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Abstract

During active behaviours like running, swimming, whisking or sniffing, motor actions shape

sensory input and sensory percepts guide future motor commands. Ongoing cycles of sen-

sory and motor processing constitute a closed-loop feedback system which is central to

motor control and, it has been argued, for perceptual processes. This closed-loop feedback

is mediated by brainwide neural circuits but how the presence of feedback signals impacts

on the dynamics and function of neurons is not well understood. Here we present a simple

theory suggesting that closed-loop feedback between the brain/body/environment can mod-

ulate neural gain and, consequently, change endogenous neural fluctuations and responses

to sensory input. We support this theory with modeling and data analysis in two vertebrate

systems. First, in a model of rodent whisking we show that negative feedback mediated by

whisking vibrissa can suppress coherent neural fluctuations and neural responses to sen-

sory input in the barrel cortex. We argue this suppression provides an appealing account of

a brain state transition (a marked change in global brain activity) coincident with the onset of

whisking in rodents. Moreover, this mechanism suggests a novel signal detection mecha-

nism that selectively accentuates active, rather than passive, whisker touch signals. This

mechanism is consistent with a predictive coding strategy that is sensitive to the conse-

quences of motor actions rather than the difference between the predicted and actual sen-

sory input. We further support the theory by re-analysing previously published two-photon

data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual

swim simulator. We show, as predicted by this theory, that the degree to which each cell

contributes in linking sensory and motor signals well explains how much its neural fluctua-

tions are suppressed by closed-loop optomotor behaviour. More generally we argue that our

results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop

brain/body/environment interactions strongly supporting the idea that brain function cannot

be fully understood through open-loop approaches alone.
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Author summary

Animals actively exploring or interacting with their surroundings must process a cyclical

flow of information from the environment through sensory receptors, the central nervous

system, the musculoskeletal system and back to the environment. This closed-loop senso-

rimotor system is essential for an animal’s ability to adapt and survive in complex envi-

ronments. Importantly, closed loop feedback signals also regulate brainwide neural

circuits for behavior. Specifically, the activity of coherent populations of neurons inform

motor behaviours and in turn are influenced by sensory feedback signals mediated by the

environment. We develop a theory that suggests that this feedback can explain the marked

changes in large-scale neural dynamics and sensory processing (together referred to as

brain state) that coincide with the onset of active behaviours. This feedback may contrib-

ute to flexible context dependent neural computations in brain systems.

Introduction

Neural response are strongly sensitive to behavioural state. The onset of movement such as

running and whisking is coincident with prominent modulations in neural activity in sensory

areas [1–3]. The rodent whisker system has become a key model system within which to inves-

tigate these changes [4–6]. The onset of active whisking in a previously quiet but attentive

rodent is correlated with a marked reduction in endogenous synchronous neural activity of

neurons in sensory areas; quantified as a reduction in low frequency fluctuations and a

decrease in correlations between the membrane potentials of neurons in the barrel cortex [4].

Furthermore, membrane potential responses to experimentally induced perturbations of the

whisker are also reduced by the presence of whisking [6]. These changes suggest that move-

ment reduces neural gain [7,8] in the barrel cortex suppressing neural fluctuations and sensory

response. Several internal pathways have been implicated in this gain regulation including var-

ious neuromodulatory pathways [9,10], intracortical feedback modulation by motor areas [11]

or they could be directly triggered by changes in sensory input [12,13] via thalamo-cortical

projections [14]. Despite this gain reduction, robust responses to sensory input occur during

active contact events when the whisker collides with an object placed in the whisk field [5,6].

Thus, a whisking-induced gain reduction cannot by itself account for the difference in sensory

responses to whisker perturbations and active contact events without appeal to additional

mechanisms [15]. The reafference principle (RP) [16] also does not straightforwardly explain

these differences. The RP explains the amplitude of sensory response by a mismatch between

the actual sensory input and its prediction, where the prediction is based on an efference copy
(an internal copy of motor command). But the RP does not explain why sensory responses to

whisker perturbations, which are always unpredicted, are suppressed during movement.

Active behaviours are defined by closed-loop feedback interactions between brain/body/

environment which are central to motor control and, it has been argued, pivotal to account of

perceptual processes [17–19]. During active whisking reafferent sensory input (sensory input

resulting from one’s own actions) conveys information about proprioceptive sensory feedback

of whisking and which informs the subsequent motor control of the vibrissae [20,21]. Repeated

cycles of reafferent sensory input followed by motor output constitute a closed-loop feedback

interaction between cells in the barrel cortex and the vibrissae [22]. In this work, we show that

in this system closed-loop feedback mediated by whisking vibrissae can: 1. Suppress synchro-

nous endogenous neural fluctuations and passive sensory responses, 2. Account for large

response to active touch events because of a transient interruption of this feedback. The results
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provide a nuanced view of predictive coding where neurons represent predictions errors about

consequences of motor actions rather than the difference between the predicted and actual

sensory input. More generally these results strongly support the centrality of closed-loop inter-

action in perceptual apparatus [17] by suggesting a specific role they play in event detection.

To support a key prediction of this theory we examine how closed-loop interactions in a

motor control behaviour impact on neuronal fluctuations. Specifically, we re-analysed data

from a second system, a larval zebrafish behaving in a virtual reality where fictive water flow is

simulated by a grating (striped image) drifting across the fish retina [23]. In this set up zebra-

fish larvae are immobilised with a neuromuscular blocker. The fish’s attempted movements

relative to the grating are monitored through motor neuron activity and translated into appro-

priate modulation of the velocity of the grating [23]. With data from this setup we show that

the presence of closed-loop interactions between neurons and fictive swim speed causes the

suppression of synchronous neural fluctuations across the fish brain in a manner analogous

with the rodent whisker system. Further we show that the amount of this suppression for each

neuron is correlated with the strength of its involvement in the optomotor signaling. Together,

these results suggest that understanding changes in neural activity across the brain caused by

the onset of movement requires the study of closed-loop brain/body/environment interactions

beyond open-loop sensory paradigms. Thus we strongly support the argument that a full

understanding of phenomenology of neural circuits during active behaviors requires moving

away from the idealisation of the brain as an input/output information processor toward its

role as a dynamic control system regulating behaviour [19].

Results

Theory

In moving animals, the brain receives sensory input that originates in the external environ-

ment, or exafferent sensory input (Fig 1A, blue arc). In addition, efferent motor commands

(Fig 1A, green arc) drive the body and environment and induce reafferent (self-generated) sen-

sory input (Fig 1A, red arc) [16,24]. To develop an intuition of how closed-loop feedback,

mediated by reafferent input, could impact on neural activity we introduce two model condi-

tions. First, we assume that when an animal is not moving the brain receives only exafferent

input, we describe this as an open-loop condition (Fig 1B, top). Second, when the animal begins

to move the brain interacts with the environment coupling motor action and reafferent sen-

sory input, we refer to this as a closed-loop condition (Fig 1C top). Note: it is likely that some

reafferent input is always present but our focus here is on the effect that the onset of a previ-

ously absent reafferent sensory pathway could have on neural activity. We examine these two

conditions in a simple idealized model, see [17] for a similar idealisation, where brain variable

B (which describes collective neural activity, e.g., membrane potential activity) receive input

from, or interacts with, the body and environment. In the open-loop condition the collective

neural activity, Bo(t), is assumed to be described in term of a first-order linear differential

equation,

dBoðtÞ
dt
¼
� BoðtÞ

t
þ IðtÞ þ xo tð Þ; ð1Þ

where ξo is white noise of instantaneous variance σ2 generated inside the brain, t is time, τ is

the time constant of the system and I(t) is exafferent input. Essentially, in the absence of input,

we represent collective neural activity as a simple leaky integrator system with leak timescale τ
driven by endogenous noise (see Fig 1B, bottom, for traces). Of interest here is the magnitude

of fluctuations which can be calculated as the autocorrelation peak (instantaneous variance) of
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Fig 1. A simple model of the brain-environment interaction. a, A schematic description of brain-body-environment interactions during closed-loop behavior. The

brain receives two types of sensory input: exafferent input (blue) that originates from the environment and reafferent input (red), which, while mediated by the

environment, results from the consequences of an animal’s own actions. (b-d) Schematic diagrams of the interactions between the brain (B) and the body/environment

with example neural activity traces of the simple model described in the text with τ = 1.05 and w = −0.5. Each model is Euler integrated (dt = 0.01) and is driven by

normally distributed noise with zero mean and unit variance (the noise is slightly smoothed for presentation purposes). A perturbation (I = 2) is applied at t = 500 for

20 time units (grey bar). b, The brain receives no reafferent input (an open-loop condition) and exhibits collective activity that spontaneously fluctuates. The magnitude

of the fluctuations and the responses to perturbation are large. c, Reafferent input mediates closed-loop sensory feedback to the brain (a closed-loop condition). If this

feedback is negative, the gain of the brain is reduced and both fluctuations and responses to perturbation are suppressed. d, A perturbation in the closed-loop condition

are combined with a brief interruption (20 time units) of the closed-loop feedback. Responses to perturbation are accentuated during the interruption but background

fluctuations are suppressed before and after the contact.

https://doi.org/10.1371/journal.pcbi.1005926.g001
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variable Bo which is Peako = σ2 τ/2, and the gain of the response to sensory input (calculated as

the ratio between a static input and an equilibrium response), which is simply Gaino = τ. Thus

in this simple system both the gain and the fluctuations are determined by the timescale of the

endogenous dynamics. However, during the closed-loop condition we write the dynamics of

the brain variable,

dBcðtÞ
dt
¼
� BcðtÞ

t
þ wBc tð Þ þ I tð Þ þ xc tð Þ; ð2Þ

where we have idealised reafferent input as a simple self-feedback signal with strength w, i.e.,

we have assumed this feedback is linear and instantaneous (we will relax this assumption

later). In this condition, the continuous cycles of reafferent input constitute a closed-loop feed-

back signal to the brain. The presence of this feedback changes the effective time constant to

τeff = τ/(1−wτ). The magnitude of the fluctuations is now characterized by autocorrelation

peak Peakc = Peako/(1−wτ) and the effective gain of the system is Gainc = Gaino/(1−wτ). In par-

ticular, if this feedback is negative (w< 0), it will suppress both fluctuations and the gain of

sensory responses, see Fig 1B and 1C (bottom panels). This very simple model suggests that, in

principle, closed-loop feedback mediated by the body/environment could have a direct impact

on neural activity. One way to accentuate sensory responses is described in Fig 1D. Here the

brain initially has low closed-loop gain (Gainc = τ/(1−wτ)) and thus exhibits suppressed fluctu-

ations. However, if during a sensory event (Fig 1D, grey bar) closed-loop feedback is inter-

rupted, e.g., if whisking is interrupted by contact with an object (see below), then brain will

have temporarily high open-loop gain (Gaino = τ). Thus the combination of a large sensory

response and suppressed background fluctuations prior to sensory event can accentuate sig-

nal-to-noise ratios. In the following, we explain how these three conditions can be realized in

the rodent whisker system.

The rodent whisker system

The role of closed-loop feedback in a brain state transition. Does the presence of closed-

loop sensory feedback explain the changes in neural activity caused by the onset of whisking in

the rodent barrel cortex? We examined neural membrane potential recordings made in head-

fixed rodents with all but a single vibrissae removed [4,6], In these experiments rodents transi-

tioned between two behaviours: a quiet attentive behaviour (i.e. awake and not sleeping, but

with stationary vibrissae) or spontaneous bouts of whisking [4,6]. In the absence of whisking

the membrane potential of neurons in the barrel cortex exhibit noisy fluctuations with a strong

1Hz component and correlations between neighbouring neurons are relatively high [4]. The

onset of active whisking suppresses these coherent neural fluctuations. In addition the sensory

responses of neurons to passive whisker deflections are also suppressed by whisking [4,6]. How-

ever, neurons robustly respond to active touch events when the whisker collides with, and

briefly comes to rest on, an object placed in the whisk field [4,6]. Furthermore, the coherent

neural fluctuations reappear if the whisker repeatedly collides with an object [6].

While the presence of closed-loop sensory feedback is a major difference between the quiet

attentive and active whisking states, it has been shown that coherent fluctuation of membrane

potential are suppressed by whisking behavior even when the infra-orbital nerve (ION) is cut,

removing sensory input from whiskers [5]. At first glance, the effect of this lesion seems to rule

out a role for closed-loop sensory feedback. Accordingly, we made a closer examination of the

role sensory input plays in this suppression by further analysing the data from this ION cut

experiment, data supplied by the authors of [5]. We found that the latency between the onset

of whisking and the suppression of membrane potential fluctuations was longer under the

Gain modulation by closed-loop environmental feedback
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ION cut condition, as compared to the ION intact condition (see S1 Appendix). Thus, while

there are likely many internal mechanisms underlying brain state transitions such as thalamo-

cortical input [25] or corollary discharge [26] this analysis suggests a role for sensory input

under physiological conditions.

A model of cortical-vibrissae interactions. To test whether closed-loop feedback could

plausibly explain the changes in brain activity caused by whisking we constructed a simplified

neural network model of cortical-vibrissae interactions (see Materials and Methods). Our

model comprises both an excitatory and inhibitory cortical population dynamically interacting

with a single vibrissa (Fig 2A). Slow coherent fluctuations of membrane potential at around

1Hz arise in this model from an interplay between the buildup of excitatory cortical activity

through recurrent activity and their eventual suppression by adaptation after ca. 1 s in each

cell. We model a simple flexible vibrissa as two hinged stiff mass-less sections of unit length

with relative angle θh (bending angle) connected at the base with protraction angle θp to the

body. The sections are constrained by simple torsion springs with spring constant k1 and k2

respectively, see Fig 2A. The center spring has an equilibrium value of zero angular displace-

ment and thus tends to align both sections (see Materials and Methods) and whisker move-

ment is driven by setting equilibrium position of the base spring. Fast whisking behavior is

manually turned on or off by a central pattern generator (CPG) that periodically drives the

whisker (~10 Hz) when CPG is on. Our theory (see Fig 1) suggests that negative sensory feed-

back could suppress coherent neural fluctuations. To model this, we assumed that cortical

excitatory neurons additionally drive protraction of the vibrissae, and, in turn, both excitatory

and inhibitory populations receive the sensory feedback of the whisker retraction angle θr =

180˚ − θp. To model contact events a horizontal frictionless solid wall is placed above the whis-

ker and, as the whisker collides with the wall, the whisker tip stops. In addition, we model a

contact-detection signal capturing the stereotypical response of pressure sensitive cells in the

trigeminal ganglion [27]. Specifically, we deliver a brief square wave pulses (ca. 25 ms) trig-

gered by each whisker contact event as an additional sensory input (see Materials and Meth-

ods). See the Discussion and S2 Appendix, for further discussion of the biological plausibility

of these model assumptions.

During the open-loop condition (i.e., the quiet attentive condition) the cortex exhibits sig-

nificant synchronous low frequency membrane potential fluctuations which are suppressed in

the closed-loop condition (i.e., the freely whisking condition). Like the simple mode in Fig 1,

negative sensory feedback reduced the gain of the cortical system and replaced prominent (ca.

1 Hz) synchronous fluctuations of the membrane potential with fast (ca. 10 Hz), but weak,

fluctuations locked into the whisking cycle, see Fig 2C. Furthermore, the average inter-neural

correlation of membrane potential for pairs of neurons was also suppressed (Fig 2D) indicat-

ing that coherent fluctuations across the network were suppressed.

We then examined the effect of whisker contact events on cortical dynamics. If we assume

the whisker is perfectly rigid and unbending then the whisker stops when it comes into contact

with the object interrupting sensory feedback as suggested in Fig 1D, see Fig 2A (grey line)

where touch events are marked by yellow lines. During periods of contact events the frequency

power and cross-correlation of membrane potential fluctuations were partially recovered, see

Fig 2C and 2D (yellow lines), in agreement with experimental results [4,6]. We hypothesized

that if the whisker is very flexible, then the protraction angle would change continuously,

despite contact of the tip, fully preserving sensory feedback of whisker movement. Note: to dis-

tinguish the effect of sensory feedback from touch-evoked signal, we applied the same square

wave pulse as a contact-detection signal regardless of whisker stiffness. We found that the

recovery of 1–5 Hz power was stronger for a stiff whisker indicating that the interruption of

the closed-loop sensory feedback was important for this change, see Fig 3B and 3C.
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Fig 2. Coherent fluctuations are suppressed by the presence of whisking in a simple model of the barrel cortex. a, A schematic

of a simplified whisking model. 100 excitatory (Exc) and 100 inhibitory (Inh.) neurons receive sensory feedback via a single whisker

driven by a central pattern generator (CPG) and the excitatory neurons. Triangle and circles represent excitatory and inhibitory

synapse respectively. Onset of whisking occurs when the CPG is switched on. Sensory feedback is negative overall because the

neurons that elicit whisker protraction are assumed to be driven by whisker retraction. The whisker comprise of two sections with a

bending angle, θh, and protraction angle θp. The base and tip sections are constrained by two springs with spring constants k1 and

k2 respectively. Whisking is implemented by driving the equilibrium position of the base spring. The center spring is in equilibrium

Gain modulation by closed-loop environmental feedback
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A model of the impact of closed-loop feedback on sensory processing. The same model

also accounted for behavior-dependent changes in sensory processing [6] without assuming

additional mechanisms [15,28]. Specifically, in agreement with experimental results, we found

that exafferent perturbation evoked large sensory responses in the quiet condition but

markedly smaller responses during the whisking condition (Fig 3D, [6]). Again, this was

because negative closed-loop sensory feedback decreased the gain of the cortical circuit. Fur-

thermore, in agreement with experimental data, we also found that cortical neurons exhibited

more reliable responses to active touch events (i.e., events defined by a contact-detection signal

in addition to a clipping of the whisker angle) than the same contact-detection signal during

free whisking (Figs 2B and 3D). To quantify this effect in our whisker model, we computed a

discriminability index (see Materials Methods) that characterize the signal-to-noise ratio of

the response of the cortex to different sensory events. Effectively, this index measures the sepa-

ration between the distributions of membrane potentials in the presence or absence of sensory

events and is high when an event is very discriminable from background. The value of the

index was similar for exafferent perturbations in the closed-loop and open-loop conditions,

Fig 3E (blue and red bars), i.e., although the deflection-evoked response (signal) was greater in

the open-loop condition, so were background fluctuations of membrane potential (noise). In

contrast, the discriminability index was greater for contact events, Fig 3E, yellow bars. We

hypothesized this was because negative sensory feedback, that suppressed neural fluctuations

during whisking, was transiently removed during active touch events allowing endogenous

recurrent excitation to amplify the cortical response to the contact-detection signal (Fig 3D).

Thus, active touch events combined large sensory evoked responses (signal) and low back-

ground fluctuations (noise), which is beneficial for information coding. To confirm that this

increase in discriminability was because of the transient interruption of the closed-loop feed-

back, we simulated vibrissae of different stiffness. The result shows that active touch event are

more discriminable when the whisker is stiff, suggesting the benefit of a well-timed interrup-

tion of the closed-loop feedback for amplifying cortical response, see Fig 3D (c.f. Fig 1D).

Hence, this model suggests that cortical neurons are selectively sensitive to the interruption of

the animal’s own active sensing.

Zebrafish virtual reality

A closed-loop versus replay condition. Our theory makes the strong prediction that

brain dynamics are sensitive to closed-loop feedback rather than sensory input per se. To illus-

trate this prediction we returned to the simple conceptual model presented in Fig 1 and intro-

duce a replay condition. In this condition sensory input to the brain in a closed-loop condition

is first recorded. This recording is then replayed in open-loop (i.e. as exafferent input) to an

identical brain albeit with a different instantiation of internal noise, see Fig 4. Under this

at zero angular displacement and tends to align the whisker sections. The whisker is unit length and massless but constrained by a

solid wall placed within the whisker’s reach. b, Membrane potential of cortical neurons (light lines for individual neurons and dark

line for population average) and whisker position in a quiet attentive (open-loop condition: O) and whisking (closed-loop

condition: C) rodents. Periods of active touch (T) are also shown. Large and synchronous fluctuations of membrane potential were

suppressed during whisking. Active touch elicited reliable responses in these neurons. The vertical dotted line marks the onset of

whisking and the vertical solid lines mark onset of individual touch event. c, The power spectrum (inset for variance) of membrane

potential are averaged over cortical neurons and shown for each condition. d, Similarly cross-correlation (inset for correlation

matrix of randomly sampled neurons—color warmth indicates the degree of correlation) of membrane potential are averaged over

cortical neurons and shown for each condition. Coherent low frequency fluctuations and inter-neural correlation are suppressed

during C relative to O but are recovered during T.

https://doi.org/10.1371/journal.pcbi.1005926.g002
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Fig 3. Negative closed-loop sensory feedback can account for the suppression of coherent fluctuations and sensory responses. a, The

relationship between the bending (θh: gray) and protraction angle (θp: red) in a flexible (top, k2/k1 = .1) and stiff (bottom, k2/k1 = 10) whisker. The

deflection of the protraction angle is smaller during contact if the whisker is stiff. b and c, The dependence of low frequency power and intra-neural

correlation on behavioural condition (O and C) and whisker stiffness, respectively. Data averaged over 100 trials for each condition. In all cases

standard error in the mean was much smaller than 1% of the mean. d, A comparison of the Membrane potential response to exafferent input during

O (blue), C (red) and an active touch event (yellow). Events begin at time 0. Active touch has the same baseline as C but a similar response

magnitude to O. e, The dependence of the discriminability index (see Materials and Methods) on behavioural condition (O and C) and increasing

whisker stiffness. Discrimination performance was improved with increasing whisker stiffness, reflecting the degree to which closed-loop sensory

feedback was interrupted during touch events.

https://doi.org/10.1371/journal.pcbi.1005926.g003

Fig 4. A theoretical prediction for the replay condition. Schematic diagrams and example traces of the simple model described in the text with τ = 1.05 and w =

−0.5, same labelling conventions as Fig 1. Each model is Euler integrated (dt = 0.01) and is driven by normally distributed noise with zero mean and unit variance

(the noise is slightly smoothed for presentation purposes). a, Reafferent input mediates closed-loop sensory feedback to the brain (a closed-loop condition: top panel)

suppressing fluctuations in brain activity (bottom panel). b, the brain receives a replay of the reafferent input received in the closed-loop condition as exafferent input

(top panel). Any differences from the closed-loop condition are caused by the absence of feedback because the sensory input is identical to that in the closed-loop

condition. Note the noise is unique in each condition but sampled from the same distribution. In the replay condition fluctuations are much larger than in the

closed-loop condition because of the absence of negative feedback.

https://doi.org/10.1371/journal.pcbi.1005926.g004
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condition the dynamics of the brain, Br, can be written as:

dBrðtÞ
dt
¼
� BrðtÞ

t
þ wBc tð Þ þ xr tð Þ; ð3Þ

where ξr is again white noise of instantaneous variance, σ2, that has the same statistics as the

closed-loop condition. Here, the brain receives the same sensory input as in the closed-loop

condition (Eq 2), i.e. wBc(t), but this time as exafferent input rather than reafferent input i.e.

sensory input depends on Bc not Br and thus is not real-time feedback. The magnitude of the

fluctuations in this condition, again calculated as the autocorrelation peak of the brain variable,

is Peakr = Peakc + Peako � 2 wτ/(wτ −2). Thus, this simple model predicts that even though the

brain receives exactly the same total sensory input in the replay and closed-loop conditions the

amplitudes of fluctuations will not be the same. In particular, if this feedback is negative, we

obtain Peakc< Peako< Peakr, see Fig 1B and 1C and Fig 4A and 4B.

The effect of closed-loop feedback on brain-wide dynamics in a behaving zebrafish. To

test this prediction we turned to a second experimental system, where we reanalyzed two-pho-

ton calcium imaging data recorded from larval zebrafish behaving in a virtual flow simulator,

see introduction and [23] for full details. In this setup fish are immobilized with a neuromus-

cular blocker and fictive water flow is simulated by a grating (striped image) drifting across the

fish retina (Fig 5A). Fictive swim bouts are then simulated by modulating grating speed based

on the power of motor neuron activity (defined as swim power) recorded electrophysiologi-

cally from motor nerve along the spine of the fish [23]. Under natural conditions fish avoid

being swept downstream by executing swim bouts (discrete bursts of swimming activity) in

the direction opposite to water flow. Under VR conditions, oncoming water flow is simulated

by allowing a grating to drift backward, in a tail-to-head direction, across the fish retina. Fish

compensate for this drift with a specific optomotor behaviour in which fictive forward swim

bouts temporally decelerate the grating maintaining their fictive horizontal position over time

[23]. Despite neuromuscular blockade motoneuron firing is relatively normal under these con-

ditions and fictive behaviours compare favourably with natural conditions [23,29]. During this

behavior, visual input to the fish drives recorded motor activity which in turn affects the visual

stimulus constituting a closed-loop feedback between the fish brain and its environment. We

compared data from a closed-loop condition, where the fish actively maintain their position in

the virtual environment, to a replay condition, where the same fish receives a replay of the

closed-loop visual stimulus without real-time visual feedback (Fig 5A). The original work,

[23], utilized the replay condition to identify neurons whose activity were strongly correlated

either with the sensory input or motor output. Instead, here we use the replay condition as a

strong control condition to reveal how neural dynamics are changed by the presence of sen-

sory feedback rather than exafferent sensory input. Notably, one of the strengths of this setup

is that the only information the fish received about oncoming flow was visual, i.e., there was

no proprioceptive input as the fish was paralyzed.

We found that neural activity was significantly different between the closed-loop and replay

conditions despite identical sensory input, see Fig 5B. In particular, we found both the average

magnitude of neural fluctuations and cross-correlations were suppressed in the closed-loop

condition. While individual neurons were heterogeneous across the whole brain, on average

low frequency (0.01–0.15 Hz) fluctuations were suppressed (p = 0.046, sign test) and neurons

were decorrelated (p = 0.005, sign test) under the closed-loop condition compared to the

replay condition (Fig 6A). The changes in the geometric mean of low frequency power and

correlation were highly correlated across simultaneously recorded pairs of cells (r = 0.69,

p<10−10, Spearman’s rank correlation), consistent with the hypothesis that both changes

reflect the strength of sensory feedback. (see Fig 5C). The decorrelation effect was not an
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artifact of measurement noise, which may dominate correlation measures at high frequency,

because the result was robust to the removal of low-level calcium activity by thresholding (see

S3 Appendix).

The clearest difference between the closed-loop and replay conditions was the presence of

sensory feedback suggesting that it plays a causal role. One possibility is that feedback increases

the level of motor activity resulting in an increased efference copy signal which suppresses

Fig 5. Synchronous neural fluctuation are smaller in the presence of closed-loop sensory feedback. a The experimental setup as described in [23]. In the

closed-loop condition the grating stimulus is constructed based on motor nerve recording. In the replay condition the grating stimuli is a replay of stimulus seen

in the closed-loop condition. b, Population averages of logarithmic low frequency power (mean over interval of [0.01 0.15] Hz) (left) and pairwise intra-neural

correlations (right) were both suppressed under the closed-loop condition relative to the replay condition. c, These changes in pairwise correlations and the

geometric mean of log low frequency power (replay–closed) were highly correlated in the recorded neurons.

https://doi.org/10.1371/journal.pcbi.1005926.g005
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Fig 6. Closed-loop sensory feedback predicts suppression of neural fluctuations and correlations. a Schematic interactions of the

brain (each neuron) and the environment (the swim power) are shown under the closed-loop (Bc and Ec) and replay (Br and Er)

conditions. b, The afferent filter (F) and efferent filter (G) were estimated using the replay condition for each neuron by fitting linear

filters (see Materials and Methods), whose population averages, after normalizing to peak amplitudes, are summarized. On average, the

brain positively drove the environment, i.e. neural activity increased swim power (efferent filter G, green line) but the environment

suppressed the brain, i.e., swim power tended to inhibit neural activity (afferent filter F, blue line). By combining these two effects, we

found that self-feedback (H = F�G, orange line, closed-loop feedback) was negative. Behavioural feedback (Ec! Er, black line) is also

strongly negative. c, These filters were then used to predict changes of neural fluctuations under the two conditions. The predicted
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synchronous neural fluctuations [11,26]. However, while motor activity levels were higher in

the closed-loop condition than in the replay condition, the trial-by-trial variation of neural

fluctuations was not explained by the motor activity level. Specifically, increases in motor

activity level were correlated with increases in low frequency power (r = 0.18, p< 10−2, Spear-

man’s rank correlation) and was not significantly correlated with changes in pairwise correla-

tions between cells (r = 0.03, p> 0.5, Spearman’s rank correlation), see S3 Appendix.

We investigated if the strength of the sensory feedback could explain the observed changes

in low-frequency neural fluctuations, as predicted by our theory. Specifically, we asked if the

feedback mediated by the environment, estimated in the replay condition, predicted the degree

to which each neuron is suppressed in the closed-loop condition relative to the replay

condition.

To quantify the interactions between neurons and environmental variable we fitted the data

with linear filters that when convolved with GCaMP fluorescence of individual neurons, B,

best recover environmental variable, E (defined as activity of motor neurons which uniquely

determines the visual stimulus), and vice versa, see Materials and Methods. Specifically, for

each observed neuron, we computed a linear filter, F, that describes how the closed-loop swim

power Ec (as quantified by the activity of motor neurons; a putative environmental variable)

affects replay neural activity Br i.e an afferent filter (Fig 6A, blue solid). We calculated linear fil-

ter, G, that describes how this neural activity Br affects the replay swim power Er, i.e., an effer-
ent filter (Fig 6A, green solid; see Materials and Methods). Note: we refer to the swimming

power as the environmental variable because, in this experimental setup, visual stimulus is

uniquely determined by a simple transformation of the motor nerve activity [23]. It is reason-

able to assume that the same neural circuits characterized by these filters (Fig 6A orange solid)

also operate in the closed-loop condition (Fig 6A orange dashed). Hence, we estimate the sen-

sory feedback for each neuron (Fig 6A, orange dashed) as a filter,H, which is a convolution of

these afferent, F, and efferent, G, filters (see Materials and Methods and Fig 6A, orange solid),

i.e.H = F�G. Note: using the replay condition to fit these filters avoids the potential confound

of calculating independent filters in the closed-loop condition. While these filters are neuron-

dependent, the average peak-normalized filters showed clear net effects, see Fig 6B. On aver-

age, across cells, we found that the afferent filter (Fig 6B, blue line), was net negative, indicating

that the swim-induced visual stimulus on average suppressed neural activity. The efferent filter

(Fig 6B, green line), was strongly net positive, indicating that an increase in neural activity

drove swim behavior. Finally, the convolution of these filters was on average also negative (Fig

6B, red line), peaking at about 1 s. This suggests, that on average, increases in neural activity

self-suppressed after 1 s due to negative feedback. Notably, the negative sensory feedback inter-

actions were also confirmed by a behavioral analysis, in which we calculated the linear filter

that describes how Er affects Ec (Fig 6B, black line), i.e. this represents a quantification of the

behavioural feedback.

changes in each neuron based on the filters exhibited strong correlation with the actual changes. Some neurons (top 10%, red dots)

exhibited strong negative feedback and were suppressed under the closed-loop condition as predicted by our theory. d, The location of

these neurons are overlaid with the morphology of a reference zebrafish, colors as in c. Top panel, side view; bottom panel, top view.

Neurons that have strong negative feedback and reduced neural fluctuations were predominantly located in the cerebellum. e, The naive

estimate of the afferent filter for each neuron in the closed-loop condition (quantified by the Ec! Bc filter, naive afferent) was

qualitatively different from the afferent filter in the replay condition, see dashed and solid blue respectively (inset). However, the

discrepancy was well explained by our theory that accounted for the closed-loop feedback effect (Inset, brown line; see Materials and

Methods). The prediction error ratio (
Rprediction
Rfilter

, see text) was correlated with the degree to which low-frequency power is suppressed during

the closed-loop condition (yellow dots). Cells strongly stabilised by closed-loop feedback were explained well by the prediction (top 10%,

red dots, as in c).

https://doi.org/10.1371/journal.pcbi.1005926.g006
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Next, we considered what the consequence of this negative feedback on each neuron’s activ-

ity would be. Like the whisker system our theory suggests that fluctuations in neural activity

should decrease if a cell receives negative feedback. If this is the case then we should be able to

predict to what extent low frequency power is suppressed from the estimated strength of the

feedback (see Materials and Methods for derivation of this prediction). We found that pre-

dicted degree to which a neuron’s activity was suppressed during the closed-loop condition

relative to the replay condition was highly correlated with what was actually observed

(r = 0.39, p< 10−8, Spearman’s rank correlation, see Fig 6C). To examine the role of ongoing

cycles of feedback in these changes we estimated the degree to which a neuron’s activity would

be suppressed by only a single cycle of feedback loop (see Materials and Methods). We found

that for cells with the largest change in low frequency (i.e. top 10% of log power ratio, replay/

closed) the mean square error of the full feedback prediction was significantly less than that of

the single cycle prediction (p < 0.01, sign test; see Materials and Methods), indicating the

importance of multiple cycles of feedback.

Although the fluctuations in activity in the majority of cells across the fish brain were sup-

pressed by the presence of closed-loop behavior, the top 10 percentile of cells that were both

strongly suppressed and strongly involved in the negative feedback were clustered in the cere-

bellum (Fig 6D), a brain area implicated in sensory-motor planning and coordination [30].

This supports the idea that the cerebellum plays a central role mediating negative closed-loop

interaction between the brain and the environment by converting sensation into action in fish

during optic flow stabilization [31].

Finally, we tested if the interaction between the brain and environment is shaped by closed-

loop feedback. To examine this, we quantified the response of each neuron to sensory input in

the closed-loop condition, i.e., by computing an afferent filter from the closed-loop data with-

out accounting for the feedback loop, a naive afferent filter (see Fig 6A, blue dashed) and com-

pared this with the afferent filter computed in the replay condition (see Fig 6A, blue solid). If

feedback is weak the difference between the two should be small. These two filters were gener-

ally distinct in the observed neurons, but were particularly so for those cells that were strongly

stabilized by feedback (Fig 6E; Inset). To test if the closed-loop interaction could explain this

discrepancy, we theoretically predicted the naive afferent filter based on data from the replay

condition, i.e., using both the afferent and efferent filters (see Materials and Methods). We

found that, on average, this closed-loop effect could account for the discrepancy for the closed-

loop stabilized cells (Fig 6E; Inset). To quantify this for each cell, we calculated the mean

square error between the prediction and naive afferent filter (Rprediction), and the mean square

error between the afferent and naive afferent filter (Rnaive). The performance of the prediction

is then quantified by the prediction error ratio (
Rprediction
Rnaive

). This ratio was significantly less than

one (median = 0.8, p< 10−11, sign test), indicating that the prediction was more accurate

when accounting for the closed-loop effect. It was also positively correlated (r = 0.25, p<10−13,

Spearman’s rank correlation) with the degree to which individual cells were stabilized in the

closed-loop condition (Fig 6E). Altogether, these results indicate that neural dynamics, as well

the relationship between sensory stimulus and behavior, not only depend on brain circuits,

but are also dynamically shaped by the mutual interaction between the brain and the

environment.

Discussion

In this study we proposed the idea that negative closed-loop sensory feedback during active

behavior reduces network gain, which in turn, suppresses synchronous neural fluctuations
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and modulates sensory responses. We supported this with modelling and data analysis in the

whisker system and in a behaving zebrafish, see summary Fig 7. The formal component of our

theory, i.e., that closed-loop sensory feedback can modulate a system’s gain, is well docu-

mented in dynamical systems theory and control theory [32,33]. This gain control occurs even

though the pathways mediating feedback are purely additive (c.f. Eqs 1 and 2; i.e., effectively

repeated cycles of feedback accumulate over time and produce a multiplicative effect). Thus, a

constitutively active closed-loop feedback that mediates action-perception cycles is essential

for the form of gain control we propose. This means that discrete and intermittent involve-

ment of reafferent input does not imply gain modulation. For example, the classical reafference

principle explains neural responses by a one-time detection of the mismatch between an effer-

ence copy (predicted) and reafferent (actual) input [16]. However, this situation is likely an

inaccurate idealization to describe the closed-loop systems studied here. For example, in the

zebrafish system, swim bouts typically occur every 700 ms and this interval closely overlapped

with the peak of the estimated sensory feedback interaction (Fig 6B). Hence, the neural

responses in the fish experiment suggest a more dynamic system, where neural activity evoked

by many cycles of action and sensation are continuously and mutually interacting.

The idea that closed-loop feedback is central to cognition is not new and has early prece-

dents in behavioral psychology [19], resonate with a movement in embodied cognitive science

[18,34,35] and has recently been proposed as concrete alternative to input/output conception

of perceptual processing [17,36]. Our work shares the view of these proposals and provides a

specific example where brain function is contingent on closed-loop interactions between

brain/body/environment. Furthermore, we provided a mathematical model showing why neu-

ral dynamics underlying cognitive states cannot be recapitulated even if the sensory input dur-

ing active behavior is identically repeated, i.e., a replay condition [37].

Fig 7. A summary of the experimental systems studied. Closed-loop sensory feedback (Top) explains neural activity

in both systems, as summarized in the table (Bottom).

https://doi.org/10.1371/journal.pcbi.1005926.g007
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The presence of continuous negative closed-loop sensory feedback during active behavior

is fundamental for our theory. In our rodent study we assumed negative closed-loop sensory

feedback was mediated directly by a cortical-whisker circuit. However, our theory is agnostic

to the detail of the neural implementation and several other schemes are possible (see S2

Appendix). This assumption is consistent with the idea that the barrel cortex comprises a

nested set of servo control loops that regulate various aspects of whisker dynamics [22]. At the

level of the whole vibrissa system multiple parallel and nested feedback loops both positive and

negative most likely exist [22].

In zebrafish, the presence of negative feedback during swimming behavior is a priori neces-

sary for optic-flow stabilization behavior because the fish must act in opposition to perceived

optic flow in order to minimize horizontal displacement [38,39]. Interestingly, neurons that

received strong negative feedback and were substantially stabilized were located in the cerebel-

lum (Fig 6D). This is consistent with the theoretical viewpoint that the cerebellum is strongly

involved in the action-perception cycle [40–42].

We suggest that closed-loop sensory feedback plays a major role in brain state control.

However, importantly, we do not propose this mechanism is mutually exclusive with other

mechanisms, such as thalamo-cortical input [25] or neuromodulation [10,43,44] because brain

state transitions also occur in the absence of sensory feedback e.g., the onset of running that

does not change the visual input [3,45], during sleep [46,47], or by dissection of the sensory

nerve [5,25]. Mechanisms underlying brain state transitions are likely to be redundant and

occur even in the absence of mechanisms, such as thalamo-cortical input [25] or corollary dis-

charge [26], albeit involving further delay (see S1). Such functional redundancy may help to

maintain the stability of brain state [44,48,49]. Furthermore, the relative importance of internal

and external mechanisms might adaptively change in an experience-dependent manner [50].

In the whisking model, we proposed that the regulation of cortical gain by closed-loop sen-

sory feedback could explain enhanced active touch. Specifically, negative sensory feedback

during whisking reproduces suppressed fluctuations and reduces responses to passive whisker

stimulation (see Figs 2 and 3). Moreover, robust neural response to active touch events could

be explained by the interruption of this feedback when the whisker is driven into an external

object. These interruptions transiently release the cortex from a low gain state and enhancing

sensory responses to salient sensory stimuli. This mechanism for active touch contrasts with

the account of sensory processing suggested by the reafference principle [16], which postulates

that motor efference is discounted from sensory input, allowing animals to sense exafferent

signals (externally caused sensory input) without being confounded by the consequences of

their own motor actions. In contrast, our theory suggests that the sensory system is insensitive

to pure exafference during active sensing [4]; see Fig 3, but sensitive to the interruption of reaf-

ference which may allow animals to focus attention on the consequences of their own motor

actions. This idea is supportive of other work that has cast doubt on the role of efference copy

during active sensing [51]. This mechanism is also distinct from the most common form of

predictive coding [52], where neural activity represents the error between the actual and the

brain’s prediction of sensory input. Instead our suggestion could be viewed as a more specific

form of predictive coding where neurons represent predictions errors about consequences of

motor actions, in this sense it is closer to the idea of active inference [53,54].

While it is straightforward to generalize this sensory mechanism to other tactile systems, its

implication for other modalities is less clear. However, in theory, closed-loop sensory feedback

could be interrupted anywhere along the action-perception cycle, thus dynamically regulating

neural gain. The timely interruption of this feedback, possibly related to transient freezing of

behavior, could serve as a general mechanism for temporarily accentuating neural responses

against a background of reduced noise. For example, closed-loop sensory feedback could be
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gated by the frequency of miniature eye movements [55] a hypothesis that complements a pre-

vious proposal suggesting such movements are under active closed-loop control [56]. Further-

more, cerebellum neurons, which are strongly involved in the sensory-motor cycle, could be

suppressed in anticipation of salient sensory events by a relevant brain area, such as the reticu-

lar formation [31,57].

The importance of using naturalistic sensory stimuli to study and manipulate brain state

dynamics is widely demonstrated [58]. However, an important prediction of our theory (Fig

4), supported by our experimental findings is that brain dynamics during active sensing cannot

be fully recapitulated or re-encoded, even if the same sensory input is precisely recorded and

replayed back into a passive brain. These results provide evidence that brain state during active

behaviors can only be accurately understood by a quantitative account of ongoing brain-envi-

ronment interactions [18].

Material and methods

A whisking model

To investigate the ‘in principle’ feedback between barrel cortex and whiskers we model a sim-

ple cortical circuit that interacts with a single whisker, see Fig 2A. Our cortical circuit com-

prises of N excitatory and N inhibitory neurons (i = 1. . .N are excitatory and i = N+1,. . ., 2N
are inhibitory, N = 100) modeled as a linear dynamical system by,

_xi ¼ � xi þ
P2N

j¼1
wijxj � ai � wxyyp þ xi þ I;

which is numerically simulated by a Euler forward integration method with time-bin dt = 0.5

ms. Hereafter, all time derivatives are taken to represent single-step differences divided by dt
(e.g. _xðtÞ ¼ ½xðt þ dtÞ � xðtÞ�=dtÞ, but we omit the ms time unit. wij is the synaptic strength

from neuron j to i, ai is an adaptation current described below, θp is the whisker protraction

angle interacting with neurons with weight wxθ = 0.002, I is exafferent input that takes

I = 0.035 upon whisker stimulation and otherwise zero, and ξi is independent white noise of

unit variance added to each neuron. We interpret xi as both the firing rate and membrane

potential, assuming a roughly linear relationship between the two. Entries in the connectivity

matrix are assigned as wij = bijJ + b0ijg for excitatory synapses (j = 1. . ., N) and wij = −b@ijg for

inhibitory synapses (j = N + 1,. . .,2N), where bij, b0ij, b@ij are all random binary values that take

b0 > 0 with probability p = 0.1 and 0 with probability 1 − p, respectively. The weights are scaled

by J ¼ 1

pN and g ¼ g0p
2Npð1� pÞ, so that dynamics are insensitive to the parameter values of p and N.

Note that the eigenvalue spectrum of the connectivity matrix wij is centered around b0 and

spread with the radius b0g0 in the limit of large N. Hence, the network is excitation dominated.

The variability of weight values across neurons is controlled by the magnitude b0g0 of the excit-

atory-inhibitory-balanced component and this variability is controlled by the parameter g0 =

0.05, which reproduces highly synchronized up/down-like fluctuations during the quiet state.

To promote significant network fluctuations observed in the barrel cortex we scale of the con-

nectivity matrix b0 such that the lead eigenvalue of this matrix is close to unity (� 0.975 and

the dynamics are close to instability. We include an adaptation current that gives these fluctua-

tions a low frequency (ca. 1 Hz) component modelling up/down-like oscillations [59–61] in

the absence of neuron/whisker interactions. The adaptation current is integrated as

_ai ¼ � 0:07ai þ 0:008xi

Over time, the adaptation variable slowly builds upon neural activity and suppresses neu-

rons, resulting in the ca. 1-Hz oscillation. Consequently, in the absence of interactions with the
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whisker, implemented by setting wxθ = 0, this simple network reproduces the power spectrum

and cross-correlogram of neurons in the barrel cortex [5,6], see Fig 2B and 2C.

We model a simple flexible vibrissa as two hinged sections (with bending angle θh) con-

nected at the base (with protraction angle θp to the body) of unit length which are constrained

by simple torsion springs with spring constant k1 and k2 respectively, see Fig 2A. We assume

the whisker is light and frictionless and simulated it by numerically minimising the energy of

the system,

E ¼ k1ðyp � yeqÞ
2
þ
k2

2
y

2

h;

where θeq equilibrium value of the base spring. Here, only the ratio k1/k2 is important for the

results and, without losing generality, we set k1 = 1. The central hinge spring has an equilib-

rium value of zero angular displacement and thus tends to align both sections. Whisking is

driven both by the cortex and a central a pattern generator (CPG) [62]. Specifically, the equi-

librium value of the base spring, θeq is set as,

_yeq ¼ � 0:93yeq þ
wyx

N

XN

i¼1

xi þ u;

where the second term on the right-hand side is the sum of activity in the cortical excitatory

population and the third term is the external CPG activity. Here u is modeled as simple sto-

chastic oscillator, given by

_u ¼ � :98uþ 2pFwhiskv þ xu

_v ¼ � :98v � 2pFwhiskuþ xv;

where Fwhisk = 10Hz is the frequency of the oscillator and ξu, ξv are independent Gaussian

white noise. wθx = 0.085 describes the relative strength of the cortex versus the CPG in driving

the whisker variable. With this parameter, the whisker is mainly driven by the CPG and is only

modulated by cortical activity. In this model, most excitatory neurons respond to whisker

retraction and drive whisker protraction. Adding a separate counterpart population that

responds to whisker protraction and drives whisker retraction in a similar manner does not

change the model’s behavior.

We simulate a passive deflection of the whisker by a brief injection of input of I = 0.035 to

the cortical neurons for c.a 25 ms. The magnitude of this input approximately matches the

evoked change over the standard deviation of the membrane potential (DVm=sVm) in response

to magnetic whisker deflection during the whisking condition [5].

Contact events are simulated by simulating a horizontal solid wall is placed above the whis-

ker (1 unit length away). To simulate contact with the wall we solve the energy equation sub-

ject to the length constraint in the vertical direction,

sinðypÞ þ sinðyp � yhÞ < 1:

Thus, as the whisker collides with the wall it deforms accordingly, see Fig 2A. By adjusting

the relative stiffness of each torsion spring (i.e. k2/k1), we can control the degree to which the

protraction angle is affected by contact events, e.g., if the whisker is very flexible, the protrac-

tion angle will change continuously, despite contact of the tip. During contact we also inject an

input (I = 0.035) to the cortical neurons for the duration of the contact event, but for no longer

than 25 ms to simulate contact-detection signal that results from the stereotypical response of
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pressure sensitive cells in the trigeminal ganglion [27]. The model was run for 200 s in the

closed loop, open-loop, and sustained period of active touch to calculate all quantitative

measures.

Quantifying signal-to-noise in the whisking model

To quantify the discriminability of whisker contact events we calculated an information theo-

retic measure of generalized signal-to-noise-ratio. Specifically, we calculated the Chernoff dis-

tance [63–65] between probability distributions, p1(x) and p0(x), in the presence or absence of

a sensory event, respectively. Specifically, this measure

Cðp1 k p0Þ � � min
0<l<1

log
Z

p1
lðxÞp0

1� lðxÞdx

summarises the detectability of whisker stimulation based on population responses and, unlike

a naive calculation of signal-to-noise ratio, is applicable even when p1(x) and p0(x) are very dif-

ferent distributions. For our model, the probability distribution for each condition is well

described by a Gaussian distribution,

p0=1 xð Þ ¼ j2pC0=1j
� 1=2exp

� 1

2
x � m0=1

� �
C0=1

� 1 x � m0=1

� �� �

;

where C0/1 and μ0/1 are covariance matrix and vector of means, respectively, in the presence

(with subscript 1) or absence (with subscript 0) of a sensory event. By substituting this into the

expression for Chernoff distance and employing the Gaussian integral identity and expressing

the Chernoff distance in terms of C0, C1, and μ0, μ1, we calculate the covariance and mean

between a small number of neurons (here three), randomly selected from the cortical network

described above. We calculate covariance’s across ensembles of 500 networks every 10 ms for a

period of 1 s, starting at the onset of the sensory event. Minimization with respect to λ is com-

puted numerically.

Zebrafish experimental data

In a transgenic fish expressing the calcium indicator GCaMP2 brain-wide calcium activity was

monitored using a two-photon microscope to scan single planes in the brain. We analyzed the

calcium signal (ΔF/F) at various sample frequencies (ca. 2−3 Hz) across 1908 cells in 32 fish,

see [23] and electrical recordings of swim power. We analyzed data taken from a 6-min

recording of 1−6 prominent calcium sources per fish, putative neurons, across 600 trials. In

the first 3 min, the fish performed the closed-loop optomotor behavior. For the subsequent 3

min, each fish was presented with the stimulus received in the closed-loop stimulus which is a

repeat of what the animal experienced in the previous 3 min, the replay condition.

In the original study, the gain (i.e., the multiplicative factor between fictive swim power,

and the speed of visual feedback) was alternated between a high and low gain condition every

30 s. This gain alternating protocol is not relevant to the current study. To reduce this variabil-

ity in data, we subtracted the mean activity level in each gain setting in our analysis (from both

brain and behavior variables). Notably, our main results were qualitatively the same, even

without such subtraction of the means.

Zebrafish data analysis

We distinguish variables in the closed loop condition (Bc and Ec) and replay condition (Br and

Er), see Fig 5B. Specifically, we assume that the closed-loop dynamics in the frequency domain
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are described by the following equations,

BcðoÞ ¼ FðoÞEcðoÞ þ RBcðoÞ ð4Þ

EcðoÞ ¼ GðoÞBcðoÞ

where F(ω) is an afferent filter describing the interaction from the environment to the brain

(i.e., the Ec! Bc filter, see Fig 5B dashed blue arrow) and G(ω) is an efferent filter from the

brain to the environment (i.e., the Bc! Ec filter, see Fig 5B dashed green arrow), respectively,

and RBcðoÞ is the residual inputs not accounted of by the filters. Note: we have assumed that

the noise on the environment is negligible, this is a reasonable assumption given that visual

flow is directly modulated by motor nerve activity. Similarly, we also write the replay dynamics

in the frequency domain as,

BrðoÞ ¼ FðoÞEcðoÞ þ RBrðoÞ ð5Þ

ErðoÞ ¼ GðoÞBrðoÞ:

In the replay condition, neurons are driven by the recorded visual stimulus in the closed-

loop condition, which is determined by fish’s motor activity in the closed-loop condition Ec.
Note: we have made the assumption that F(ω) and G(ω) are the same filter in the both condi-

tions (i.e., the interactions with the same color in Fig 6A have the same property) because the

sensory and motor circuits in the brain remain the same between the conditions.

We use Eq 5 in the replay condition to fit the linear filters F(ω) and G(ω) because the com-

putation would be more involved in the closed-loop condition than the replay condition. We

first calculate linear filter F (Fig 6A, solid blue arrow) that minimizes the mean square error

between the observed variable Br and the convolution F � Ec over time. Next, we determine G
(t) by first calculating the residual variability of neural activity in the replay condition that can-

not be accounted for by the closed-loop environment, i.e., RBr ðoÞ ¼ BrðoÞ � FðoÞEcðoÞ and

subsequently calculating how RBr drives the environment in the replay condition Er, effectively

determining the Br! Er interaction (Fig 6A, solid green arrow). The filters were constrained

as a superposition of Laguere functions. We use Laguere functions up to the order that best sat-

isfied the Akaike Information Criterion [66]. Almost all filters had an order that was mid-

range between 1 and 15. The Ec! Br! Er interaction (Fig 6A solid orange arrow) is then

straightforwardly computed by the convolution of both filters,H(ω) = F(ω)G(ω). Based on the

assumption that the filters are the same in the two conditions, we assume that self-feedback in

the closed-loop condition (Fig 6A, dashed orange arrow) is the same asH(ω).

In our investigation, we calculated the ratio of the low frequency power of neural fluctua-

tions between the closed-loop and replay conditions. We then compare this empirical ratio

with the theoretically expected ratio based on the estimated filters. To derive this theoretically

expected ratio, we write the dynamics of neural activity in the closed- and replay conditions in

the frequency domain as,

Closed� loop : BcðoÞ ¼ HðoÞBcðoÞ þ RBcðoÞ ¼ ð1 � HðoÞÞ
� 1RBcðoÞ

Replay : BrðoÞ ¼ HðoÞBcðoÞ þ RBr ðoÞ;

whereH(ω) = F(ω)G(ω) is the estimated combined filter in the frequency domain and we

assume the noise in the closed- and replay conditions have the same power spectrum, i.e.,
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RBcðoÞ
2
¼ RBr ðoÞ

2
. The ratio of the power between each condition is then,

BcðoÞ
2

BrðoÞ
2
¼

1

HðoÞ2 þ 1 � HðoÞ2
:

We also investigated the effect of accumulative cycles of feedback on brain dynamics by

comparing the full closed-loop effect with a control effect that includes only one-time feed-

back. Namely, we can expand the contribution of each cycle in a geometric series as

BcðoÞ ¼ ð1 � HðoÞÞ
� 1RBcðoÞ ¼ ð1þHðoÞ þ H

2ðoÞ þ H3ðoÞ � � �ÞRBcðoÞ

where the O(Hn) term in the above Taylor expansion describes the effect from signal propaga-

tion along the feedback loop for n times. By neglecting the contributions with n>1, we can

write the effect of a single cycle of feedback effect as,

B1ðoÞ ¼ ð1þHðoÞÞRBcðoÞ:

This yields an alternative expression for the ratio of the power between each condition that

only includes one-time effect of feedback as,

B1ðoÞ
2

BrðoÞ
2
¼

1

HðoÞ2 þ 1þHðoÞ� 2
:

To further investigate how the effective interaction between the brain and the environment

depends on the closed-loop feedback, we compare Ec! Br filter in the replay condition and

the Ec! Bc filter in the closed-loop condition naively computed by neglecting closed-loop

effects. Notably, the naïve Ec! Bc filter in the closed-loop condition generally has an acausal

component, because the brain Bc and the environment Ec are mutually interacting (see below).

Thus to calculate these filters we use Hermite rather than the Laguere functions to capture the

acausal (t<0) side of the filter. To quantify the difference between these filters, using Eq 4, we

write

EcðoÞ ¼ ð1 � HðoÞÞ
� 1
ðGðoÞRBcðoÞÞ;

and thus the naive Ec! Bc filter in the closed-loop condition is

BcðoÞEc
�ðoÞ

EcðoÞEc
�ðoÞ

¼ F oð Þ þ
EcðoÞR�BcðoÞ
EcðoÞEc

�ðoÞ

� ��

¼ F oð Þ þ
GðoÞ

1 � HðoÞ

� �� jRBcðoÞj
2

jEcðoÞj
2

where � describes complex conjugate. Hence, this filter is different from the corresponding fil-

ter F(ω) in the replay condition by the second term. To predict the second term without know-

ing RBc, we again assume jRBcðoÞj
2
� jRBrðoÞj

2
, where the latter spectrum is based on the

residual RBr computed in the replay condition.
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