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Abstract: Developing therapeutics that induce apoptosis in cancer cells has become an increasingly
attractive approach for the past 30 years. The discovery of tumor necrosis factor (TNF) superfamily
members and more specifically TNF-related apoptosis-inducing ligand (TRAIL), the only cytokine
of the family capable of eradicating selectively cancer cells, led to the development of numerous
TRAIL derivatives targeting death receptor 4 (DR4) and death receptor 5 (DR5) for cancer therapy.
With a few exceptions, preliminary attempts to use recombinant TRAIL, agonistic antibodies,
or derivatives to target TRAIL agonist receptors in the clinic have been fairly disappointing.
Nonetheless, a tremendous effort, worldwide, is being put into the development of novel strategic
options to target TRAIL receptors. Antibodies and derivatives allow for the design of novel and
efficient agonists. We summarize and discuss here the advantages and drawbacks of the soar
of TRAIL therapeutics, from the first developments to the next generation of agonistic products,
with a particular insight on new concepts.
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1. Introduction

One of the most prominent hallmarks of cancer cells is their ability to escape apoptosis,
a programmed cell death process that occurs both during embryonic development and in adults,
to remove unwanted cells [1]. Attempts to induce tumor cell death drove intense worldwide research,
starting from conventional chemotherapy in the mid-20th century [2] to novel selective approaches,
including targeting of TNF (tumor necrosis factor alpha) receptor superfamily members. As early
as 1975, the discovery that TNF exhibits potent killing properties [3] unveiled the identification of
endogenous cytokines displaying antitumoral properties. Unfortunately, TNF presented significant
inflammatory toxicity in clinical trials [4]. In the late ‘80s, the independent discovery of two monoclonal
antibodies, α-APO-1 and α-Fas [5,6], able to trigger apoptosis and induce tumor regression, fostered
major interest in the identification of TNF-related family members [7,8], including receptor Fas/CD95,
to which α-APO-1 and α-Fas bind specifically. Several other homologous proteins, displaying
pro-apoptotic properties, have soon after been discovered, such as FasL, the Fas/CD95 cognate ligand,
or TRAIL (TNF-related apoptosis inducing-ligand) and its agonist receptors [7,9–13]. While FasL or
antibodies targeting Fas/CD95 exhibit potent pro-apoptotic capabilities, their use in the clinic was
early compromised by the finding that the α-Fas monoclonal antibody induces fulminant and lethal
hepatotoxicity in vivo [14]. On the contrary, however, TRAIL, early on, was found to be safe in animal
models, and to display tumoricidal activity [15].
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TRAIL, also known as Apo2 ligand, is a TNF family member discovered in 1995 [9]. This type
2 transmembrane protein has attracted the interest of scientists because of its capacity to specifically
engage apoptosis of tumor cells, regardless of their P53 status [16]. TRAIL can induce programmed
cell death in a wide range of cancer cells without harming normal tissues, thus exerting limited
toxicity [17]. This specificity makes it a very promising anticancer agent. The other main advantage
of TRAIL is its independence towards P53, a tumor suppressor gene, whose integrity is, most of the
time, essential for conventional chemotherapeutic drugs to cure patients suffering from cancer [2].
Keeping in mind that mutations or alterations of P53 are often occurring during oncogenesis and
associated with resistance to chemotherapy, TRAIL has thus been suggested to be able to exert its
tumoricidal activity in a broader scope. TRAIL is present as a trimer at the cell surface of activated
immune cells, where it plays an important role in tumor and viral immune surveillance [18–20].
Together with the soar of biopharmaceuticals and biotechnology engineering, the finding that a natural
cytokine, such as TRAIL, could induce selective tumor cell death prompted great optimism to find the
“magic bullet” to cure cancer. While the first generation of TRAIL agonist compounds did not present
clinical efficacy [16], recent studies on TRAIL signal transduction allowed a better understanding of
its machinery and requirements, leading to the development of a tremendous number of derivatives
displaying increased pharmacokinetics and efficacy, including single-chain variable antibody fragment
(scFvs), bispecific antibodies, chimeric antibody receptors (CARs) or conjugated derivatives, all of
which are discussed in this review.

2. Apoptosis Induced by TRAIL

TRAIL induces cell death by binding to its agonist receptors. To date, five TRAIL receptors
have been identified in humans: DR4, DR5, DcR1, DcR2, and osteoprotegerin (OPG) (Figure 1).
These receptors, like all members of the TNF super family, are characterized by an extracellular domain,
rich in cysteines [21], which are essential for the binding of their cognate ligand. Only two of them,
DR4 and DR5, harbor the death domain (DD), a stretch of ~90 amino acids (aa), required and sufficient
to activate the apoptotic machinery; they consequently represent promising targets for cancer treatment.
DR4, is a N-glycosylated protein of 468 aa, also known as tumor necrosis factor receptor superfamily
member 10A, CD261, Apo2, TNF-related apoptosis-inducing ligand receptor 1, and TRAILR-1 [22,23].
DR5 is O-glycosylated [24]. It is also known as tumor necrosis factor receptor superfamily member
10B, CD262, Killer/Ly98, TNF-related apoptosis-inducing ligand receptor 2, TRICK2A, and TRICKB.
Although DR5 can be found as two isoforms, DR5a (411 aa) and DR5b (442 aa), their specific or
differential functions remain, to date, unknown. DR4 and DR5 share 58% similarity in their extracellular
domain and 65% similarity in their intracellular domain [10] (Figure 2A). The other receptors to which
TRAIL is able to bind are DcR1 (antagonist decoy receptor for TRAIL/Apo-2L, lymphocyte inhibitor
of TRAIL, TNF-related apoptosis-inducing ligand receptor 3, TRAIL receptor 3, tumor necrosis factor
receptor superfamily member 10C, CD263, lymphocyte inhibitor of TRAIL (LIT), tumor necrosis
factor receptor superfamily, member 10C, decoy without an intracellular domain, TRAIL-R3), DcR2
(TNF-related apoptosis-inducing ligand receptor 4, TRAIL receptor 4, TRAIL receptor with a truncated
death domain (TRUNDD), tumor necrosis factor receptor superfamily member 10D, CD264, tumor
necrosis factor receptor superfamily, member 10D, decoy with truncated death domain TRAIL-4),
and OPG (osteoprotegerin, osteoclastogenesis inhibitory factor, TR1, tumor necrosis factor receptor
superfamily, member 11B). These receptors cannot induce intracellular death signals, and are suspected
to act mostly in normal tissues as decoy receptors for the retro control of TRAIL-mediated apoptosis [25].
Whereas DcR1 is a glycosylphosphatidylinositol (GPI) anchor receptor which is completely devoid
of death domain, DcR2 possesses an intracellular domain but harbors a non-functional truncated
death domain. OPG is the only antagonist receptor harboring a complete death domain, but it is
expressed as a soluble receptor, due to the absence of transmembrane domain, and is therefore unable
to transduce apoptosis. Nonetheless, like DcR1 and DcR2, albeit to a lower extent, OPG is able to
compete for TRAIL binding, and impair TRAIL-induced cell death. Its binding affinity with TRAIL,
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though, is much weaker than DR4, DR5, DcR1, or DcR2 [26,27]. Moreover, OPG exhibits strong
binding affinity with Receptor activator of NK-kappa-B ligand (RANKL), and plays a prominent role
in osteoclastogenesis [28,29]. Contrary to DR4 and DR5 [30–33], DcR1, DcR2, or OPG have been found
to be expressed in normal tissues, but are rarely found in tumor cells [34–36].
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Figure 1. Schematic representation of TRAIL receptors. TRAIL-R1/death receptor 4 (DR4), TRAIL-
R2/death receptor 5 (DR5), act as agonistic receptors, owing to their intracellular death domain (DD), 
through which they transmit an apoptotic signal. The other two membrane receptors, TRAIL-
R3/decoy receptor 1 (DcR1) and TRAIL-R4/decoy receptor 2 (DcR2), act as antagonistic/regulatory 
receptors, due to their lack of functional DD. Osteoprotegerin (OPG), contains a DD, but is unable to 
trigger apoptosis as it lacks a transmembrane domain (TM), and is therefore a soluble receptor. DR4 
and DR5 have been found to be N- and O-glycosylated, respectively [22–24]. DcR1, DcR2 and OPG, 
alike, as most members of the TNF superfamily [37], contain putative glycosylation sites, which are 
depicted as blue stars or red triangle. The size of these receptors is shown on the right-hand side. 

As mentioned above, TRAIL is naturally found as a trimer. It contains an unpaired cysteine 
residue in position 230, where other ligands of the family have a disulfide bridge that is essential for 
both stability of the trimer and pro-apoptotic activity [38]. Binding of TRAIL to its receptors induces 
their oligomerization [38]. Multimerization of agonist TRAIL receptors at the cell surface is the first 
critical event determining whether apoptosis will be fully triggered or not [39,40]. It is worth 
mentioning here that N- and O-glycosylation of DR4 and DR5, respectively, were found to be 
required for proper aggregation of these receptors and execution of apoptosis through recruitment 
of TRAIL DISC (death-inducing signaling complex) machinery [22,24]. Binding of TRAIL to DR4 and 
DR5, allow homotypic death domain (DD)-dependent recruitment of the adaptor protein Fas-
associated death domain protein (FADD) and subsequent interaction with the pro-caspase-8, also 
associating within the DISC through death-effector domain homotypic interactions (see Shirley et al. 
for a comprehensive review [41]). 

Figure 1. Schematic representation of TRAIL receptors. TRAIL-R1/death receptor 4 (DR4), TRAIL-R2/death
receptor 5 (DR5), act as agonistic receptors, owing to their intracellular death domain (DD),
through which they transmit an apoptotic signal. The other two membrane receptors, TRAIL-R3/decoy
receptor 1 (DcR1) and TRAIL-R4/decoy receptor 2 (DcR2), act as antagonistic/regulatory receptors,
due to their lack of functional DD. Osteoprotegerin (OPG), contains a DD, but is unable to trigger
apoptosis as it lacks a transmembrane domain (TM), and is therefore a soluble receptor. DR4 and
DR5 have been found to be N- and O-glycosylated, respectively [22–24]. DcR1, DcR2 and OPG, alike,
as most members of the TNF superfamily [37], contain putative glycosylation sites, which are depicted
as blue stars or red triangle. The size of these receptors is shown on the right-hand side.

As mentioned above, TRAIL is naturally found as a trimer. It contains an unpaired cysteine
residue in position 230, where other ligands of the family have a disulfide bridge that is essential
for both stability of the trimer and pro-apoptotic activity [38]. Binding of TRAIL to its receptors
induces their oligomerization [38]. Multimerization of agonist TRAIL receptors at the cell surface is
the first critical event determining whether apoptosis will be fully triggered or not [39,40]. It is
worth mentioning here that N- and O-glycosylation of DR4 and DR5, respectively, were found
to be required for proper aggregation of these receptors and execution of apoptosis through
recruitment of TRAIL DISC (death-inducing signaling complex) machinery [22,24]. Binding of
TRAIL to DR4 and DR5, allow homotypic death domain (DD)-dependent recruitment of the
adaptor protein Fas-associated death domain protein (FADD) and subsequent interaction with the
pro-caspase-8, also associating within the DISC through death-effector domain homotypic interactions
(see Shirley et al. for a comprehensive review [41]).
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Figure 2. Schematic representation of the amino acid composition of TRAIL agonist receptors and 
crystallographic structure of the TRAIL/receptor complexes. (A) Alignment of DR4, DR5a, and DR5b. 
Sequence identity is shown. Orange and red patches correspond to shared surface residues; (B) 
Surface representation of trimeric TRAIL with DR4 and DR5 from the crystallographic structures 
1D4V [42] and 5CIR [43], respectively. Top and side views are shown. Shared surface residues 
between DR4 and DR5 are shown by the two patches (orange and red). Buried or non-shared residues 
are shown in grey. In the trimeric representations, TRAIL monomers are shown as cornflower, 
medium, and dark blue. DR4 or DR5 monomers are shown in grey. DR4 and DR5 N-glycosylation 
and O-glycosylation sites are depicted with the following symbols # and *, respectively. 

Formation of TRAIL DISC complex allows activation of caspase-8, and leads to the release, into 
the cytosol, of its functionally active subunits, enabling the cleavage of effector caspases, caspase-3 
and caspase-7, whose activation by cleavage trigger execution of the apoptotic program (Figure 3). 
Depending on the cellular context and in particular, expression levels of inhibitors of this pathway, 
such as DcR1, DcR2, c-FLIP (cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory 
protein), cIAP1, cIAP2, Bcl-2 (B-cell lymphoma 2) or Mcl-1 (myeloid cell leukemia 1), to cite a few, 
this proteolytic cascade ultimately leads to apoptosis, and to the specific killing of tumor cells bearing 
TRAIL agonist death receptors (DRs). When activation of the caspase-8 is not sufficient, some cells 

Figure 2. Schematic representation of the amino acid composition of TRAIL agonist receptors and
crystallographic structure of the TRAIL/receptor complexes. (A) Alignment of DR4, DR5a, and DR5b.
Sequence identity is shown. Orange and red patches correspond to shared surface residues; (B) Surface
representation of trimeric TRAIL with DR4 and DR5 from the crystallographic structures 1D4V [42]
and 5CIR [43], respectively. Top and side views are shown. Shared surface residues between DR4 and
DR5 are shown by the two patches (orange and red). Buried or non-shared residues are shown in grey.
In the trimeric representations, TRAIL monomers are shown as cornflower, medium, and dark blue.
DR4 or DR5 monomers are shown in grey. DR4 and DR5 N-glycosylation and O-glycosylation sites are
depicted with the following symbols # and *, respectively.

Formation of TRAIL DISC complex allows activation of caspase-8, and leads to the release,
into the cytosol, of its functionally active subunits, enabling the cleavage of effector caspases,
caspase-3 and caspase-7, whose activation by cleavage trigger execution of the apoptotic program
(Figure 3). Depending on the cellular context and in particular, expression levels of inhibitors of this
pathway, such as DcR1, DcR2, c-FLIP (cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory
protein), cIAP1, cIAP2, Bcl-2 (B-cell lymphoma 2) or Mcl-1 (myeloid cell leukemia 1), to cite a few,
this proteolytic cascade ultimately leads to apoptosis, and to the specific killing of tumor cells
bearing TRAIL agonist death receptors (DRs). When activation of the caspase-8 is not sufficient,
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some cells coined type II cells [44], are nevertheless able to amplify the pro-apoptotic signal through
mitochondria. Also known as the intrinsic pathway, the mitochondrial pathway involves the formation
of a soluble macromolecular complex known as the apoptosome [45]. This pathway, usually activated
by DNA-damaging agents such as chemotherapeutic drugs, is tightly regulated by Bcl-2 proteins
(see Jacquemin et al. [46]). Its activation upon TRAIL stimulation is brought by the cleavage of Bid,
a BH3-only protein of the Bcl-2 family, and by caspase-8 (Figure 3), leading to cytochrome c release
and to the association of pro-caspase-9 with Apaf-1 to form the apoptosome. Activation of caspase-9,
in turn, results in the cleavage and activation of caspase-3 and apoptosis.
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6xHis, LZ, collagen, tenascin C, or Ig-Fc) [15,61–63] to increase or restore TRAIL-killing capabilities (see 
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is superior to DR5 in transducing apoptosis upon 6xHis-TRAIL binding [56], but also to “membrane-

Figure 3. Simplified schematic representation of the main events regulating TRAIL-induced apoptosis.
DR4 and DR5 agonistic receptors are able to recruit FADD and caspase-8 upon TRAIL stimulation,
leading to apoptosis (see text for detail). In the presence of antagonist receptors, TRAIL-induced cell
death is restrained, either due to competition for TRAIL binding (DcR1 and OPG) or steric hindrance,
leading to reduced caspase-8 activation (DcR2, see Merino et al., 2006 [47], and Shirley [41]). Within the
cytoplasm, the inhibitor c-FLIP, as well as Bcl-2 family members, can also restrain caspase activation
and apoptosis, leading to cell resistance to TRAIL-induced cell death [48].

Endogenous TRAIL is naturally found associated with membranes of activated immune cells,
and as such, is extremely potent in inducing apoptosis of unwanted cells [25,49–52]. Like most
members of the TNF superfamily, TRAIL can be cleaved from the membranes by proteases, including
cathepsin E [37], and like recombinant soluble TRAIL trimers, with the exception of a few preparations,
soluble TRAIL (sTRAIL) is not able to trigger apoptosis [53–56]. To obtain biologically active TRAIL,
researchers have had to use a number of strategies ranging from stabilization of the trimer with zinc [57],
production of single chains [58,59], permutation of the ligand (circularly permuted TRAIL, CPT) [60],
or fusion of particular amino acid or protein structures to TRAIL (i.e., 6xHis, LZ, collagen, tenascin C,
or Ig-Fc) [15,61–63] to increase or restore TRAIL-killing capabilities (see Figure 4). Importantly,
irrespective of the biological potential of TRAIL, as both DR4 and DR5 are equally able to bind
TRAIL and recruit caspase-8 within the DISC, recent evidence indicates that DR4 is superior to
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DR5 in transducing apoptosis upon 6xHis-TRAIL binding [56], but also to “membrane-like” TRAIL,
functionalized to nanoparticles [64] (also, unpublished data). Although the molecular explanation of
this differential behavior remains unknown, this particularity is likely to be of interest for ongoing
and future development of TRAIL derivatives aiming at treating patients in the clinic. In particular,
this raises the question whether therapeutic antibody derivatives should target both receptors or
not, which is the reason why we have decided to discuss both TRAIL and antibody derivatives in
this review.
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Figure 4. Schematic representation of the main TRAIL recombinant proteins assessed in clinical
trials or used in laboratories to induce apoptosis through DR4 and/or DR5. Dulanermin (TRAIL
aa114-281) [65,66], circularly permuted TRAIL (CPT, TRAIL aa135-281-linker-TRAIL aa122-135) [67],
Flag-TRAIL [68], TNC-TRAIL [61], 6xHis-TRAIL [55], HSA-TRAIL [69], Leucine Zipper and Isoleucine
Zipper-TRAIL [15], Trimer-TRAIL [70], Fc-TRAIL [63], Fc-sc-TRAIL [71], and AGP350 [40].

3. TRAIL in Clinical Trials

After the discovery of the attractive concept inferred from TRAIL signaling properties,
attempts to translate TRAIL to the clinic was first carried out by Genentech, and next by
Beijing Sunbio Biotech Co. Ltd. (Beijing, China).

3.1. First Attempts to Use TRAIL in Clinical Trials

Recombinant human TRAIL, rhTRAIL, has been largely tested at the preclinical level for its tumor
selective killing properties and safety [17]. The good results have encouraged Genentech to develop
their own construct binding to DR4 and DR5: dulanermin, rhApo2L/TRAIL, a recombinant protein
encoding TRAIL from amino acids (aa) 114 to 281 (Figure 4). Unfortunately, dulanermin monotherapy
did not induce sufficient overall therapeutic activity to support further clinical development [66,72–78].
The main limitation was proposed to be due to two main factors, its short bioavailability and inherent
resistance of primary tumors to TRAIL-induced cell death [16]. Likewise, dulanermin’s half-life,
ranging from 40 min to 1 h after injection, was found to be rather short, limiting, thus, its action
window. The second problem is the possible resistance of the cancer cells to the treatment [79].
At the cell membrane, resistance can be due to the expression of inhibitors, including DcR1, DcR2,
two antagonist receptors (DcRs) whose binding affinity with dulanermin is nearly identical to DR4
and DR5 [27]. The tumor microenvironment is a complex biological system, in which the antitumoral
action of dulanermin is also likely to be compromised, irrespective of the initial sensitivity of the
tumor itself. Likewise, it has been proposed recently that stromal cells harboring DcRs are also likely
to impede dulanermin’s efficacy [80]. More downstream, a plethora of intracellular inhibitors can
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induce resistance of TRAIL after binding to its agonistic receptors [81]. The most important inhibitor
being c-FLIP, whose expression in cancer cells was found to be upregulated by serum-derived active
biomolecules, such as phospholipids [82]. It is therefore more than likely that its upregulation in
primary tumors contributes to the lack of efficacy of dulanermin. In the same vein, pro-survival
proteins including inhibitor of apoptosis proteins (IAPs), X-linked inhibitor of apoptosis protein (XIAP)
or survivin, are often highly expressed in cancer cells and may counteract TRAIL-induced apoptosis
as well [83]. Last, but not least, resistance may also be attributed to microRNAs, as several of them
are dysregulated in tumor cells and are known to display potent pro-survival signaling potential.
Likewise, miR-133a and miR-519a-3p have recently been found to induce NF-kB activation and to
suppress DR5 expression [84,85].

Because conventional chemotherapeutic drugs have long been known for their ability to increase
or restore TRAIL sensitivity in tumor cells [16], and even to overcome resistance induced by DcR2 [86],
additional clinical trials have been set up to evaluate the efficacy of dulanermin combined with
chemotherapy [16]. However, albeit well tolerated by the patients, these combinations, like dulanermin
alone, did not lead to increased objective responses [16]. This lack of efficacy raised the need to develop
products displaying better efficacy. It should be noted, though, that a phase III clinical trial is ongoing,
aiming at evaluating the effects of dulanermin injections in the treatment of advanced non-small cell
lung cancer [87].

3.2. Novel TRAIL Versions

In response to the disappointing results of dulanermin, several new formulations of TRAIL
have been developed to improve recombinant TRAIL stability and half-life [59,88–90] (Figure 4).
Most of the attempts have been done by fusing TRAIL to itself as single chains trimers, to single-chain
variable antibody fragment (scFv), conjugating TRAIL with chemical drugs, attaching TRAIL to
nanoparticles, and by expressing TRAIL on the cell surface of delivery cells. Among the numerous
TRAIL fusion formulations, tenascin-C-TRAIL (TNC-TRAIL), TRAIL-Fc, and single chain-TRAIL
(scTRAIL) constructs presented interesting conformational and pharmacokinetic properties. Constructs
such as TNC-TRAIL were developed to stabilize the trimeric conformation of TRAIL, and were found
to increase both receptor clustering and apoptosis [61]. TRAIL-Fc and scTRAIL were used to increase
the pharmacokinetics properties of TRAIL, as well as its tumoricidal activity [63]. More specifically,
a highly stable trimer scTRAIL (APG350) was designed as a hexavalent TRAIL. This hexameric TRAIL
construct was able to induce potent programmed cell death with no need for further crosslinking
of TRAIL [40], as is usually required to increase other recombinant TRAIL preparations, such as
Flag-TRAIL [61,91,92].

More interestingly, Beijing Sunbio Biotech Co. Ltd. (Beijing, China) has recently developed a novel
TRAIL preparation (Figure 4), described as circularly permuted TRAIL (CPT), exhibiting better stability,
longer half-life, and stronger antitumor activity, as compared to dulanermin. In early phase II clinical
trials, CPT was found to be relatively well tolerated and albeit limited toxicities were reported, CPT was
found to elicit an antitumoral response, alone or combined with thalidomide and/or dexamethasone,
in patients with relapsed or refractory multiple myeloma [60,93,94]. CPT is thus, so far, the best
and most promising TRAIL derivative. However, similar to TRAIL, CPT is not only likely to suffer
from resistance induced decoy receptors in patients but also likely to promote of cell migration and
metastasis [95–97]. This implies that further assessment in preclinical animal models are likely needed,
to exclude the possibility that CPT may, in a limited number of patients, promote cell-motility and/or
metastasis. These limitations have, early-on, prompted the development of more specific therapies
that target only DR4 and DR5.

4. First Antibodies in Clinical Trials

Monoclonal antibodies (moAbs) represent tools of choice for the targeting of DR4 and DR5.
They clearly offer advantages for eradicating tumors. First of all, they have a longer in vivo



Antibodies 2017, 6, 16 8 of 31

half-life (around 14 days) than TRAIL. Second, their Fc domains allow interactions with Fc receptors
(FcRs) present on the cell surface of immune cells leading to antibody-dependent cell-mediated
cytotoxicity (ADCC) and complement-dependent cellular cytotoxicity (CDC). Finally, owing to their
selectivity, moAbs are fully independent of decoy receptors expression, whether on the tumor cells or
microenvironment. So far, seven agonistic monoclonal antibodies have been tested in clinical trials:
one anti-DR4 and six anti-DR5.

Mapatumumab, also known as HGS-ETR1 or TRM1, is the only anti-DR4 monoclonal antibody
that has been evaluated in clinical trials, so far (Figure 5). Developed by the Human Genome Science
(HGS) in 2005, this fully human DR4-agonistic demonstrated selective and high binding to DR4,
as well as cytotoxicity efficiency [98]. Mapatumumab has been evaluated in several phase I and II
clinical trials [99–108], but none of the assays met the initial objectives, prompting discontinuation of
its clinical development. Other mouse moAbs targeting DR4 and displaying pro-apoptotic potential
have been described in preclinical studies, including m921/922 [109], 4H6/4G7 [110], AY4 [111],
and TR1-mAbs [112], but as far as we are aware of, none are being evaluated in the clinic.
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Figure 5. Schematic representation of the DR4 and DR5 moAb. Anti-DR4 developed in preclinical
and clinical trials are shown in the upper panel. m921/922, 4H6 & 4G7, AY4, and TR1-mAbs are
mouse-Igs tested in preclinical trials. Mapatumumab is a humanized-Ig assessed in clinical trials.
The lower part of the figure shows the anti-DR5 developed as mouse or chimeric-Igs, which are LaDR5,
LBY135, mDRA, WD1, and Zaptuximab, as well as its humanized form, Zaptuzumab. Conatumumab,
Drozitumab, Tigatuzumab, KMTR2, Lexatumumab, and more recently, DS-8273a, are also humanized
antibodies targeting DR5. All of them have been tested in clinical trials.

As opposed to DR4, many more monoclonal antibodies against DR5 have been assessed in clinical
trials. These include Conatumumab (AMG655), Drozitumab (Apomab or PRO955780), Lexatumumab
(HGS-TR2), LBY135, Tigatuzumab (CS-1008 or TRA-8), and DS-8273a [113–124]. Conatumumab,
Drozitumab, Lexatumumab, and DS-2873a, respectively, developed by Amgen, Genentech, HGS,
and Daiichi-Sankyo, and are fully human DR5-agonistic antibodies. Conatumumab and Drozitumab
exhibit effective antitumor effects against advanced solid tumors and Lexatumumab was examined
in prostate cancer and bladder cancer cells [116,125,126]. DS-8273a is the latest anti-DR5 antibody
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assessed in the clinic. Interestingly, the first publication describing this antibody demonstrates that
DS-8273a could be of use to eradicate myeloid-derived suppressor cells in patients with advanced
cancer, indicating that DS-8273a could indirectly contribute to antitumor therapies [114]. Despite the
fact that no objective response has been observed in this study, three additional clinical trials are
ongoing, aiming at evaluating its safety in patients with advanced solid tumors and lymphomas or
benefit combined to Nivolumab in patients with advanced colorectal cancer as well as unresectable
stage II and IV melanoma [87].

LBY135 and Tigatuzumab are chimeric and humanized mouse–human antibodies, correspondingly
developed at UAB with Daiichi-Sankyo and Novartis. LBY135 was well tolerated in solid advanced
tumors, and Tigatuzumab was tested for relapsed lymphoma or solid tumors [121,127]. Alone or
in combination, Conatumumab and Drozitumumab went to phase II clinical trials, whereas
Lexatumumab, LBY-135, and Tigatuzumab did not get beyond phase I clinical trial [16].

Despite encouraging preclinical results, the outcomes of these clinical trials were disappointing.
Most of these antibodies appeared to be relatively safe and well tolerated by the patients, but none
displayed sufficient clinical benefits. At best, these moAbs induced stable disease, but none of them
improved the response rates, whether used alone or combined with chemotherapy. As a consequence,
and with the exception of DS-8273a, companies discontinued their development [128–130]. One of
the reasons for the lack of clinical efficacy of these moAbs may be the inherent resistance of
primary tumors to apoptosis. Apoptosis is tightly controlled by a number of activators and
suppressors, whose expression levels determine sensitivity or resistance of the targeted cells,
respectively [28,131,132]. After binding to its targets, moAbs initiate formation of the TRAIL DISC,
but efficient signal transduction of apoptosis can be inhibited at the very early stage, at the DISC level,
by c-FLIP or more downstream, at the mitochondrial level by Bcl-2 family members or cIAP1/cIAP2
and XIAP (Figure 3), leading to cell resistance [133–137]. Circumvention of these inhibitory checkpoints
has been achieved in a number of preclinical models using conventional chemotherapy, thus restoring
tumor cell sensitivity to TRAIL or agonist moAbs targeting DR4 or DR5 [16,138]. Unfortunately,
neither of the combinations tested, so far, showed clinical benefits. It should be noted here that
the mode of administration of the combined treatments in these early clinical trials may have also
contributed to the lack of efficacy of TRAIL or anti-DR4 and -DR5 agonist moAbs. This is mainly
due to the fact that these compounds are often administered into the patient either simultaneously or
within short intervals, while in preclinical models, the corresponding chemotherapeutic drug is known
to efficiently restore TRAIL-induced cell death, but needs to be given 24 to 72 h ahead, before TRAIL
administration [16].

Another explanation for the lack of efficacy of these antibodies may be their weaker ability to
trigger apoptosis. Multimerization of TRAIL agonist receptors is mandatory to transduce the apoptotic
signal. As opposed to TRAIL, whose ability to trimerize TRAIL agonist receptors at the cell surface is
naturally afforded by its spontaneous association as a trimer, moAbs are bivalents. This limited valency
could, at least in part, explain why these monospecific antibodies are not the best formulations to target
TRAIL signaling for cancer therapy. Indeed, their crosslinking is often further required to increase their
antitumor potential [91,110,139–142]. Some of them, though, have been described to induce apoptosis
very efficiently in the absence of crosslinking. This is the case for a DR4 bivalent antibody or KMTR2
a fully human moAb agonist targeting DR5, that induces cell death in the sensitive colorectal cell
line Colo205 in a ng/mL range [143,144]. In early studies, KMTR2 has been described to be able to
suppress growth of subcutaneous glioma xenografts, and prolong animal lifespan bearing intracerebral
xenografts [145]. More recently, the crystallographic structure of the extracellular domain of DR5 and
a Fab (fragment antigen-binding) domain derived from KMTR2, demonstrated that KMTR2 is able
to induce superoligomerization of DR5 [143]. To value the use of anti-DR4 or anti-DR5 moAbs for
cancer therapy, and to strengthen their pro-apoptotic potential, other rational approaches have been
set up, such as increasing their valency or combining them with TRAIL [146–148]. But so far, none of
these therapeutic options have been assessed in the clinic. However, since DR4 and DR5 are attractive
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targets for cancer therapy, an incredible variety of targeting molecules have been generated, which are
presented below.

5. Novel TRAIL-Related Derivatives

Conventional antibodies are composed of two parts: two Fabs (fragment antigen-binding) linked
to one Fc (crystallized fragment). Fabs contain regions highly specific to the epitope, while the Fc
determines the class of immunoglobulin, and thus, the antibody potential for cell-mediated immune
response. The soar of genetic engineering and our increasing understanding of TRAIL pro-apoptotic
signal transduction requirements opens unprecedented opportunities to develop novel promising
TRAIL-related derivatives with enhanced antitumor potential [149,150].

5.1. Multivalent-Based Antibodies or Peptides

As discussed above, achieving efficient aggregation of DR4 or DR5 is probably the main bottleneck
when considering TRAIL-targeting antibodies or derivatives for cancer therapy. Amongst the
monoclonal anti-DR4 and DR5 antibodies described, so far, several are unable to induce tumor cell
killing in the absence of crosslinking or coating to the culture plate [110,139–142]. Although antibodies
assessed in clinical trial have been described to induce cell death in preclinical models, irrespective
of their crosslinking, their lack of clinical efficacy is most likely due to their weaker ability to induce
receptor aggregation. In line with this hypothesis, converting DR4-moAb isoforms from IgG to IgM
(Figure 6) was found to enhance anti-DR4-mediated apoptosis [146], indicating that increasing moAb
valency is a prerequisite to induce sufficient receptor clustering and apoptosis [151]. In the same vein,
it has been demonstrated that trimeric DR5 peptidomimetics [152], a tetravalent sc-Fv:DR5 derivative
antibody or a single-chain scFv:DR5 nanobody, TAS266 [153,154] display superior antitumor activities
than monovalent or divalent peptides or antibodies in preclinical studies (Figure 6). Trimeric DR5
peptidomimetics, for instance, were much more efficient than their dimeric or monomeric counterpart
in inducing receptor DISC formation and caspase-8 activation [152]. Whether multivalent anti-DR4
or anti-DR5 will translate to the clinic remains uncertain, so far, as it has recently been found that
the scFv:DR5 nanobody, TAS266, alone, displayed hepatotoxicity in a phase I clinical assay aiming
at evaluating its safety and tolerability [154]. It should be noted, however, that DR4 and DR5
exhibit distinct crosslinking requirements [91,92]. Likewise, while DR4 was found to be able to
trigger apoptosis with a trimeric TRAIL ligand, apoptosis induced by DR5 required crosslinking
of TRAIL trimers [92]. It should be noted here, though, that these results were obtained in the
presence of cycloheximide, a protein synthesis inhibitor [155], known to impair cFLIP expression [156].
Further highlighting a differential behavior between DR4 and DR5 is the recent demonstration using
isogenic cells expressing solely DR4 or DR5, that DR4 is more prone in inducing apoptosis with soluble
hexameric TRAIL than DR5 [56] , in the absence of any inhibitor. DR5 remains, however, fully capable
of inducing apoptosis when activated by membrane-bound TRAIL, a situation that can be recapitulated
using a soluble TRAIL fused to a scFv targeting a defined antigen [92]. This strategy, which allows
antigen-dependent immobilization of TRAIL at the cell surface, has largely been explored with a large
panel of scFvs, and is described in the paragraph 5.2.1.

With the exception of KMTR2, Lexatumumab, and Zaptuzumab [123,124,143,144], most DR5
agonist antibodies are unable to trigger apoptosis in the absence of crosslinking. However, in vivo,
they display strong antitumor activity [110], due to FcγR expressing cells that are thought to induce
their crosslinking [157]. Indeed, the in vivo antitumor potential of Conatumumab, a fully human
agonistic targeting DR5, was demonstrated to require FcR-mediated crosslinking to inhibit tumor
growth [158,159]. FcR oligomerize antibodies that are now able to trimerize receptors, providing
increasing antitumor activity. Consequently, it was thought that FcγR binding was mandatory to
induce effective apoptosis. Nonetheless, additional studies shed light on the fact that apoptosis can
be performed without this FcR binding. For example, scFv in the format of antibody constructs
without the Fc part, thus, without the capacity to bind to FcR, showed promising results [40]. Likewise,
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the chimeric Fc-TRAIL-single chain hexameric variant APG 350 (Figure 4), displays potent apoptosis
capabilities without interactions with FcγR-bearing myeloid cells [62,160]. Finally, the development
of a new anti-DR5, Zaptuzumab, a chimeric monoclonal antibody obtained after humanization,
showed promising anticancer actions without the need of crosslinking [124].

Irrespective whether co-engagement of FcR is required or not to induce suitable programed cell
death, one should probably keep in mind that only co-engagement with FcγRIIB confers anti-TNFR
agonistic antibodies the potential to trigger apoptosis in vivo [158].
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5.2. Bi- and Tri-Specific Derivatives

Based on their capacity to recognize specific targets with high sensitivity, single-chain variable
fragment (scFv) were developed and combined to a variety of TRAIL derivatives to induce specific
killing of cancer cells. Produced with phage, yeast, and ribosome display, scFvs contain only the
variable regions of the antibodies that recognize the target, without the Fc part. While maintaining
specific recognition of the target, their smaller size (around 25 kDa) let them reach deeper
tumor compartments, resulting in a better tumor penetration [162]. They offer the possibility
to produce bispecific antibodies or chimeric proteins with the capacity to link specifically to
two different targets, each of their Fab recognizing different epitopes, enabling selective antitumor
therapeutic intervention [163]. These strategies allow better target specificity, as well as reduction of
off-target toxicity.

5.2.1. scFv-TRAIL

Various scFv-TRAIL formulations have been developed, each of which has its own
advantages [88,164]. Most of the time, TRAIL-induced apoptosis is possible only in cells bearing
antigens targeted by the scFv. But non-tumor cells can also be targeted to present TRAIL like
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a membrane-bound protein, to increase its killing efficacy. Two kinds of scFv-TRAIL were designed.
The first class includes scFv-targeting antigens expressed specifically or overexpressed by cancer cells.
These include scFv-TRAIL selective for epidermal growth factor (EGFR) [165,166], Erb-B2 receptor
tyrosine kinase 2 (ErbB2) [59], epithelial glycoprotein-2 (EGP2) [167], Potassium channel voltage gated,
subfamily H, member 1 (Kv10.1) [168], mesothelin [169], melanoma-associated chondroitin sulfate
proteoglycan (MCSP) [170], or multidrug resistance protein 3 (MRP3) [171] (Figure 7). Dual targeting
not only increases selectivity towards a wide range of tumors, but also affords bystander killing effects
via TRAIL activity [172]. The scFv:EGFR-TRAIL is an example of such construct. EGFR is a tyrosine
kinase receptor (TKR) whose expression in solid tumors is often associated with tumor development
and progression [173]. scFv:EGFR-TRAIL converted soluble TRAIL into a membrane-bound form,
allowing efficient apoptosis in a series of EGFR-positive tumor cell lines [166]. Based on the same
principle, constructs such as ENb:TRAIL, another EGFR-targeting nanobody fused to TRAIL molecule,
displayed potent antitumor activity towards cells normally resistant to EGFR inhibitors alone,
or to TRAIL. In vitro and in vivo, ENb:TRAIL was able to block EGFR signaling while inducing
TRAIL-mediated apoptosis of targeted cancer cells [174]. Interestingly, fusing the scFv anti-EGFR to
single-chain TRAIL (scTRAIL, see Figure 7), instead of a single monomer of TRAIL, further increased
the tumor killing efficiency of the scFv-TRAIL variant by 10-fold [175], highlighting the importance
of TRAIL valency for its efficacy. In the same vein, an anti-EGFR diabody linked to the scTRAIL was
found to exhibit strong antitumor potential both in vitro and in vivo [71,176].
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presentation of different cancer (DsG3 [162], EGFR [149,150], EGP2 [152], Kv10.1 [153], MCSP [155],
or MRP3 [156]) and immune (CD3 [163], CD7 [164], CD19 [165,166], CD20 [167], CD33 [168],
CD40 [169], CD47 [170], CD70 [171], CLL1 [172], or PD-L1 [173]) antigens targeted by scFv-TRAIL
constructs. Upper right: single-chain TRAIL-bispecific derivatives targeting EGFR [40,71], ErbB2 [151],
and mesothelin [154]. Lower part: non-scFv-TRAIL bi- and trispecific derivatives using nanobody
(ENb:TRAIL), affibody, or fusion proteins, to target cancer and immune antigens.

ErbB2, another TKR of the same family, is also widely expressed on human tumor cells [177].
An anti-ErbB2 scFv fused to scTRAIL was found, in vitro and in vivo, to exhibit enhanced therapeutic
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activity as compared to scTRAIL, alone [59]. Moreover, this single chain-TRAIL variant displayed
better pharmacokinetics properties compared to TRAIL, with a half-life increased by 2 to 4-fold.
Other scFv-TRAILs were assessed, showing increased antitumor potential, such as EGP2, also known
as epithelial cell adhesion molecule (Ep-CAM) overexpressed in carcinomas [167], the voltage-gated
potassium channel Kv10.1 expressed in 70% of tumors of different origin, but not in normal cells [168],
the melanoma-associated chondroitin sulfate proteoglycan (MCSP), expressed in melanoma [170],
the multidrug resistance protein 3 (MRP3), expressed in glioblastoma [171], or DsG3, one of seven
desmosomal cadherins that mediate cell–cell adhesion in desmosomes, whose expression has been
found to be increased in primary cancer cells and associated clinical stage [178].

A number of other TRAIL bispecific constructs selective for the albumin binding domain
ABD [179], annexin V [180], CM4, a small cationic linear α-helical peptide selective for tumor
cells [181], Fn14 [182], integrins RGD [183–185] and iRGD [186], tumor molecular targeted peptide
1 (TMTP1) [187], or vasostatin (VAS) [188], have also been described, including a trispecific recombinant
TRAIL protein harboring both an RGD- and an NGR-binding motif [189], all of which bind more or
less specifically to tumor cells, and displaying increased TRAIL-mediated apoptosis rates. Last, further
pinpointing to the growing interest for TRAIL-based therapies, an affibody targeting PDGFRβ [190],
as well as scFV targeting mesothelin [169], a glycosylphosphatidylinositol anchored glycoprotein
known to bind to the mucin MUC16, mesothelin itself or its MUC16-minimal-binding domain [191]
fused to scTRAIL, were also described to display potent antitumor potential.

The second kind of scFvs or TRAIL-recombinant proteins target immune cell antigens, such as
CD3 [192], CD7 [192,193], CD19 [194,195], CD20 [196], CD25 [197], CD33 [198], CD40 [199], CD47 [200],
CD70 [201], CLL1 [202], or PD-L1 [203]. Those constructs have been generated with the aim of
hastening and reinforcing immune responses by four different ways. As mentioned above for
solid tumors, the first objective was to target hematological malignancies. For this, CD7, CD19,
and CD33 scFv fused to TRAIL, or CD19L fused to TRAIL constructs, were produced to target and kill
selectively immune cancer cells [193–195,198]. The second and third approaches, respectively, activate
immune cells or block inhibitory signals. Those bifunctional fusion proteins confer dual pro-apoptotic
signaling capacity by bringing immune cells in close proximity with tumor cells. As an example,
scFv-CD40-TRAIL has the capacity to stimulate both dendritic cells (DCs) and to trigger apoptosis of
DC-targeted cells [199]. Likewise, the recombinant IL2 protein fused to TRAIL targets and activated
IL2 receptors overexpressed in most hematological cancers, inducing higher expression of CD25,
and leading to activation of natural killer (NK) and T effector cells [197]. A particularly interesting key
example of advanced TRAIL derivative is scFv-PD-L1:TRAIL [203]. This bispecific scFv arms or loads
immunosuppressive PD-L1 expressing myeloid cells (as Dcs and macropages) with TRAIL molecule.
Through the competitive binding to PD-L1, it inhibits, on the one hand, PD-1/PD-L1 interaction,
restoring thus antitumoral immunity, and since it loads the immune cells with recombinant TRAIL,
it also affords, on the other hand, TRAIL-mediated apoptosis of the targeted tumor cells. Similar to
scFv-PD-L1:TRAIL, targeting CD47 or CD70 block the “don’t eat me” inhibitory signals, restoring
tumoricidal activity of immune cells and inducing TRAIL-dependent pro-apoptotic signal [200,201].
Lastly, cell-based therapies targeting CD3, CCL1, or CD20 arm T-cells [192], granulocytes [202] immune
cells or mesenchymal stem cells [196], respectively, with high levels of cell surface TRAIL, have also
been found to efficiently induce apoptosis of immune-resistant cancer cells.

5.2.2. Unconventional and Bispecific Antibodies

Unconventional antibody-like and bi-specific derivatives targeting both DR4 and DR5, or DR5
and an antigen specifically expressed by a given tumor cell or tumor microenvironment, have been
generated and assessed for their ability to trigger tumor-selective killing. They have mostly been
produced based on phage display technology [204,205] or from a protein scaffold library based on the
Kringle domain structure [206] (Figure 8).
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Figure 8. Schematic representation of unconventional and BsAbs harboring selectivity for DR4 and/or
DR5. Fibronectin type III domain of tenascin C-based formats recognizing DR5, are presented in the
upper left, covalently linked to Igs, Fc or as single-chains. Amino acids highlighted in red/orange and
pale blue correspond to TN3 variable loops (DE, FG and BC) which can be mutated without changing
its globular structure. These correspond to aa that allow binding to DR5. Amino acids shown in beige,
depict TN3 amino acids that need to be preserved to maintain the globular structure of the recombinant
protein. Upper right panel illustrates Kringle domain (KD)-based formats fused to the Fc. Specific KDs
are numbered 413 to 548. Affinity binding for DR4 and/or DR5 is indicated. Lower left panel depicts
anti-DR4 and/or DR5–derivatives targeting TRA-8, LTβR, FAP, MCSP, or hyaluronate. BsAbs targeting
both DR4 and DR5 are represented in the lower right.

The first category includes unconventional multivalent anti-DR4 and anti-DR5 antibodies,
that were generated either from the fibronectin type III tenascin C domain (Tn3) or the Kringle domain
(KD) protein scaffold libraries (Figure 8). Interestingly, while anti-DR5-Tn3 covalently linked to Igs
displayed pro-apoptotic activity, these unconventional divalent antibodies were far less efficient than
TRAIL. However, in line with previous studies demonstrating superior activity of TRAIL functionalized
to nanoparticles [64], multivalent DR5-Tn3 linear chains were found to be 10 to 100-fold more potent
than TRAIL in vitro and in vivo [205]. Earlier on, another group has developed DR4–DR5 bispecific
antibodies (BsAbs) using yeast surface display, based on the Kringle domain (KD). Fused to dual affinity
Ig-Fc Kringle, domain-based moAbs showed high-affinity target binding, and enhanced capacity to
induce apoptosis and inhibit tumor growth, in vivo, as compared with the standard monomer counter
parts [206,207]. Interestingly enough, receptor complex formation analysis comparison after TRAIL or
KD548-Fc stimulation revealed that this DR4/5 dual-specific Kringle domain agonist variant induces
the recruitment proteins of additional proteins to the TRAIL DISC complex, including riboflavin kinase,
nox1, and Rac1, whose activation induces reactive oxygen species (ROS)-mediated cell death [208].
This DR4/5 dual-specific Kringle domain agonist is likely to enter clinical trials soon, as efforts are
being made to produce it at high levels [209]. Although, preliminary, these results highlight the
potential therapeutic benefits that can be achieved by targeting both receptors, rather than targeting
specifically one of the two death receptors. Several other bi-DR4/5-specific antibody derivatives
have been described. Using the phage display technology, MedImmune developed numerous scFv
constructs selective for DR4 and/or DR5 [204]. Out of the published screen, 10 anti-DR4 scFv and
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6 anti-DR5 scFv were selected. Each of them exhibited specificity towards their own target, but these
scFvs displayed only mild anticancer properties in vitro, in the presence of cycloheximide. Strikingly,
albeit DR4 and DR5 show high sequence homology, and despite the fact that the main homologous
amino acids are accessible as immunogen, as inferred from the crystallographic structure of DR4 and
DR5 (Figure 2), very few scFvs—less than 2%—displayed crossreactivity for both receptors. A second
screen, alternating rounds of selection on either DR4 or DR5, enabled the identification of 134 distinct
dual-DR4/5-scFvs. However, none of these scFvs were able to induce cell death in the two cell lines
tested, HT1080 and ST486, a fibrosarcoma and a Burkitt’s lymphoma, respectively [204]. This library,
nonetheless, probably represents an interesting source of scFvs for the engineering of diabodies or
whole antibodies targeting solely DR4, DR5, or both (Figure 8). Using a similar approach, namely
a human phage display surrobody library, an antibody crossreactive to both DR4 and DR5 was
found [210]. However, this antibody displayed moderate antitumor potential in vitro, since protein-G
beads had to be used prior incubation with the target cells to detect its antitumoral activity. Yet,
this surrobody exhibited potent activity in vivo [210], most likely due to ADCC.

Other bispecific derivatives described, so far, are based on tetravalent antibodies (Figure 8).
These harbor TRA-8 or Drozitumab variable chains and scFv fragments targeting either LTβR or MCSP,
also known as lymphotoxin β receptor and melanoma associated chondroitin sulfate proteoglycan,
respectively. BsAb TRA-8xLTβR antibodies are aimed at targeting epithelial cancer cell lines [211].
Constructed with a scFv:LTβR fused to the N- or the C-terminus of the heavy chain of TRA-8 antibody
(Figure 8), both BsAbs inhibited tumor growth of LTβR-expressing cells in vivo. More recently,
a MCSPxDR5 bispecific antibody, engineered from a high affinity MCSP moAb to which the variable
binding domains of tigatuzumab were covalently linked, was assessed for antitumor selectivity
towards melanomas [212]. MCSP is a well-established target for melanoma immunotherapy, since it is
overexpressed in more than 90% of melanomas, but its expression is restricted in normal melanocytes.
By targeting this membrane-bound protein with the BsAb MCSP × DR5, the authors of this study have
been able to demonstrate first that binding of MCSP × DR5 mainly occurs on MCSP + DR5 + cells,
compared to MCSP − DR5 + cells, indicating that binding mainly occurs through MCSP, and second,
that BsAb MCSP × DR5 is able to induce tumor cell death both in an ADCC-dependent and
-independent manner, in vitro [212]. Consequently, MCSP × DR5 represents an interesting compound
for melanomas.

The last category of BsAbs has been engineered with scFvs or ligands selective for a given antigen
present in the tumor microenvironment and scFv:DR5. It includes RG7368, a fibroblast-activation
protein (FAP)-targeted DR5 bispecific antibody derived from Drozitumab [213]. RG7368 was found to
target both tumor associated fibroblasts from the stroma, and DR5 present on tumor cells. This strategy
permits to put in contact anti-DR5 agents in FAP-positive tumoral microenvironment. RG7368 was
found to induce potent tumor killing in a FAP-dependent manner, and to inhibit tumor growth
in vivo [213]. Combining RG7368 with irinotecan or doxorubicin also demonstrated a substantial
increase in tumor growth regression in colorectal patient-derived xenografts. Another tetravalent
scFv:DR5-based hybrid antibody has recently been evaluated, with success, for its ability to treat
liver metastasis in preclinical animal xenograft models [214]. Multivalency was afforded in this study
by the covalent functionalization of hyaluronate (HA) to scFV:DR5, enabling binding to receptor for
hyaluronan-mediated motility (RHAMM) and CD44, two receptors significantly overexpressed in
a variety of tumors.

5.3. Chimeric Antigen Receptors (CARs)

Chimeric antigen receptors are promising tumoricidal formats. They are designed by a scFv
recognizing specific tumor antigen fused to an intracellular T-cell activation system [215,216].
Upon contact with target antigen, CARs induce T-cell signaling functions, such as cytokine secretion,
enhanced cell proliferation and survival, and improves effector cell functions [217]. To date, only one
CAR targeting TRAIL death receptors has been described (Figure 9). This TR1-scFv-CAR was
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developed using scFv recognizing DR4 [218]. Expressed on the cell surface of DR4-deficient Jurkat
cells, as well as a NK cell line or human peripheral blood cells (PBLs), it induced DR4-mediated
apoptosis of target cells expressing DR4 endogenously. In addition, when expressed in immune cells,
NK, and PBLs, respectively, TR1-scFv-CAR induced CAR-mediated cytolytic activity, demonstrating
that CARs targeting DRs could be used as anticancer therapeutic tools to induce tumor regression [218].
Along the line, smart CAR systems based on combinatorial antigen recognition [219] are likely to offer
ideal tools to deliver, specifically, TRAIL or TRAIL derivatives to the tumor.
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5.4. Antibody Drug Conjugate-Like TRAIL Derivatives (ADC-Like)

The ADC technology takes advantage of innovative chemistry or biochemistry, and of high
specificity of antibodies for their target antigens, to deliver a more powerful cytotoxic agent to
specific tumor cells [220,221]. Although this method has, so far, never been tested with moAb or
derivatives targeting DR4 or DR5, it has been assessed with recombinant TRAIL variants to overcome
chemotherapy related toxicity, as well as TRAIL resistance. It has been used for example to conjugate
TRAIL with monomethyl auristatin E (TRAIL–MMAE) via valine and citrulline linkage [222,223]
(Figure 10) or PEG [224]. Selective targeting of the tumor with TRAIL allowed selective delivery of the
cytotoxic drug MMAE to the cancer site. After binding, TRAIL–MMAE is rapidly internalized into the
cytoplasm of targeted cancer cells, and released in lysosome via lysosomal-specific cleavage of the
linker, placed between TRAIL itself and MMAE. Once released into the cytoplasm, the cytotoxic
drug exerts its antimitotic action, leading to cancer cell death. The study of proof-of-concept,
demonstrated, in vitro, that the human TRAIL-resistant breast carcinoma cell line MCF-7, efficiently
internalized MMAE into its cytoplasm, and died by apoptosis. Interestingly, in vivo, TRAIL–MMAE
exhibited a long half-life (>11 h) and displayed potent antitumor activities in xenograft models,
while remaining safe for the animal, since no sign of toxicity could be detected [223]. The PEGylated
TRAIL–MMAE conjugate was also found to display good pharmacodynamics, with a half-life reaching
7 h. Interestingly, it exhibited selective antitumoral potential, but no signs of hepatotoxicity [224].
AD-O53.2 is another ADC-like TRAIL derivative (Figure 10). It has been engineered by fusing TRAIL
and Smac/Diablo with a linker containing a metalloprotease cleavage site and a membrane penetrating
peptide, with the aim to overcome cancer cell resistance to TRAIL-induced cell death [225]. AD-053.2
increased, in vitro, tumor cell sensitivity to apoptosis by 3 to 6 orders of magnitude, and was very
potent in inducing tumor regression in xenograft animal models [225]. Last, an ADC-like TRAIL
derivative based on Melittin, a water-soluble 26-amino acid peptide derived from bee venom of
Apis mellifera, has been tested for its capacity to induce tumor cell killing. Melittin, for unknown reasons,
exerts selective cytotoxicity on a large variety of tumor cells, but is not toxic for normal cells. It had
previously been found to sensitize apoptosis induced by TRAIL in hepatocellular carcinomas [226].



Antibodies 2017, 6, 16 17 of 31

Fused to TRAIL in an ADC-like fashion, TRAIL–Melittin conjugate was found, in vitro, to display
a moderate increase in antitumor properties, as compared to TRAIL alone [227]. With the exception
of the TRAIL–Melittin conjugate, whose gain of function was rather limited, these findings suggest
that conjugation of DR4 or DR5 derivatives in an ADC-like antitumoral drug could also lead in the
future to efficient TRAIL therapies, provided that such a compound remains safe in vivo, but efficient
in inhibiting tumor growth.
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Smac-derived peptide (AD-053.2) an intracellular pro-apoptotic agent [225]; Melittin ADC-like,
an antibacterial highly cytotoxic harbored on trimeric TRAIL and linked with FLAG [226,227];
MMAE–TRAIL, TRAIL trimeric molecule linked to the monomethyl auristatin E, an antimitotic
agent [222–224].

6. Conclusions

The discovery of TRAIL and its receptors in the mid-’90s raised much interest for antitumor
therapies, prompting preclinical and clinical evaluation of TRAIL or TRAIL receptor agonist antibodies.
While early clinical evaluation of these first generation of compounds failed to demonstrate enough
efficacy to warrant further development, the increase in understanding of the molecular events
governing TRAIL-mediated apoptosis signal transduction, together with the advent of innovative
biomolecular engineering, suggest that targeting TRAIL receptors is still likely to hold promise for
cancer therapy.

Likewise, second generation of TRAIL recombinant proteins fused to Fc, scFv, single chains or
monoclonal antibodies targeting TRAIL receptors functionalized to nanoparticles or linkers, in order
to increase their valency, are being developed with the aim to increase both bioavailability and
efficacy. Whereas, it still remains unknown whether DR4 and DR5 targeting therapeutics will meet
the requirements to get approval for cancer therapy, a number of these novel formulations raise hope,
due to the excellent results obtained from preclinical or early clinical studies.

The next generation of DR4 and DR5 targeting agents are, thus, likely to put hope back on the
trail of antitumoral therapeutics.
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Abbreviations

Aa amino acids
ADC antibody-drug conjugate
ADCC antibody-dependant cell-mediated cytotoxicity
APO apoptosis antigen
Bcl-2 B-cell lymphoma 2, apoptosis inhibitor
BsAbs bispecific antibodies
CARs chimeric antibody receptors
CD cluster of differentiation
CDC complement-dependent cellular cytotoxicity
c-FLIP cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein
CPT-TRAIL circularly permuted TRAIL
DC dendritic cell
DcR decoy receptor
DcR1 decoy receptor 1, TRAIL-R3
DcR2 decoy receptor 2, TRAIL-R4
DD death domain
DISC death-inducing signaling complex
DR death receptor
DR4 death receptor 4, TRAIL-R1
DR5 death receptor 5, TRAIL-R2
Fab fragment antigen-binding
Fas fibroblast associated surface antigen
Fas-L as ligand
Fc crystalized fragment
FcR crystalized fragment receptor
GPI glycosylphosphatidylinisotol
KD Kringle domain
Mcl-1 myeloid cell leukemia-1
moAbs monoclonal antibodies
NK cell natural killer cell
OPG steoprotegerin, TRAIL-R5
PBLs eripheral blood cells
ROS reactive oxygen species
rhTRAIL human recombinant TRAIL
scFv single chain fragment variable
sc-TRAIL single chain TRAIL
sTRAIL soluble TRAIL
TNC-TRAIL tenascin-C-TRAIL
TNF tumor necrosis factor
TNF-α tumor necrosis factor alpha
TRAIL TNF-related apoptosis-inducing ligand
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