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Abstract: The exponential growth of biomedical data in recent years has urged the application of
numerous machine learning techniques to address emerging problems in biology and clinical research.
By enabling the automatic feature extraction, selection, and generation of predictive models, these
methods can be used to efficiently study complex biological systems. Machine learning techniques
are frequently integrated with bioinformatic methods, as well as curated databases and biological
networks, to enhance training and validation, identify the best interpretable features, and enable
feature and model investigation. Here, we review recently developed methods that incorporate
machine learning within the same framework with techniques from molecular evolution, protein
structure analysis, systems biology, and disease genomics. We outline the challenges posed for
machine learning, and, in particular, deep learning in biomedicine, and suggest unique opportunities
for machine learning techniques integrated with established bioinformatics approaches to overcome
some of these challenges.

Keywords: machine learning; deep learning; bioinformatics methods; phylogenetics

1. Introduction

Over the past few decades, the advances in computational resources and computer
science, combined with next-generation sequencing and other emerging omics techniques,
ushered in a new era of biology, allowing for sophisticated analysis of complex biological
data. Bioinformatics is evolving as an integrative field between computer science and
biology, that allows the representation, storage, management, analysis and investigation of
numerous data types with diverse algorithms and computational tools. The bioinformatics
approaches include sequence analysis, comparative genomics, molecular evolution studies
and phylogenetics, protein and RNA structure prediction, gene expression and regulation
analysis, and biological network analysis, as well as the genetics of human diseases, in
particular, cancer, and medical image analysis [1–3].

Machine learning (ML) is a field in computer science that studies the use of com-
puters to simulate human learning by exploring patterns in the data and applying self-
improvement to continually enhance the performance of learning tasks. ML algorithms can
be roughly divided into supervised learning algorithms, which learn to map input example
into their respective output, and unsupervised learning algorithms, which identify hidden
patterns in unlabeled data. The advances made in machine-learning over the past decade
transformed the landscape of data analysis [4–6]. In the last few years, ML and particularly
deep learning (DL) have become ubiquitous in biology (Figure 1). However, clinical applica-
tions have been limited, and follow-up mechanistic investigation of ML-based predictions
is often lacking, due to the difficulty in the interpretation of the results obtained with these
techniques. To overcome these problems, numerous approaches have been developed
to incorporate ML and DL into established bioinformatics frameworks, for training data
selection and preparation, identification of informative features, or data integration. Such
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integrated frameworks exploit the power of ML and DL methods, offering interpretability
and reproducibility of the predictions.
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K-nearest neighbors; CNN, convolutional neural networks; RNN, recurrent neural networks; PCA, principal component
analysis; t-SNE, t-distributed stochastic neighbor embedding, NMF, non-negative matrix factorization.

In this brief review, we survey recent efforts to integrate ML and DL with estab-
lished bioinformatic methods, across four areas in computational biology. We discuss the
strengths and limitations of these integrated methods for specific applications and propose
avenues to address the challenges impeding even broader application of ML techniques in
biomedical research.
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1.1. Integrating Machine-Learning into Molecular Evolution Research

Combining computer science approaches with principles of molecular evolution anal-
ysis has revolutionized the field of molecular evolutionary studies. Application of diverse
and increasingly advanced computational methods has enabled accurate determination
of evolutionary distances between species, reconstruction of evolutionary histories and
ancestries, identification conserved genomic regions, functional annotation of genomes,
and phylogenetics. In recent years, ML methods have been developed to address the chal-
lenges faced by molecular evolution research, in particular, by overcoming the difficulties
of analyzing increasingly massive sets of sequence and other omics data. Examples of such
applications include the use of autoencoders to impute incomplete data for phylogenetic
tree construction [7], application of random forest for phylogenetic model selection [8],
harnessing convolutional neural networks (CNNs) to infer tree topologies [9] and tumor
phylogeny [10], and utilization of deep reinforcement learning for the construction of
robust alignments of many sequences [11].

Evolutionary algorithms and strategies have been the most successful in solving
diverse bioinformatic problems, far beyond core phylogenetic and molecular evolution
tasks. Indeed, a wide range of computational techniques are founded on evolutionary
strategies, including application of population-based analysis, fitness-oriented rules or
variation-driven research [12,13]. For instance, genetic algorithms (GA) [14] are a type
of search heuristic which is inspired by principles of biological evolution. The GA is
widely used in for optimization of multiple criteria and for features selection [15–17].
Evolutionary approaches underly effectively all types of biological sequence analysis.
Therefore, integrating ML with molecular evolution and phylogenetic methods is essential
to uncover robust and biologically relevant patterns and discriminative features. For
example, recent methods combined sequence attributes, alignment, and phylogenetic
trees with ML for protein sequence analysis and clustering [18,19] for tasks as different
as identification of determinants of viral pathogenicity and infectivity [20–22], prediction
CRISPR-Cas9 cleavage efficiency [23] and detection of anti-CRISPR proteins [24,25].

Although numerous bioinformatics methods continue to rely on sequence alignments,
the advent of ML gave rise to a variety of alignment-free methods that allow skipping the
alignment step and learning directly from unaligned sequences. Alignment-free methods
are especially useful, for example, for the identification of viral sequences in complex
sequence datasets, where highly divergent viruses are often difficult to identify with
straightforward alignment and sequence comparison. Therefore, alignment-free tools have
been developed for viral sequence identification by employing ML techniques such as
SVM [26], RNN [27] and CNN [28,29]. Alignment-free methods are also useful for the
functional annotation of nucleic acids and proteins, where in some cases function may
be inferred from particular domains or motifs that can be detected without complete nu-
cleotide or protein alignment. In cases where sequence profiles are difficult to derive, ML
and particularly DL techniques can be trained to rapidly recognize specific domains or
motifs, without the need to devise explicit sequence profiles [29–31]. Several DL techniques
have been employed for the annotation of functional features in nucleotide sequences, typi-
cally relying on a large, annotated sequence dataset for training, for example, using deep
RNN [32,33] or CNN [34,35]. These applications include identification of promoters [36,37],
enhancers [38,39], long noncoding RNAs [40–44], microRNA targets [45,46], and CRISPR
arrays [47].

The key challenge in the application of ML to molecular evolution and phylogenetics,
where traditional bioinformatic strategies efficiently resolve many substantial problems, is
the identification of tasks that have not been yet properly addressed, but involve learnable
patterns and features. This challenge stems from the difficulty of estimating the learnability
of different problems, but also, from the shortage of labeled datasets of sufficient size for
problems that are not easily amenable to standard bioinformatic techniques.
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1.2. Integrating Machine-Learning with Protein Structure Analysis

In the study of proteins, numerous methods have been developed to process the
amino acid sequence, and predict the protein structure, function and post translational
modifications, such as phosphorylation and glycosylation, that are crucial to the function
of many if not most proteins. ML techniques have been incorporated with traditional pro-
teomic methods to predict and analyze post translational modifications [48,49], including
CNN [50], hierarchical and K-means clustering [51,52]. The Musite suite integrated KNN
with the search for local sequence similarity to known phosphorylation sites, protein disor-
der scoring and amino acid frequency calculation to predict general and kinase-specific
phosphorylation sites [53]. EnsembleGly developed an ensemble classifier of protein glyco-
sylation site based on curated glycosylated protein database and SVM [54]. More recently,
several DL models have been incorporated with other modeling techniques and curated
databases for the prediction of phosphorylation sites [50,55], and protein glycosylation [56].

Fundamental computational challenges in the field of protein analysis include predic-
tion of protein structure from sequence, accurate estimation of structural similarity to infer
homology and prediction of protein contact maps [57,58]. Solving these problems is crucial
for the characterization of protein functions, localization and interactions, and can directly
contribute to many research directions, from deciphering evolutionary history [59] to drug
discovery [60]. Existing computational methods for protein structure prediction that rely
on thermodynamics, molecular mechanics, heuristics, and similarity to previously solved
structures have demonstrated varying levels of success [61–63]. ML and particularly DL
techniques have recently entered this field but have already shown the potential to revolu-
tionize protein structure prediction, inference of homology from structure comparison and
estimation of contact maps.

Numerous ML methods have been developed for protein structural prediction, with
particular success achieved with deep learning architectures [58,64]. The Critical Assess-
ment of Structure Prediction (CASP), which assesses prediction methods and models [64],
recently noted substantial progress in structure modeling by deep learning, in particular,
template free modeling (FM), that is, modeling structure without an existing template, as
opposed to homology modeling. Numerous deep learning methods now require fewer pro-
teins in the input MSA and have demonstrated increasing success in FM modelling [65–71],
primarily due to more precise prediction of contact maps and inter-residue distances [64].
Some methods are narrower in scope and focus on contact prediction [72–75]. The strongest
predictor for CASP13, the most recent CASP with a published report, was AlphaFold [76,77],
a deep learning predictor from DeepMind. The results from CASP14 have not been yet
described in detail but are available online [78]. CASP14 was marked with the striking suc-
cess of AlphaFold2, the next version of AlphaFold, which integrates established sequence
search tools into a deep learning framework. AlphaFold2 employs sequence database
search to construct multiple sequence alignments (MSA), and extracts MSA-based features
that are given as input to a deep residual convolutional neural network [79]. This network
architecture eases the training of deep networks by introducing shortcut connections with
gating functions, that avail the input of lower layers to higher layer nodes in the network.
In CASP14, AlphaFold2 vastly outperformed every other method, both FM and template-
based modeling approaches. The results of AlphaFold2 are so impressive that there seems
to be a realistic possibility that this computational approach could begin to replace the ex-
pensive and time-consuming protein crystallography and even the more efficient cryo-EM.
Regardless of whether and when this promise materializes, it is becoming clear that DL
has already revolutionized protein structure analysis, and rapid and broad improvements
can be expected to occur in the next few years (Figure 2).
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1.3. Integrating ML into Systems Biology

The rapid growth and diversification of biological data calls for an increasingly wide
range of modeling and analysis techniques to be employed in systems biology. With com-
plex omics datasets that are now incessantly accumulating, there is a growing need for
techniques that can integrate different data types, incorporate datasets into established
biological networks and combine different systems biology approaches to investigate multi-
omics datasets. Various ML methods have been developed to utilize multi-dimensional
datasets together with biological networks, study complex interactions and model biologi-
cal systems. ML techniques in network biology can be classified into those that infer the
network architecture and those that integrate existing network architectures with biological
data measurements [80]. Consequently, some of these techniques also require sophisticated
data integration methods to incorporate different data types into a model.

Different ML frameworks have been utilized for the inference of biological networks,
such as the gene regulatory network (GRN) in the DREAM5 project [81] which utilizes
SIRENE [82], a support vector machines-based approach for regulatory networks utiliza-
tion. More recently, a transfer learning technique [83], and a single-cell RNA sequencing
based ML technique [84] have also been proposed for GRN reconstruction. ML methods
also have been employed for the inference of protein-protein interactions (PPI) networks,
for example, by utilizing NMF [85], regression [86], PCA [87] and deep neural networks [88].
Such methods include the recently developed signed variational graph auto-encoder [89],
a graph representation learning method that incorporated graph structure and sequence
information to study PPI networks, PPI_SVM [90], which integrated support vectors
machines with domain affinity and frequency tables, and LightGBM-PPI [91], which uti-
lizes elastic net regression models with different protein descriptors for inference of PPI
networks. In addition, several DL-based techniques have been proposed for PPI network re-
construction [88,92–95]. These methods primarily exploit recent advances in deep learning
architectures to enhance the prediction of PPI networks [93]. Network inference techniques
were additionally developed to advance disease research, and several ML techniques have
been developed to identify drug-target interaction networks using drug similarity [96,97],
by integrated K-means clustering with network analysis [98], or by integrating different
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networks and data types [99,100]. Several DL based techniques have been developed to pre-
dict drug response based on cell line data [101,102], by integrating genomic profiles [103],
or through multi-omics integration [104]. Some methods incorporate chemical properties
of compounds with ML to predict their clinical effects [105–107] and recently, a cancer
network inference technique has been proposed to identify signal linkers which coordinate
oncogenic signals between mutated and differentially expressed genes [108].

ML methods have also been incorporated with established network structures to
analyze diverse biological datasets. ML techniques have been incorporated with biological
networks to predict anti-cancer drug efficacy [109], to model drug response by integrating
prior biological knowledge with different biological data types [110], and by computing
“network profiles” based on PPI networks [111]. Several strategies have been proposed to
employ ML for network-based prediction of drug side effects [112–114] and drug combina-
tions [115], for prediction of synergistic drugs [116,117] and drug repositioning [118–120].
Several studies have used machine and deep learning techniques to investigate properties
of metabolic networks, such as inference of metabolic pathways [121,122], differential
metabolic activity [123] and pathway reconstruction [124,125]. A variety of studies have
integrated information obtained for different data types using ML methods, including the
integration of network and pathway data for the discovery of drug targets [123,126,127], in-
corporation of a pathway-derived mechanistic model with gene expression to identify new
drug targets [128], and inference of the activity of oncogenic pathways in cancer [129,130].
Recent strategies integrate multi-omics datasets with ML techniques to enhance the pre-
diction of pathway dynamics [131] and utilize pathway based multi-omics integration for
patient clustering [132].

With the recent increased availability of multiple, powerful omics techniques (that
is, genomics, transcriptomics, proteomics, and metabolomics), a key emerging challenge
is the integration of different omics platforms. Several methods have been developed
for multi-omics integration using machine and deep learning techniques [133], including
SVM [134,135], KNN [136,137], NMF [138], PCA [139] and CNN [140], for example, for can-
cer subtype and survival prediction [141–143] and for prediction of drug response [143,144],
the paucity of studies systematically comparing different multi-omics integration methods
is a serious bottleneck in the advancement of this field. Such systematic comparison was
recently performed for a subset of the multi-omics techniques aimed at the prediction of
tumor subtype [145]. The lack of standardized techniques and clear recommendation of
methods to use for particular applications may lead to inadequate selection of analysis
strategy and overfitting [146].

1.4. Integrating ML with Genomics and Biomarker Analysis for Disease Research

In recent years, molecular phenotyping using genetic and genomic information has
allowed early and accurate prediction and diagnosis of many diseases, and critically im-
proved clinical decision making [147,148]. In disease research, the key challenges are the
identification of disease-associated genes and mutations for diagnosis, and prediction
of the disease progression and clinical outcome as well as drug response and personal-
ized medicine.

Traditional algorithms for the identification of disease-associated genes and disease-
causing mutations mostly rely on analysis of sequence data, which can be limited for rare
diseases. In addition, some diseases are caused by epigenetic alterations, and thus are not
linked to specific mutations or genetic variation. Therefore, several techniques have been
developed to identify genes that are associated with complex diseases by incorporating
machine and deep learning methods with different types of data, biological networks and
bioinformatic techniques. For example, incorporation of network analysis of differentially
expressed genes with ML allowed the prioritization of disease-genes even without disease
phenotype information [149], hierarchical clustering analysis to differentially expressed
genes revealed genes associated with pulmonary sarcoidosis [150], and integration of
non-negative matrix factorization (NMF) with disease semantic information and miRNA
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functional information uncovered new miRNA-disease association [151]. Other examples
include training machine learning classifiers on gene functional similarities inferred with
Gene Ontology (GO) resulting in successful identification of genes associated with the
Autism Spectrum Disorder [152], and applying ML to features calculated based on protein
sequences, allowing inference of the probability of a protein’s involvement in disease,
without considering their function or expression [153]. Furthermore, recently developed
algorithms allow ML-based visualization of disease relationships, for example, of disease-
phenotype similarity and disease relationships with t-SNE [154,155]. In addition, ML has
been integrated with PPI networks to infer a phenotype similarity score and rank protein
complexes by phenotypes that are linked to human disease [156], to identify topological
features of disease-associated proteins [157], and recently, to identify host genes that are
associated with infectious diseases [158]. Furthermore, ML algorithms have been employed
for the detection and investigation of cancer driver genes, by incorporation of ML with
statistical scoring of genomic sequencing [159], pathway-level mutations [160], mutation
and gene interaction data [161], and by application of deep convolutional neural networks
and random forest for analysis of mutations and gene similarity networks [162,163].

A biomarker is a biological measure that can be used as an indicator of a disease state
or response to therapeutic interventions [164,165]. There are three categories of disease
biomarkers. First, risk biomarkers are used to identify patients that are at risk of developing
a disease. Second, diagnostic biomarkers help detect a disease state and determine the dis-
ease category. Third, prognostic biomarkers help predict disease progression, response to
treatment and recurrence [166]. Various ML approaches, and in particular, feature selection
methods have been applied to discover molecular biomarkers and classify clinical cases. For
example, an approach for the discovery of biomarker signatures has been proposed based
on a pipeline that applies feature selection through integration of different data types with
biological networks [167]. Several machine learning techniques have been developed for
biomarker discovery in cancer, by using protein biomarkers to classify cancer states [168],
and developing biomarkers for early cancer diagnosis from microarray and gene expression
data [169–172], urine metabolomics [173,174] and multidimensional omics data [175–177].
Several methods have been developed that integrate network information with omics data
for biomarker discovery [167,175,178], and some methods incorporated prior knowledge
into feature selection algorithms for biomarker discovery, such as diseases associated
genes [179,180], evolutionary conservation [179,181], pathway information [182–184], and
by applying network feature selection [185,186]. Recently, ML techniques were proposed to
develop biomarkers that match patients to treatments, such as identification of markers that
correlate with enhanced drug sensitivity [103,109,187], and treatment recommendations
with SVM [188] and RNN [189] (Table 1).

1.5. Key Challenges and Future Directions

ML methods including, recently, DL algorithms have become a rapidly growing
research area, redefining the state-of-the-art performance for a wide range of fields [4,5].
Given the rapid growth in the availability of biomedical and clinical datasets in the past
decades, these techniques can be expected to similarly transform multiple avenues of
biomedical research, and indications of their high efficacy are already accumulating. The
success of AlphaFold2 that dramatically outperforms all other existing methods for protein
structure prediction from amino acid sequences [77] is perhaps the strongest case in point.
It appears more than likely that similar efforts will result in breakthroughs in a variety
of biomedical fields through the integration of ML with more traditional bioinformatics
approaches. However, there are several key obstacles that have to be overcome to enable
the development and acceptance of ML solutions to pressing problems in biomedicine.
We discuss some of the most substantial challenges and suggest means to overcome them
through integration of ML frameworks with prior biological knowledge, databases, and
established bioinformatics techniques (Table 2).
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Table 1. Representative problems and methods addressing them by incorporating machine learning (ML) with bioinformat-
ics tools in four areas.

Bioinformatics
Area Problem Category Goal ML Method Bioinformatic Tools

Molecular evolution

Biological sequence
clustering

Protein family prediction CNN
Clusters of Orthologous Groups
(COGs) and G protein-coupled

receptor (GPCR) dataset [30]

Protein function
prediction deep RNN BLAST and HMMER search [32]

Anti-CRISPR proteins
identification

Random forest MSA and PSI-BLAST [24]

EXtreme Gradient
Boosting

K-mer based clustering
(CD-HIT), BLAST [25]

Viral pathogenicity feature
identification SVM MSA, phylogenetic tree

construction [20,21]

Alignment free biological
sequence analysis

Identification of viral
genomes

RNN BLAST, Sequence clustering,
HHPRED [27]

CNN BLAST [28]

protein structure
analysis

Post translational
modifications

Phosphorylation sites
prediction

KNN Local sequence similarity [53]

CNN K-mer based clustering
(CD-HIT), BLAST [55]

Glycosylation sites
prediction ensemble SVM curated glycosylated protein

database (O-GLYCBASE) [54]

Protein structure
prediction

Protein contact prediction CNN MSA [72]

Prediction of distances
between pairs of residues CNN MSA, HHPRED, PSI-BLAST [77]

systems biology

inference of biological
networks

Gene regulatory network
prediction SVM GeneNetWeaver, RegulonDB

[81]

Protein-protein interaction
network prediction

SVM Domain affinity and frequency
tables [90]

Elastic-net regression Protein descriptors [91]

Analysis of biological
networks

Drug target prediction K-means Network analysis tools [98]

Drug side effect prediction SVM Genome scale metabolic
modeling [112]

Drug Synergism
prediction Random Forest Ensemble A chemical-genetic interaction

matrix [117]

Multi-omics integration
Cancer subtype prediction Neighborhood based

clustering
Similarity based integration

[141]

Drug response prediction logistic regression Cancer hallmarks datasets,
pathway data [144]

biomarker analysis
for disease research

Disease-associated genes
investigation

Pulmonary sarcoidosis
genes identification Hierarchical clustering Differential expression analysis

[150]

Identification of
miRNA-disease

association
NMF

Disease semantic information
and miRNA functional

information [151]

Disease-phenotype
visualization t-SNE OMIM database and human

disease networks [154]

Biomarker discovery

Cancer diagnosis SVM Reference gene selection [170]

Biomarker signature
identification SVM Network-based gene selection

[167]

Cancer outcome
prediction Random forest Evolutionary conservation

estimation [181]
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Table 2. Challenges posed for ML and DL in biomedicine, existing strategies to overcome these challenges and proposed
solutions by integrating ML techniques with established bioinformatics approaches.

Problem Bottleneck Example Solutions Potential Integrated ML/DL and
Bioinformatics Solutions

Small and dependent
datasets

Data availability
Restricting the number of

parameters [27,190]
Neural network architectures for

small and sparse datasets
Separating training and test

sets by phylogenetic
similarity [27]

Methods to evaluate data dependency
by protein and sequence similarities

Biological sequence
representation

Methodological
NLP with neural

networks-based modeling
[191–194]

Incorporating amino acid substitution
and codon usage matrices to
representation frameworks

Incorporating conserved domain
databases to the training framework

Incorporation of different
data types Methodological Integration of multi-omics datasets through existing

network topologies

Reproducibility Acceptance

Documentation and
deposition of the processed

data [195]
-

Benchmarking of the
processing pipeline and

optimized parameters [196]
-

Interpretability Acceptance
Incorporation of established bioinformatic methods and databases with

ML and DL frameworks [128,196]
Generation of interpretable DL models [197–199]

A major challenge for the application of ML and particularly DL to biological se-
quences is the representation of nucleotides or amino acid sequences as a sequence of
numbers or vectors. Representation of biological sequences as well as feature extraction
methods for genetic, molecular and clinical data are imperative for the subsequent success-
ful application of ML and DL techniques. The leading method developed for biological
sequence representation is BioVec [191], which includes GeneVec, a representation of gene
sequences, and ProtVec that represents protein sequences. BioVec relies on the Word2Vec
algorithm [200], a natural language processing (NLP) technique that employs a neural
network-based model, and is applied to n-gram representations of the protein sequence.
This approach has been applied to protein family classification and visualization of pro-
teins [191]. More recent methods for distributed representation of biological data operate
by learning gene co-expression patterns [192], representation of cancer mutations [193],
and representation of residue-level sequences for kinase specific phosphorylation site
prediction [194]. These efforts are almost entirely data-driven, and do not make use of
the curated databases and bioinformatic tools that are widely employed for the analysis
of biological sequences. For example, well established matrices that have been designed
to evaluate amino acid substitutions [201] and codon usage [202] could be considered
when encoding biological sequences. Furthermore, numerous manually curated conserved
domains databases that document functional and structural units of proteins [203] could
be integrated into the training and evaluation steps of DL frameworks for protein anno-
tation and functional classification. Incorporation of curated databases and established
bioinformatic matrices into sequence representation methods is expected to enhance the
training, evaluation and interpretability of DL models.

One consequence of the lack of efficient protein sequence representation is a frequent
use of the simplest, assumption-free representation, which is one-hot encoding, where
each position in a sequence is represented by a 20-dimensional vector with 19 positions
set to 0 and the position identifying a specific amino acid set to 1. Although the one-hot
representation can sometimes outperform other scales [204], one-hot encoded protein
sequences are sparse, memory-inefficient and high-dimensional [205]. In addition, one-hot
encoding lacks the notion of similarity between sequences, and thus, is more appropriate
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for categorical data with no relationship between the categories [205]. This could be a
particularly severe problem when a one-hot representation is given to a convolutional
neural network. Most convolutional layers identify spatial patterns in the data, which the
one-hot encoding inherently lacks. By using a sparse, one-hot encoded protein sequences, a
deep convolutional network can wrongly infer similarity patterns and spatial connections
between amino acids, which could be meaningless and could lead to overfitting [206,207].
In addition, a convolution is more likely to capture local and proximal patterns and dismiss
long-range patterns [208], which is problematic for any sparse representation, but especially,
when long-range dependencies are known or suspected to exist in the data. Therefore, it
is crucial to carefully consider the appropriate data representation and neural network
architecture for every prediction problem.

Despite the advent of the big data era, for many major challenges in biomedicine, the
available data are small, sparse, and highly dependent. This is a major problem for training
DL models, which require massive amounts of training data and an independent test set. Bi-
ological data, and especially biological sequence databases, tend to include high proportion
of duplicate or near-duplicate samples [209], which can seriously bias learning algorithms,
especially when duplicates are present between the training and test datasets [210–212].
For the training and evaluation of DL algorithms on highly dependent biological data,
careful data processing is needed to minimize duplicates and near-duplicates and ensure
independence between the training and test sets [27,213]. With the growing availability
and appeal of DL frameworks, the issues of sample size and the independence of biological
data are frequently ignored, so that large-scale models are trained without data filtering
and preparation, and therefore without ever being evaluated on a truly independent test.
To overcome these limitations, it is necessary to develop neural network architectures that
are specifically designed for small and sparse datasets [27,214,215]. In addition, there is a
pressing need for the development of methods that estimate the dependencies between
biological samples using existing bioinformatics techniques (such as clustering of nucleic
acid and proteins by sequence similarity), with subsequent evaluation of the maximum
model size and the number of parameters given the true size of independent samples.

Another important challenge in biomedical applications of ML is the difficulty in in-
corporating different data types. With the growing availability of multi-omics datasets that
combine genomics, transcriptomics, metabolomics and proteomics data, there is a pressing
need for systematic evaluation of the strategies for multi-omics integration techniques,
and for the assessment and development of learning algorithms that can be applied to
integrated datasets. In particular, methods are required for data reduction, visualization,
and feature selection that allow a combined view and evaluation of integrated multi-omics
datasets. Integration of multi-omics datasets through incorporation of curated network
topology can enhance the development of multi-omics ML pipelines, and provide means
for feature connection, selection and reduction based on established biological networks.

Reproducibility is another major issue that has been extensively discussed in the
context of biomedical applications of ML and other computational techniques [216]. Code
sharing and open-source licensing and sufficient documentation and additional recom-
mended practices are crucial factors to allow reproducibility of computational biology
methods [195]. In bioinformatics research, poor reproducibility can also be attributed
to data processing, where different pipelines can differ even in estimations for the same
dataset [217–219]. Documentation and deposition of the processed data are imperative,
and when possible, benchmarking of the processing pipeline and optimized parameters
can substantially increase the reproducibility of ML approaches.

Last but not least, the lack of interpretability is a principal issue impeding the
widespread usage and adaptation of ML, and especially DL techniques in bioinformatics
research. Investigation of the biological mechanisms underlying the success of predictive
models and features is highly desirable for the acceptance and use of these techniques,
and particularly for clinical applications. Despite several important efforts to improve
interpretability of DL models in biomedicine [197–199], model interpretability research in
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genomic and medicine is highly underdeveloped. Common techniques to address the in-
terpretation of concepts learned by a deep neural network include activation maximization,
which identifies input patterns that maximize a desired model response [35,220]; sensitivity
analysis or network function decomposition, aimed to explain the network’s decisions and
input representation [220–222]; and layer-wise backpropagation, which propagates the
prediction to highlight the supporting input features [223]. Use of bioinformatic techniques,
for example, for input representation, will enhance the interpretation of these analyses by
revealing biological implications of the input patterns. Therefore, incorporation of estab-
lished bioinformatics methods and curated databases into ML frameworks is a powerful
way to increase the interpretability of these approaches, enhance their utility and use in
biomedicine, and allow for follow-up investigation and derivation of hypotheses.

2. Conclusions

Machine learning and deep learning in particular are powerful computational tools
that have already revolutionized many domains of research. With the recent expansive
growth of genomic, molecular, and clinical data, ML offers unique solutions for the in-
terrogation, analysis, and processing of these data, and for extracting substantial new
knowledge on the underlying processes. The ML techniques are especially appealing
in computational biology because of their ability to rapidly derive predictive models in
the absence of strong assumptions about the underlying mechanisms, which is typical of
some of the most pressing challenges in biomedicine. However, this unique ability also
imposes serious obstacles for the development and widespread acceptance of the ML and
particularly DL methods, impeding the reproducibility and interpretability of predictive
models. Researchers in biomedical fields often lack the background and skills to perform
or evaluate ML and especially DL analysis, which may lead to erroneous practices and
conclusions [224]. The development of ML frameworks for biomedicine requires expertise
in biology or clinical research, to comprehend and evaluate the strengths and limitations
of intricate biological and clinical data, to be combined with a strong background in data
mining and computational techniques.

Incorporation of ML techniques into established bioinformatics and computational
biology frameworks has already notably facilitated the development of predictive models
and powerful tools in molecular evolution, proteomics, systems biology, and disease
genomics. The reliance on bioinformatics frameworks for data processing, training and
evaluation of predictive models has been instrumental for the use and acceptance of these
techniques in biomedicine, and such integrated approaches present promising solutions
for many of the major obstacles for machine learning in biology and medicine.
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10. Azer, E.S.; Ebrahimabadi, M.H.; Malikić, S.; Khardon, R.; Sahinalp, S.C. Tumor Phylogeny Topology Inference via Deep Learning.
iScience 2020, 23, 101655. [CrossRef]

11. Jafari, R.; Javidi, M.M.; Kuchaki Rafsanjani, M. Using Deep Reinforcement Learning Approach for Solving the Multiple Sequence
Alignment Problem. SN Appl. Sci. 2019, 1, 592. [CrossRef]

12. Yu, X. Introduction to Evolutionary Algorithms; Springer: Berlin/Heidelberg, Germany, 2010.
13. Fortin, F.A.; De Rainville, F.M.; Gardner, M.A.; Parizeau, M.; Gagńe, C. DEAP: Evolutionary Algorithms Made Easy. J. Mach.
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