analysis of 
network overall parameters, analysis of modules from a 
seed node of specific disease, and analysis of functional 
modules based on IPCA. To be more specific, IPCA 
was a clustering algorithm based on the new topologi-
cal structure, which is robust against the known high 
rate of false positives and false negatives in data from 
high-throughput interaction techniques or interaction 
prediction methods [28]. Finally, the biological activi-
ties of partial predicted interactions in the network 
modules were verified by literatures and molecular 
docking to prove reliability of our approach. Molecu-
lar docking was applied using AutoDock Vina (version 
1.1.2) and AutoDock Tools (version 1.5.6).
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Results
Data collection and collation
After the data preprocessing,192 compounds (Additional 
file  1: Table  S1), including 49 compounds with well-
described structure and known targets, 83 compounds 
with well-described structure but no targets, and the rest 
60 compounds without structure and targets, 494 targets 
(proteins) (Additional file 2: Table S2) and 34 cardiovas-
cular diseases (Additional file 3: Table S3) were collected. 
On the other hand, 4379 pairs of compound-target inter-
actions (Additional file 4: Table S4) composed of 49 com-
pounds and 398 proteins, 78 pairs of compound-disease 
interactions (Additional file 5: Table S5) composed of 13 
compounds and 15 cardiovascular diseases, 70 pairs of 
cardiovascular disease-protein interactions (Additional 
file  6: Table  S6) composed of 66 proteins and 23 car-
diovascular diseases were obtained. Besides, 47 pairs of 
protein–protein interactions (Additional file 7: Table S7) 
were also retrieved. Taken together, these data related 
to compound Salvia miltiorrhiza will be applied in the 
interaction prediction and network expansion.

Construction and evaluation of SIM
SIM was constructed based on the ‘logical relevance’ 
between compounds, targets or diseases within inter-
action network to infer new interactions. Therefore, 
new interactions among compounds, targets and dis-
eases could be inferred by identifying common targets. 

New interactions of disease-target and compound-
target could also be inferred by identifying the com-
mon neighbor, like compounds or diseases. Since 
compounds/diseases centered SIM could more likely 
result in false positive errors as compared to targets 
centered SIM, its performance was evaluated. Here, 
known interactions among 5 compounds, 2 targets 
and 2 cardiovascular diseases with explicit ‘logical 
relevance’ centered by compounds and diseases were 
used as test dataset, including 8 pairs of compound-
disease interactions involving 5 compounds and 2 
cardiovascular diseases, 8 pairs of compound-target 
interactions involving 5 compounds and 2 targets, and 
2 pairs of disease-target interactions involving 2 car-
diovascular diseases and 2 targets. Subsequently, in 
light of these interactions, novel compound-target and 
disease-target interactions were inferred using princi-
ple B. As a result, 8 pairs of compound-target interac-
tions composed of 5 compounds and 2 targets and 4 
pairs of disease-target interactions composed of 2 car-
diovascular diseases and 2 targets were inferred. These 
inferred interactions were highly consistent with test 
dataset, in which 4 pairs of disease-target interactions 
were inferred more than twice from different interac-
tion routes and two pairs of disease-target interactions 
were new. These results suggested that the com-
pounds/diseases centered model also had well per-
formance for inferring new potential interactions and 
effectively reducing false positives (Table 1).

Fig. 2  Compound-target correlation space based interaction prediction model (CTCS-IPM)
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SIM based interaction prediction for compound Salvia 
miltiorrhiza
In light of the built SIM, novel interactions among com-
pounds, targets and diseases related to compound Salvia 
miltiorrhiza were predicted using the known interaction 
data. After the removal of existing and reduplicative data, 
24 pairs of compound-cardiovascular disease interac-
tions (Additional file  8: Table  S8), 294 pairs of cardio-
vascular disease-protein interactions (Additional file  9: 
Table S9) and 191 pairs of compound-target interactions 
(Additional file 10: Table S10) were obtained.

Construction and evaluation of CTCS‑IPM
Molecular descriptors of 132 compounds with well-
described structure in compound Salvia miltiorrhiza 
and 398 targets (corresponding to the 49 compounds) 
were calculated by MOE and ProFeat, respectively. As 
a result, 365 original compound molecular descriptors, 
containing 2D and 3D descriptors in 13 categories, and 
1437 original protein molecular descriptors in 9 cat-
egories were obtained [29, 30]. Next, with the help of 
stratified sampling method, 4379 pairs of known com-
pound-target interactions were randomly divided into 
two groups at the ratio of 4:1 for each target. One group 
was set as training dataset, 3501 pairs consisting of 49 
compounds and 394 targets, and another group was test 
dataset, 878 pairs consisting of 47 compounds and 380 
targets. Then, the preprocessing of molecular descrip-
tors was performed based on training dataset to remove 
redundant data, showing that 93 compound molecu-
lar descriptors and 355 protein molecular descriptors 
remained for CCA calculation. Here, CCA was applied 
to calculate the typical correlation coefficient between 
compound and protein molecular descriptors. Typical 

correlation variables (the corresponding compound and 
protein molecular descriptors) with significance less than 
0.01 and correlation coefficient greater than 0.8 were 
chosen as final feature descriptors. Finally, 16 compound 
molecular descriptors (Table  2) and 42 protein molecu-
lar descriptors (Table 3) were extracted to represent the 
compound space and protein space. Then, the Euclidean 

Table 1  The predictive performance of compounds/diseases centered SIM

Inferred interactions 
(Times)

Inferred basis (Known 
interactions)

Consistent with test 
set

Inferred interactions 
(Times)

Inferred basis (Known 
interactions)

Consistent 
with test 
set

C10-T8 (1) C10-D2-T8 Yes D12-T13 (3) D12-C18-T13 Yes

C17-T8 (1) C17-D2-T8 Yes D12-T13 (3) D12-C17-T13 Yes

C18-T8 (1) C18-D2-T8 Yes D12-T13 (3) D12-C29-T13 Yes

C29-T8 (1) C29-D2-T8 Yes D2-T8 (5) D2-C29-T8 Yes

C40-T8 (1) C40-D2-T8 Yes D2-T8 (5) D2-C17-T8 Yes

C17-T13 (1) C17-D12-T13 Yes D2-T8 (5) D2-C10-T8 Yes

C18-T13 (1) C18-D12-T13 Yes D2-T8 (5) D2-C18-T8 Yes

C29-T13 (1) C29-D12-T13 Yes D2-T8 (5) D2-C40-T8 Yes

D12-T8 (3) D12-C18-T8 New D2-T13 (3) D2-C17-T13 New

D12-T8 (3) D12-C17-T8 New D2-T13 (3) D2-C29-T13 New

D12-T8 (3) D12-C29-T8 New D2-T13 (3) D2-C18-T13 New

Table 2  The selected compound molecular descriptors

Molecular descriptor 
of compounds

Description

BCUT_SMR_3 Molar Refractivity BCUT (3/3)

b_double Number of double bonds

b_max1len Maximum single-bond chain length

dipole Dipole moment

dipoleX Dipole moment (X)

dipoleY Dipole moment (Y)

E_ele Electrostatic energy

E_vdw Van der Waals energy

FASA+ Fractional positive accessible surface area

GCUT_SLOGP_2 LogP GCUT (2/3)

GCUT_SMR_0 Molar Refractivity GCUT (0/3)

PEOE_RPC- Relative negative partial charge

PEOE_VSA + 5 Total positive 5 vdw surface area

PEOE_VSA-0 Total negative 0 vdw surface area

PEOE_VSA-1 Total negative 1 vdw surface area

PEOE_VSA_FPOS Fractional positive vdw surface area

PEOE_VSA_FPPOS Fractional polar positive vdw surface area

pmiX Principal moment of inertia (X)

pmiZ Principal moment of inertia (Z)

Q_VSA_FPNEG Fractional polar negative vdw surface area

Q_VSA_FPPOS Fractional polar positive vdw surface area

rsynth Synthetic Feasibility
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distance between each compound or target pair was cal-
culated, and the threshold for a specific compound group 
of each target was defined. As a consequence, CTCS-IPM 
was obtained for interactions inference by calculating 
position of compounds and targets in compound-protein 
correlation space.

Furthermore, this model was evaluated by tenfold 
cross-validation [31]. As shown in Table  4, the valida-
tion result in each round recalled more than 90% of 
pairs in the test dataset, giving rise to an average recall 

rate up to 93.56%. This validation result obviously 
underscored how well our established model to pre-
dict the potential interactions. Much more interesting, 
results based on additional test dataset containing 878 
pairs consisting of 47 compounds and 380 targets pre-
dicted 1607 pairs of interactions between compounds 
and targets, in which 818 pairs exactly fitted with 
test dataset with a recall rate reaching 93.17%, while 
remaining 789 new interactions lacked reference. It’s 
proved that the CTCS-IPM had a very good predictive 
performance.

Table 3  The selected protein molecular descriptors

Molecular descriptor 
of proteins

Description Molecular descriptor of proteins Description

AL Dipeptide composition TR Dipeptide composition

GA VD

GK VF

GL VQ

GP VR

HA VY

HL DL

IA EA

ID EL

IL FL

IN M-B (1) by AA index 1 Autocorrelation descriptors

IR M-B (12) by AA index 1

PL M-B (21) by AA index 1

QL M-B (23) by AA index 1

SA M-B (30) by AA index 1

SL M-B (1) by AA index 2

SP M-B (10) by AA index 2

SR M-B (16) by AA index 2

Table 4  Validated performance of the CTCS-IPM

Number The number of pairs 
in training dataset

The number of pairs in test 
dataset

The number of predicted pairs 
consistent with test dataset

Recall rate (%)

1 3145 358 330 92.18

2 3145 358 329 91.90

3 3152 351 335 95.44

4 3159 344 320 93.02

5 3157 346 327 94.51

6 3156 347 332 95.68

7 3147 356 328 92.13

8 3153 350 331 94.57

9 3155 348 324 93.10

10 3158 345 321 93.04

average 3153 350 328 93.56
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CTCS‑IPM based interaction prediction for compound 
Salvia miltiorrhiza
In this study, interactions between 132 compounds with 
identified structure and 398 proteins were simultane-
ously predicted by CTCS-IPM. As a result, 519 pairs 
of new compound-target interactions were predicted 
(Additional file 11: Table S11). Among them, 238 pairs of 
interactions consisting of 63 proteins and 25 compounds 
without any previous target information were also suc-
cessfully predicted. In addition, most compounds could 
interact with more than one target, for example, Alexan-
drin could act on 43 various targets (Table  5). The new 
interactions predicted by SIM and CTCS-IPM were then 
integrated. After the removal of reduplicative interac-
tions, 710 pairs of new compound-target interactions, 24 
pairs of new compound-cardiovascular disease interac-
tions and 294 pairs of new cardiovascular disease-protein 
interactions were obtained for expanding the network of 
compound Salvia miltiorrhiza.

Network construction of compound Salvia miltiorrhiza
The original compounds-targets-cardiovascular dis-
eases interaction network (original network) was con-
structed using initial collected data; meanwhile the 
expanded network was built in a similar way on the basis 
of the integrated data of original collated and predicted 
interactions of compound Salvia miltiorrhiza. To more 
explicitly analyze the context of the networks, they were 
visualized by Cytoscape software. The original network 
consisted of 577 nodes and 4574 edges, containing 49 
compounds with known targets, 494 proteins and 34 car-
diovascular diseases (Additional file 12: Figure S1), while 
expanded network increased compound amount up to 

74, consisting of 602 nodes and 5602 edges (Additional 
file 12: Figure S2).

Network analysis for original and expanded network
To assess the influence of predicted interactions on TCM 
network in the content, original and expanded networks 
were analyzed on three aspects, including the parameters 
of overall network, specific diseases centered modules as 
well as analysis of functional modules, respectively. Then, 
biological activities of partial predicted interactions in 
the network modules were verified by literatures and 
molecular docking to prove reliability of SiPA.

Comparison of parameters between original and expanded 
network
The parameters mainly reflected the typical topology 
properties of networks; therefore, the difference of the 
parameter values between the original and expanded 
network was investigated (Table  6). In the original net-
work, the average number of adjacent nodes was 15.854, 
revealing the complex network relationship among com-
pounds, proteins and cardiovascular diseases. The length 
of the characteristic path in the network was 2.963, which 
indicated that any two nodes in the network could be 
connected by no more than three nodes, embodying the 
“small world” of biological network. The network diam-
eter was 8, indicating that two most distant nodes in the 
network could be connected through eight nodes. By 
comparison, the density of expanded network increased 
from 0.026 to 0.289, and the network diameter and char-
acteristic path length were shortened, which suggested 
that nodes in expanded interaction network connected 
more closely. Heterogeneity parameter of expanded 

Table 5  Numbers of predicted targets of compounds without any previous target information

Phytometabolites Compounds Number 
of predicted targets

Phytometabolites Compounds Number 
of predicted 
targets

Flavonoids Alexandrin 43 Glycosides d-Glucose

Miltipolone 1 Eleutheroside A

Salvilenone 2 Ginsenoside-Rh1

Salviolone 9 Gypenoside VIII

Tanshinaldehyde 2 Gypenoside III

Tanshinone IIB 2 Gypenoside XVII

Tigogenin 43 Phenyl methane Dicapryl Phthalate 14

Volatile oil Cuparene 3 Hydrocarbon Docosane 2

Terpenoids Cyperene 1 Ethyl Octadecadienoate 2

α-Gurjunene 5 Non-3-En-2-One 1

α-Muurolene 4 Nitrogenous Dencichine 1

β-Cubebene 18 Nonsteroidal Stigmasterol 43

γ-Cadinene 3
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network was reduced by 1.622 than that of original net-
work, indicating that the expended network was easier 
to achieve homogeneity. In addition, characteristic path 
length in expanded network was narrowed from 2.963 
to 1.774. These results showed that interactive relations 
among compounds, targets and cardiovascular diseases 
were effectively complemented and the expanded com-
pounds-targets-cardiovascular diseases interaction net-
work had a higher integrity as expected.

Analysis of specific disease centered modules
To further investigate whether the expanded interaction 
data can significantly improve network integrity and pro-
vide effective information for the understanding of the 
mechanism of compound Salvia miltiorrhiza on specific 
cardiovascular diseases, disease centered network mod-
ules were extracted from original and expanded interac-
tion network respectively and subsequently analyzed.

Firstly, Diabetes Mellitus Type 1 (D23) was used as 
a seed node to determine a suitable path length that 
could properly distinguish representative information 
on the original and expanded network to limit the size 
of extracted modules. When the path length was set 
as 1, the modules showed the closest targets or com-
pounds to the seed node (D23), lacking of comprehen-
sive representation of interactions among compounds, 
targets and diseases. Although target interaction 
information was complemented in expanded module 
(Additional file 12: Figure S3a) compared with original 
module (Additional file  12: Figure S3b), neither of the 
modules extracted from original and expanded net-
work contained compounds. Thus, it was expected to 
increase the path length to get more interaction infor-
mation. The average path of the original or expanded 

network was between 2 and 3. When the path length 
was equal to or greater than 3, more comprehensive 
interactions related to the seed node and more redun-
dancy information would be contained in the mined 
module (Additional file  12: Figure S4). Accordingly, 
in order to extract the disease centered module that 
could more completely describe regulation information 
among compounds, proteins and diseases and effec-
tively reduce information redundancy, the path length, 
in this study, was set as 2 for module mining from origi-
nal and expanded network.

As a result, 34 cardiovascular diseases centered mod-
ules were extracted with path length of 2 from origi-
nal and expanded network respectively (Table  7). 
Interactions were increased in most expanded modules. 
For example, there were 24 pairs of new direct com-
pound-cardiovascular disease interactions involving 9 
compounds and 8 diseases, 8 pairs of which were verified 
by literatures (Table 8). Furthermore, aiming to system-
atically investigate the relationship among compounds, 
targets and diseases in disease centered modules, these 
modules focused on three representative cardiovascular 
diseases, Diabetes mellitus Type 1, QTL regulation of 
blood pressure, and Long QT syndrome 4 were further 
analyzed.

Diabetes mellitus Type 1 centered modules. The mod-
ules focused on Diabetes Mellitus Type 1 (D23) was exca-
vated with path length of 2 from original and expanded 
compound Salvia miltiorrhiza interaction network 
respectively. There were three compounds, 2α-Hydroxy 
Ursolic Acid (C2), Cryptotanshinone (C10) and Tan-
shinone IIA (C40), associated with D23 through Insulin 
receptor substrate 1 (T10) and Insulin-degrading enzyme 
(T476) indirectly in the expanded module (Fig.  3a), 
while no compound was included in the original module 
(Fig.  3b). In addition, C10 and C40 could also associate 
with 13 other cardiovascular diseases, such as Hyperin-
sulinemic Hypoglycemia (D8), Coronary  heart  disease 
(D17), through common targets of T9 and T10. Com-
pared with the original module, proteins increased from 
5 to 17 in the expanded module. 2′-5′-oligoadenylate 
synthase 1 (T399), FOXP3 protein (T415), Insulin recep-
tor substrate 2 (T426) could connect to D23 directly and 
Insulin-degrading enzyme (T476), Insulin receptor (T9) 
could affect D23 indirectly in the original module, while 
the expanded module showed that all above targets con-
nected to D23 directly.

In order to further validate the effects of above three 
compounds (C2, C10 and C40) on Diabetes Mellitus Type 
1 (D23), literatures verification was carried out. It was 
reported that 2α-Hydroxy Ursolic Acid (C2) could reduce 
blood glucose in hereditary diabetic mice [41]. Further-
more, results of molecular docking showed that C2 could 

Table 6  Parameters of  original network and  expanded 
network

Parameters Values of original 
network

Values 
of expanded 
network

Number of nodes 577 602

Number of edges 4574 5602

Connected components 9 1

Network diameter 8 3

Network radius 1 2

Network density 0.026 0.289

Network heterogeneity 2.502 0.880

Network centralization 0.539 0.731

Characteristic path length 2.963 1.774

Avg. number of neighbors 15.854 5.5

Isolated nodes 0 0
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bind to Insulin receptor substrate 1 (T10) (Additional 
file 12: Figure S5).

QTL regulation of blood pressure centered modules. The 
modules focused on QTL Regulation of Blood Pressure 
(D13) were extracted with path length of 2 from original 
and expanded network respectively. In the original mod-
ule (Fig.  4a), Gensenoside-Rb1 (C17), Ginsenoside-Rg1 
(C18), Notoginsenoside-R1 (C29) could interact with 
D13 directly. By comparison, in addition to direct inter-
actions between C17, C18, C29 and D13, Cryptopanshi-
none (C10), Danshengsu (C12), Protocatechuic Aldehyde 
(C34), Salvianolic Acid B (C37), Tanshinone IIA (C40) 

also associated to D13 through Angiotensin I converting 
enzyme (T1), E-selectin (T7), Insulin receptor substrate 1 
(T10), Nitric oxide synthase, endothelial (T12) and Estro-
gen receptor (T486) in the expanded module(Fig.  4b). 
Besides, all compounds also connected to other 15 car-
diovascular diseases directly, such as Hyperinsulinemic 
Hypoglycemia (D8), Coronary heart disease (D17).

Subsequently, literatures verification showed that sal-
vianolic acid B (C37) could reduce the expression of 
PLAT protein, enhance cell fibrinolysis and reduce cell 
adhesion to inhibit blood thrombosis and atherosclerotic 
plaque formation, which helped maintain the normal 

Table 7  Comparison of original and expanded modules focusing on specific disease

Original modules Expanded modules

Compounds Diseases Targets Compounds Diseases Targets

D1 8 14 316 27 22 348

D2 7 14 318 50 22 349

D3 5 14 315 27 22 347

D4 3 13 313 38 23 346

D5 8 14 317 27 22 349

D6 8 14 316 27 22 348

D7 9 14 317 28 23 349

D8 2 12 313 27 22 345

D9 5 12 315 27 22 347

D10 5 14 316 27 22 348

D11 6 14 316 28 23 348

D12 5 12 15 8 20 356

D13 3 11 6 8 16 17

D14 5 14 315 27 22 347

D15 1 2 12 1 2 13

D16 1 1 1 1 3 1

D17 5 1 19 5 21 359

D18 2 1 9 2 20 348

D19 5 2 23 5 20 365

D20 5 2 2 5 20 348

D21 2 2 1 2 19 342

D22 2 2 1 2 19 342

D23 0 1 5 2 14 17

D24 0 1 1 0 1 1

D25 0 1 4 2 14 4

D26 0 2 1 0 2 1

D27 0 1 1 0 1 1

D28 0 1 2 0 1 2

D29 0 1 1 0 1 1

D30 0 1 1 0 1 1

D31 0 2 1 0 2 1

D32 0 2 1 0 2 1

D33 0 1 5 0 1 5

D34 0 0 1 0 0 1
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arterial blood pressure [42]. Results of molecular docking 
showed that Danshengsu (C12) could bind to Estrogen 
receptor (T486) (Additional file 12: Figure S6).

Long QT Syndrome 4 centered modules. The Long QT 
Syndrome 4 (D25) was also used as the seed node to 
excavate the modules at the path length of 2 from origi-
nal and expanded network. Only ATP-sensitive inward 
rectifier potassium channel 11 (T4), Ankyrin-2 (T404), 
Sodium/calcium exchanger 1 (T473) and ATP-binding 
cassette sub-family C member 8 (T457) were contained 
in original module without any more information of 
compounds (Fig.  5a), while more complete interactions 

among D25, targets and compounds were included in 
the expanded module (Fig.  5b). The expanded module 
showed that Cryptotanshinone (C10) and Tanshinone 
IIA (C40) might affect D25 through T4, T404 and T457 
and connect other 13 cardiovascular diseases directly, 
such as Angina pectoris (D18).

Similarly, literatures verification and molecular dock-
ing were carried out. Although new interactions related 
to D25 have not been verified, previous study has showed 
that sodium Tanshinone IIA silate (C40) might have 
protective effects on Angina pectoris (D18) as an add-
on therapy in patients, which is in accordance with the 

Table 8  Literature verification of predicted direct compound-cardiovascular disease interactions

Predicted interactions Validated literatures

Borneol (C8)—Hyperlipidemia (D16) Borneol has ameliorative effect of hyperlipidemia in diabetic Wistar rats [32]

Cryptotanshinone (C10)—Diabetes mellitus type 2 (D20) Cryptotanshinone has effect of antidiabetes via activation of AMP-activated protein kinase 
[33]

Ginsenoside-Rg1 (C18)—Diabetes mellitus type 2 (D20) Ginsenoside-Rg1 can alleviate the insulin resistance through increasing the uptake of 
glucose and decreasing the output of glucose [34, 35]

Tanshinone IIA (C40)—Diabetes mellitus type 2 (D20) Tanshinone IIA may alleviate type 2 DM symptoms in experimental rats [36]

Cryptotanshinone (C10)—Obesity (D12) Cryptotanshinone promotes commitment to the brown adipocyte lineage and mitochon-
drial biogenesis in C3H10T1/2 mesenchymal stem cells to alleviate obesity [37]

Tanshinone IIA (C40)—Obesity (D12) Tanshinone IIA may treat obesity through PPARγ [38]

Tanshinone IIA (C40)—Angina pectoris (D18) Sodium tanshinone IIA silate can act as an add-on therapy in patients with unstable angina 
pectoris [39]

Ginsenoside-Rg1 (C18)—Acute Myocardial infarction (D1) Ginsenoside-Rg1 could enhance angiogenesis and ameliorates ventricular remodeling in a 
rat model of Acute Myocardial infarction [40]

Fig. 3  D23 centered modules generated from expanded (a) and original (b) network
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predicted result in this study [39]. Results of molecular 
docking showed that C40 could bind to ATP-sensitive 
inward rectifier potassium channel 11 (T4) (Additional 
file 12: Figure S7).

Functional module analysis of compound Salvia miltiorrhiza 
interaction network
To further evaluate whether expanded network can pro-
vide useful functional modules to help discover novel 

Fig. 4  D13 centered modules generated from original (a) and expanded (b) network

Fig. 5  D25 centered modules generated from original (a) and expanded (b) network
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knowledge, the Identifying Protein Complex Algorithm 
(IPCA) was used to analyze the network, more spe-
cifically, to compare differences between original and 
expanded functional modules. Because of the fact that 
modules with small node numbers are generally of less 
importance in the network analysis, the minimum num-
ber of nodes in the setup module was set as 14 in this 
study. No module with nodes equal to or more than 
14 was identified in original network, and the number 
of nodes in maximum functional module was only 4. 
Instead, 22 modules were dug out in expanded network, 
and one module with nodes equal to 14, which involved 
Acute Myocardial Infarction (D1), Atherosclerosis (D2), 
Coronary Artery Disease (D5) and Diabetic Microangi-
opathy (D6) (Fig. 6a). Further analysis of this functional 
module showed that compounds Cryptotanshinone 
(C10), Gensenoside-R b1 (C17), Ginsenoside-Rg1 (C18), 
Notoginsenoside-R1 (C29), Salvianolic Acid B (C37) and 
proteins Angiotensin I converting enzyme (T1), E-selec-
tin (T7), Insulin receptor substrate 1 (T10), Nitric oxide 
synthase, endothelial (T12), Peroxisome proliferator-
activated receptor (T13), Estrogen receptor (T486) could 
connect to D1, D2, D5, and D6 directly. However, no sig-
nificant cardiovascular diseases were found in the maxi-
mum module from original network (Fig. 6b).

Subsequently, literatures verification showed that 
inhibiting Angiotensin I converting enzyme (T1) 
could reduce mortality and the occurrence of severe 

left-ventricular dysfunction of Acute Myocardial 
Infarction (D1) patients [43] and Ginsenoside-Rg1 
(C18) could enhance angiogenesis and ameliorates ven-
tricular remodeling in a rat model of Acute Myocardial 
Infarction (D1) [41]. Results of molecular docking fur-
ther validated that Cryptotanshinone (C10) could bind 
to Estrogen receptor (T486) (Additional file 12: Figure 
S8).

In sum, the evaluation using both test dataset suggested 
that the combination approach showed pretty good per-
formance on accurate interaction prediction. Further-
more, results of network analysis indicated that in light 
of the integrated interactions, the network expansion 
could dramatically improve the completeness of the net-
work of compound Salvia miltiorrhiza, while the original 
network only described monotonous interactions with-
out systematic relations among compounds, targets and 
diseases. Although it was difficult to verify all results of 
prediction and network analysis, our results of literature 
validation and molecular docking concluded that this 
approach had good reliability, and could provide more 
useful information for exploring the mechanism of com-
pound Salvia miltiorrhiza on cardiovascular diseases. 
Therefore, our attempt to develop a large-scale interac-
tion prediction approach for TCM network expansion is 
a bit more successful for more comprehensively under-
standing the mechanism of TCM and for better applica-
tion of TCM in disease prevention and treatment.

Fig. 6  The important modules identified from expanded (a) and original (b) network
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Discussion
SiPA offered three prominent advantages. Firstly, note 
that the majority of state-of-art interaction inference 
methods would lack prediction power without annotated 
information as negative samples. Negative information 
of compound-target interaction is extremely limited, so 
acquisition of reliable negative samples is challenged. 
However, SiPA was established without negative samples 
to avoid this limitation, and demonstrated large capa-
bility of simultaneously predicting reliable interactions 
between multiple compounds, diverse targets and vari-
ous diseases, making it a powerful enough approach to 
reduce prediction error associated with unreliable nega-
tive samples. Secondly, CTCS-IPM could be applied to 
various challenging scenarios: predicting from small sam-
ples with high accuracy, which always failed to construct 
prediction model by other state-of-the-art methods, and 
more important, inferring the large-scale interactions of 
TCM ingredients which always have less, even no known 
compound-target information available. Although a large 
number of abundant biomedical data have been accu-
mulated, compound-target interaction information is 
still inadequate, and applied, in most of the cases, for the 
investigation of low molecular weight chemicals. Thirdly, 
SiPA was not restricted by target 3D structures as com-
pared to molecular docking, which could also be applied 
in large-scale interactions inference. Herein, SiPA pro-
vided a practical and efficient way for large-scale infer-
ence of multiple interactions of TCM ingredients.

According to previous reports, most current existing 
interaction prediction models could only infer single 
type of interactions, like protein–ligand or disease-tar-
get interactions. Other models constructed by molec-
ular descriptors, for example, chemogenomics based 
methods [44, 45], showed the capability to infer inter-
actions of multiple compounds and multiple proteins 
simultaneously and a higher prediction accuracy com-
pared with CTCS-IPM. More specifically, such better 
prediction performance of these models should heav-
ily rely on similarity measures of drugs and proteins; 
therefore, these models would fail in the prediction of 
TCM because of the diverse targets of TCM ingredi-
ents. The Similarity Ensemble Approach (SEA) was also 
suitable for inferring multiple compound-target inter-
actions through evaluating receptors similarity [14]. 
However, SEA suffered from the problem of the activ-
ity cliff, which is defined as pairs of structurally simi-
lar molecules with large differences in potency [46], 
and was failed to infer new interactions for compounds 
without well-described structures. CTCS-IPM defined 
compound-target correlated space based on CCA and 
a statistical threshold to consider diversity of com-
pounds, which not only estimated the activity cliff, also 

absorbed features of compounds with large differences 
in potency for more appropriate inference. When using 
the SiPA, with the help of network analysis algorithm, 
more unreliable information was filtered out within the 
inferred unexpected interactions. Moreover, results of 
literature and molecular docking have validated the 
reliability of predicted interactions. Collectively, our 
SiPA could reach the sufficiently high performance on 
the prediction of the complicated interaction network 
of TCM.

TCM is becoming a rich resource for candidate drugs. 
So appropriate approaches to thoroughly comprehend 
TCM interactions is particularly important, as it facili-
tates the identification of potential novel drug leads and 
advances the quick hit-to-lead development from TCM. 
SiPA provided a possibility for more effective study of 
TCM using network pharmacology, and could be applied 
to effectively identify compound (or targets) candidates 
in drug discovery.

Conclusions
In this study, we first proposed a combination approach 
(SiPA) of SIM centered on the definition of ‘relevance’ 
between compounds, targets or diseases within inter-
action network and CTCS-IPM based on the position 
of compounds and targets in compound-protein corre-
lated space to infer large-scale multiple interactions for 
understanding the synergistic mechanism of TCM. This 
approach was successfully applied to predict 710 pairs 
of new compound-target interactions, 24 pairs of new 
compound-cardiovascular disease interactions and 294 
pairs of new cardiovascular disease-protein interactions 
for the TCM compound Salvia miltiorrhiza. Compound-
target interactions were also obtained for 26 compounds 
without known target information available.

It’s noteworthy that we also applied the expanded net-
work to explore the mechanism of TCM for the first time. 
Since the completeness of the interaction network was 
substantially improved, the expanded network modules 
had a well description on relations of compounds, targets 
and diseases thoroughly and systematically, offering new 
insights into underlying mechanism of TCM. As a result, 
our approach could more comprehensively and explic-
itly expound the active ingredients of compound Salvia 
miltiorrhiza and their network synergistic mechanism on 
specific cardiovascular diseases.

In addition, the CTCS-IPM was currently restricted 
to predict interactions between compounds and targets. 
To unleash the full potential of the CTCS-IPM, it can be 
further extended to predict interactions between proteins 
and diseases or between compounds and diseases by 
defining an appropriate disease space in future research.
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