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Abstract

Chronic infections represent an important burden on the healthcare system and have a sig-

nificant impact on the patients’ quality of life. While Staphylococcus spp. are commensal

bacteria, they can become pathogenic, leading to various types of infections. In this study

we aimed to characterize the virulence profiles of staphylococcal strains involved in difficult-

to-treat skin and soft tissue infections, from both phenotypic and genotypic points of view.

Phenotypic ability of the strains to secrete soluble virulence factors was assessed by a cul-

turing dependent assay and their capacity to develop biofilms on inert substrate was

screened by an adapted crystal violet microtiter method. We also tested the presence of

several virulence genes by PCR. Most of the studied strains were isolated from purulent

secretions of acne lesions and frequently secreted two or three soluble virulence factors.

Most frequently secreted soluble virulence factors were caseinase (89%), lipase (71%) and

lecithinase (67%). Almost half of the strains produced a well-represented biofilm. The

molecular characterization showed the presence of the genes cna, hlg, clfA, and clfB.

Staphylococcal strains that produce difficult-to-treat skin and soft tissue infections seem to

be characterized by an enhanced ability to produce different soluble virulence factors and to

develop biofilms in vitro. Further studies need to be developed in other Staphylococcus spp.

infections in order to confirm this hypothesis.
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1. Introduction

Staphylococcus spp. are generally considered commensal bacteria [1, 2]. However, under

immunosuppression or other conditions, they can produce skin and soft tissue, acute or

chronic infections, osteomyelitis, pneumonia, endocarditis, implantable device associated

infections, and other diseases [3]. Over the last few decades, staphylococcal resistance to antibi-

otics has emerged as an important issue, leading to difficult-to-treat infections and a significant

burden to the healthcare system worldwide.

S. aureus is one of the most important microorganisms involved in nosocomial and com-

munity-acquired infections [4]. Although S. aureus can infect any tissue of the body, the pri-

mary site is most often represented by a breach in the skin [5]. S. aureus is responsible for the

majority of bacterial cutaneous infections, such as surgical site infections, purulent cellulitis,

cutaneous abscesses and many others [2, 6]. More recently, it was observed that cutaneous

infections with community- acquired methicillin-resistant S. aureus (MRSA) have a tendency

to outnumber the hospital-acquired ones [6], increasing the importance of the development of

effective therapeutic alternatives [7]. Novel strategies represented by vaccines, nanoparticle

delivery systems, bioactive antimicrobial materials, drugs targeting microbial virulence, bacte-

rial metabolic activity or other pathogenic mechanisms might represent viable options of treat-

ment [8–13]. The outcome of such approaches is correlated with bacterial virulence and

resistance features [14].

The ability of Staphylococcus spp. to produce acute and chronic infections is due to multiple

and redundant pathogenic determinants [15].

The development of staphylococcal biofilms is related to an increased tolerance to antibiot-

ics as well as to the host’s immune defense mechanisms [13, 16]. The adhesion to organic and

inorganic surfaces represents the first step in the development of staphylococcal biofilms,

achieved through molecules such as teichoic acid, an important component of the bacterial

cell wall [17], staphylococcal protein A, fibronectin binding proteins A and B, and clumping

factors that can interact with the host’s cytokeratin, fibrinogen, fibronectin or loricin [18]. Bio-

film formation can reduce the clearance of bacteria by the host’s neutrophils and macrophages,

can facilitate macrophage cytotoxicity, and promote the apoptosis of keratinocytes [19]. More-

over, S. aureus can produce factors like extracellular fibrinogen-binding protein, extracellular

complement-binding, and complement 4 binding protein that can inhibit C3b-mediated opso-

nization and ensue complement-mediated phagocytosis [4]. Askarian et al., 2016, demon-

strated the role of Desmoglein 1 as host ligand for serine aspartate repeat containing protein D

of S. aureus [20].

In addition to the ability to develop biofilms, S. aureus also secretes soluble virulence fac-

tors, that can disrupt epithelial barriers, promote immune evasion, and augment inflammation

[21], increasing the importance of effective therapies. Staphylococcus spp. produce cytolytic

exotoxins that form small pores in the plasma membrane, leading to the lysis of the host‘s tar-

geted cell [15]. The most well-known cytolytic toxins are the leucocidins, including Panton-

Valentine leucocidin [15]. Another exotoxin produced by S. aureus, α-haemolysin, has the

ability to disrupt cell-matrix adhesion [22]. Moreover, exogenous proteases of S. aureus can

facilitate deeper tissue penetration of environmental antigens [19].

Besides the pathogenic implication of S. aureus, coagulase negative staphylococci species

(CoNS) also influence the skin microbiome homeostasis as well as the skin barrier integrity

[1–3]. It is assumed that the interaction between S. aureus and CoNS by quorum sensing mod-

ulates the virulence of each bacterial species, host-microbiome interactions, as well as immune

responses [3]. CoNS, like S. epidermidis, are able to inhibit the development of S. aureus
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biofilms [19]. Moreover, CoNS can produce autoinducing peptides that inhibit the expression

of S. aureus virulence factors and, consequently, diminish epithelial damage [3].

Despite their commensal status, increasing evidence have changed the awareness of clini-

cians and microbiologists regarding the virulence capacity of CoNS over the last years, as they

became more and more associated with pathogenic processes, especially in the presence of

other risk factors, such as immunosuppression, long-term hospitalization or the use of medical

devices (catheters, prosthetic joints, and others) [6]. The most frequently involved species are:

S. epidermidis, S. haemolyticus, S. saprophyticus, S. capitis, and S. lugdunensis [22]. Similar to S.

aureus, CoNS are able to develop biofilms (up to 71.8% of isolates), exhibit an increased toler-

ance to antimicrobials and immune defense mechanisms, particularly S. hominis and S. hae-
molyticus strains [6, 15].

Thus, factors leading to staphylococcal infections are both host- and bacterial cell-depen-

dent, the fate of infection being influenced by bacterial characteristics (such as bacterial toler-

ance and resistance to antimicrobials or the production of different virulence factors that

promote bacterial adherence and/or invasion) and host defense mechanisms [23]. All these

characteristics favor the survival and persistence of bacteria in hostile environments and lead

to the development of difficult to treat infections with a long and sometimes severe evolution

[15, 24].

The aim of our study was to identify the staphylococcal species involved in difficult-to-treat

skin and soft tissue infections, and to establish their main virulence factors that could correlate

with the severity of the infection. We focused on their ability to develop in vitro biofilms, to

secrete soluble virulence factors, and to detect the presence of relevant virulence coding genes,

which are known for their impact in the outcome of the infection.

2. Materials and methods

We selected one hundred strains of Staphylococcus spp. isolated from patients with difficult to

treat infections (severe acne vulgaris, folliculitis decalvans, hidradenitis suppurativa, chronic

surgical wounds, and other skin and soft tissue infections) between June 2019 and December

2019 in the ‘Cantacuzino’ National Medico-Military Institute for Research and Development

from Bucharest. The study was approved by the ethics committee of the ‘Carol Davila’ Univer-

sity of Medicine and Pharmacy. A written consent was obtained from the patients included in

the study. The experiments were performed in the laboratories of the ‘Cantacuzino’ National

Medico-Military Institute for Research and Development and the University of Bucharest,

Faculty of Biology. The identity of the bacterial strains was confirmed using classical microbio-

logical phenotypic methods and MALDI-TOF MS system. Several phenotypic and genotypic

virulence features of the staphylococcal strains were evaluated.

2.1. Strain identification

2.1.1. Latex slide agglutination test. According to the protocol offered by the producer

(Thermo Scientific™ Staphytect Plus™ Latex Agglutination Test), on a sterile slide one drop of

the Staphytect Plus Control Reagent and one drop of the Staphytect Plus Test Reagent were

dispensed on separate ends of the slide. With a sterile disposable loop 2–3 colonies of 20 hours

culture grown on trypticase soy agar (TSA) were taken. The bacterial culture was emulsified in

the Staphytect Plus Control Reagent drop and the procedure was repeated for the Staphytect

Plus Test Reagent drop. The slide was gently rotated, and agglutination was noted when pres-

ent in the test drop. Autoagglutination was checked in the control drop.

2.1.2. Coagulase test–rabbit plasma method. According to the protocol recommended

by the American Society for Microbiology and the procedure offered by the producer (Bio-
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Rad), freeze dried rabbit plasma was resuspended in the diluent present in the kit and was

used in the following two methods [25]. Bacterial culture was 20 hours old grown on TSA at

35˚C [25].

2.1.3. Slide agglutination test. For each strain, on a glass slide 10 μl of sterile deionized

water were dispensed in two places [25]. Three colonies were emulsified in each drop with a

sterile disposable loop, and in one of the drops 3 μl of plasma were added [25]. The slide was

gently moved, autoagglutination and clumping were noted if present in first 10 seconds [25].

2.1.4. Tube test. For each strain, 500 μl of resuspended rabbit plasma were added in a

glass tube [25]. Subsequently, one colony of bacterial culture was inoculated, and the tubes

were incubated for 4 hours, at 35˚C, without CO [25]. Clot formation was checked hourly by

gently tilting the tube and positive results were noted. After 4 hours the tubes were incubated

for next 20 hours at 25˚C and clot formation was noted [25].

2.1.5. VITEK. Bacterial culture grown 24 hours at 35˚C on TSA were used to prepare a

0.5 McFarland (1.5 x 108CFU/ml) inoculum in 3 ml of 0.45% sterile saline water. ID-GP

(Gram positive identification) VITEK cards from Biomerieux were used on VITEK 2 Compact

System.

2.1.6. MALDI-TOF MS. Bacterial culture grown 24 hours at 35˚C on TSA were placed on

a stainless-steel MALDI-TOF plate with a sterile disposable loop and covered with 1 μl of

Brucker matrix. The identification was done using MALDI Biotyper Compass software. Scores

of� 2 were taken into account. When lower scores were obtained, the procedure was

repeated.

2.2. Phenotypic assessment of biofilm development in vitro
The ability to produce biofilms in vitro, on inert substrate, at 24, 48, and 72 hours was evalu-

ated by violet crystal microtiter method [26]. Despite its limits this is a frequently and impor-

tant screening approach [27].

One hundred fifty μl of simple broth with 15μl bacterial inoculum of McFarland 0.5 (1.5 x

108CFU/ml) were added in each well of a 96 sterile wells plate [26]. The bacterial inoculum

was prepared from bacterial culture of about 20 hours, previously streaked on 5% blood agar

and each sample was inoculated in duplicate for each of the evaluated periods of time [26].

Every 24 hours, one plate was washed three times with 150 μl sterile saline solution (0.9%

NaCl), fixed with cold methanol for five minutes, and colored with violet crystal 1% for 20

minutes [26]. The colorant was washed with distilled water and 150 μl of acetic acid 33% were

added in each well [26]. For the other plates, we gently removed the mix of broth and bacterial

inoculum and added 150 μl of sterile simple broth in each well [26]. At the end, all the plates

were read spectrophotometrically at an absorbance of 492 nm [26]. The ability of tested strains

to produce biofilms was classified according to the averaged values of the duplicates as follows:

the ones with an absorbance <0.2 as weak biofilm producers, between 0.2 and 0.4 as medium

producers and >0.4 as strong (well represented) biofilm producers [26, 28].

2.3. Phenotypic assessment of secreted virulence factors production

The secretion of virulence factors was evaluated by using a culturing dependent assay. Briefly,

nutritive agar base was supplemented with various substrata and biochemical indicators to

allow for the detection of particular bacterial enzymes, either directly by immediate biochemi-

cal reaction or indirectly by pH indicator color change. Microbial strains were previously

grown at 37˚C on nutrient agar. From the 24 hours bacterial culture a bacterial inoculum of

McFarland 0.5 (1.5 x 108CFU/ml) was prepared and was spot inoculated with a 10 μl sterile

loop in Petri dishes with nutritive media containing the specific substratum for: haemolysins,
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lecithinase, lipase, caseinase, gelatinase, esculinase, DN-ase, and amylase detection [28–30].

The strains were incubated for 24 hours at 37˚C, and at 25˚C for the next 48 hours to allow the

production and observation of specific enzymatic virulence factors; their production being

evaluated at 24, 48, and 72 hours incubation [28–30]. While soluble virulence factors secreted

by bacteria are mainly associated with features of invasiveness, tissue destruction, and dissemi-

nation of infection, the development of biofilms are mainly associated with the persistence of

infection, resistance, and tolerance to antimicrobials and host immune defense mechanisms.

The expression of these virulence features might explain the severity of the studied diseases as

well as their chronicization, converting them into difficult- to- treat infections.

For haemolysin production, the strains were spotted on 5% sheep blood agar and the aspect

of the haemolytic zone surrounding the spot was noted [28–30]. For lecithinase and lipase pro-

duction, the strains were spotted onto 2.5% yolk agar, and respectively on 1% Tween 80 agar,

and afterwards the plates were incubated at 37˚C for 24 hours [28–30]. An opaque (precipita-

tion) zone surrounding the spot showed the lecithinase, respectively lipase production; a clear

area can also appear around the spot in the lecithinase test [28–30]. To evaluate the production

of caseinase, the strains were streaked on nutritive agar supplemented with 15% soluble casein,

precipitation surrounding the growth area indicating casein proteolysis [28, 29]. For gelatinase

production, the nutritive agar was supplemented with gelatin; the positive results were consid-

ered when a precipitate formed around the colonies [28, 29]. For DN-ase production, the

strains were spotted on DNA agar medium and after incubation for 24 hours at 37˚C, the

change of colour from light green to pink in the area surrounding the colonies was registered

as a positive reaction [28, 29]. The production of the enzyme esculinase was established using a

medium containing esculin and Fe3+ citrate. The positive result was indicated by the black col-

our after the enzymatic action of beta-galactosidase transforming esculin to esculethol and glu-

cose [28, 29]. Esculethol reacts with the ferric citrate in the media to produce a dark precipitate

[28, 29]. Amylase production was noted after adding iodine solution [28, 29].

The virulence factors production was evaluated with a score from 0 to 4 (0 was the mini-

mum, while 4 was the maximum), depending on the diameter of the culture medium area of

change around the culture spot (as exemplified in Fig 1 for lecithinase test).

2.4. Molecular detection of virulence genes by Polymerase Chain Reaction

Twenty-six strains (13 strains of S. epidermidis, 5 of S. aureus, 4 of S. lugdunensis, 3 of S. hominis,
and 1 of S. capitis), with scores of 3 and 4 for the presence of different soluble virulence factors

were selected and characterized by simplex and multiplex Polymerase Chain Reaction (PCR).

Multiple PCRs were performed in order to detect the presence of the following genes: ebpS
(encoding elastin binding protein), cna (encoding collagen binding protein), fnbA and fnbB
(encoding fibronectin binding proteins A and B), fib (encoding fibrinogen binding protein),

clfA and clfB (encoding clumping factors A and B), bbp (encoding bone sialoprotein binding

protein), coag (encoding coagulase), luk-PV (encoding Panton-Valentine leukocidin), hlg
(encoding hemolysin), and tst (encoding toxic shock syndrome toxin-1; TSST-1). These

sequences are conserved among various Staphylococcus strains and are often used to screen

virulence in this genus [31, 32].

The primers used, their nucleotide sequence, and amplicon expected size can be observed

in Table 1 [33].

The strains were streaked on nutrient agar and after 24 hours 1–5 colonies were added in

20 μl NaOH 0.05M plus SDS 0.25%. The tubes were put for 15 minutes at 95˚C, following to

add 180 μl of TE 1%. After centrifugation for 3 minutes at 13 000 rotations per minute 150 μl

of the supernatant were recovered and stored at 4˚C [33].
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For each PCR, the prepared master mix contained 4 μl of buffer, 0.4 μl of dNTPs, 1.2 μl

MgCl2, 0.1 μl Taq, 0.2 μl of each primer, and the adjusted quantity of water for a total of 19 μl,

plus 1 μl of extracted DNA. The amplification used programs can be observed in Table 2.

For detecting the amplicons, 5 μl of the PCR products were separated in 1.5% agarose gel.

3. Results

Staphylococcus strains were isolated from patients with skin and soft tissue difficult-to-treat

infections such as severe acne vulgaris (42 cases), furunculosis (10 cases), folliculitis decalvans

(21 cases), hidradenitis suppurativa (2 case), postsurgical wounds (5 cases) and other sources

of purulent secretion like wound infections (7 cases) or abscesses (13 cases).

The strains were taxonomically confirmed using classical microbiological phenotypic meth-

ods and MALDI-TOFF MS system. The capacity to produce biofilm was evaluated in vitro by

violet crystal microtiter method, while the ability to produce different soluble virulence factors

was evaluated by using a culturing dependent assay on appropriate media and assessing the

Fig 1. Scoring of lecithinase test according to the area of change around the culture spot.

https://doi.org/10.1371/journal.pone.0246478.g001
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Table 1. Description of primers.

Gene Primers Nucleotide sequence Amplicon expected dimension (bp) Reference

bbp BBP-1 50-AACTACATCTAGTACTCAACAACAG-30 574 Tristan et al., 2003 [34]

BBP-2 50-ATGTGCTTGAATAACACCATCATCT-30

ebpS EBP-1 50-CATCCAGAACCAATCGAAGAC-30 180 Shamsudin et al., 2009 [35]

EBP-2 50-CTTAACAGTTACATCATCATGTTTATCTTTG-30

fnbB FNBB-1 50-GTAACAGCTAATGGTCGAATTGATACT-30 523 Tristan et al., 2003 [34]

FNBB-2 50-CAAGTTCGATAGGAGTACTATGTTC-30

fib FIB-1 50-CTACAACTACAATTGCCGTCAACAG-30 405 Tristan et al., 2003 [34]

FIB-2 50-GCTCTTGTAAGACCATTTTCTTCAC-30

clfA CLFA-1 50-ATTGGCGTGGCTTCAGTGCT-30 288 Tristan et al., 2003 [34]

CLFA-2 50-CGTTTCTTCCGTAGTTGCATTTG-30

clfB CLFB-1 50-ACATCAGTAATAGTAGGGGGCAAC-30 203 Tristan et al., 2003 [34]

CLFB-2 50-TTCGCACTGTTTGTGTTTGCAC-30

fnbA FNBA-1 50-CACAACCAGCAAATATAG-30 1,362 Peacock et al., 2002 [36]

FNBA-2 50-CTGTGTGGTAATCAATGTC-30

cna CNA-1 50-AGTGGTTACTAATACTG-30 560 Peacock et al., 2002 [36]

CNA-2 50-CAGGATAGATTGGTTTA-30

coag COAG-1 50-ACCACAAGGTACTGAATCAACG-30 812 Mullarky et al., 2001 [37]

COAG-2 50-TGCTTTCGATTGTTCGATGC-30

luk-PV LUK-PV-1 50-ATCATTAGGTAAAATGTCTGGACATGATCCA-30 433 Lina et al., 1990 [38]

LUK-PV-2 50-GCATCAASTGTATTGGATAGCAAAAGC-30

hlg HLG-1 50-GCCAATCCGTTATTAGAAAATGC-30 938 Lina et al., 1990 [38]

HLG-2 50-CCATAGACGTAGCAACGGAT-30

tst TST-1 50-CATCTACAAACGATAATATAAAGG-3' 476 Vannuffel et al., 1995 [39]

TST-2 50-CATTGTTATTTTCCAATAACCACCCG-3'

https://doi.org/10.1371/journal.pone.0246478.t001

Table 2. Amplification programs.

Gene Amplification time and temperature

Initial denaturation Denaturation Annealing Primer extension Final extension

Repeating cycles

bbp 94˚C, 5 min 25X 72˚C, 10 min

ebpS
fnbB 94˚C, 1 min 55˚C, 1 min 72˚C, 1 min

fib
clfA
clfB
fnbA 94˚C, 5 min 30X 72˚C, 10 min

94˚C, 1 min 50˚C, 1 min 72˚C, 2 min

cna 94˚C, 5 min 30X 72˚C, 10 min

94˚C, 1 min 55˚C, 1 min 72˚C, 1 min

coag 94˚C, 5 min 40X 72˚C, 5 min

94˚C, 30 sec 55˚C, 30 sec 72˚C, 1.5 min

luk-PV 95˚C, 5 min 30X 72˚C, 10 min

hlg 94˚C, 30 sec 55˚C, 2 min 72˚C, 1 min

tst 94˚C, 5 min 30X 72˚C, 5 min

94˚C, 30 sec 58˚C, 30 sec 72˚C, 2 min

https://doi.org/10.1371/journal.pone.0246478.t002
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various effects. The presence of key virulence genes was assessed by simplex and multiplex

PCRs.

3.1. Strain identification

Of the 100 isolated strains the identified species were Staphylococcus epidermidis (43%, 43

strains), Staphylococcus aureus (36%, 36 strains), Staphylococcus lugdunensis (9%, 9 strains),

Staphylococcus hominis (6%, 6 strains), Staphylococcus lentus (2%, 2 strains), Staphylococcus
saprophyticus (1%, one strain), Staphylococcus simulans (1%, one strain), Staphylococcus war-
neri (1%, one strain), and Staphylococcus auricularis (1%, one strain) (Fig 2). All the samples

included in this study represented single patient isolates.

In what concerns the taxonomic identification the results from MALDI-TOFF MS were

similar when compared with the ones obtained in VITEK testing, for only two strains of S. epi-
dermidis VITEK identification gave two possible results–S. epidermidis or S. hominis.

3.2. Phenotypic assessment of coagulase production

For the 26 strains selected for molecular characterization we also performed phenotypic char-

acterization of their capacity to produce coagulase. The characterization was performed using

latex slide agglutination test, rabbit plasma slide and tube test (Table 3). For rabbit plasma tube

test the results at 4 hours were identical with the ones at 24 hours, in consequence for an easier

data analysis in the following table only one of the recorded results was inserted. The pheno-

typic production of coagulase was in accordance with the identification results performed with

MALDI-TOFF and VITEK. There were only 4 special situations–for three strains (strains

number 10,16 and 17) of S. epidermidis autoagglutination was observed when performing

Fig 2. The distribution of Staphylococcus spp. isolated from skin and soft tissues infections.

https://doi.org/10.1371/journal.pone.0246478.g002
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rabbit plasma slide test and one strain of S. aureus (strain number 11) was negative in the same

test.

3.3. Phenotypic characterization of biofilm development in vitro
Concerning the adherence to inert substrate and biofilm production, most of the strains were

able to develop biofilms. Approximately one third (35%) presented a strong ability to develop

biofilms at 24 hours, increasing to almost half of the strains (49%) at 72 hours (Fig 3). In S.

Table 3. Taxonomy identification and phenotypic coagulase production.

No. strain MALDI-TOFF MS VITEK2 Latex agglutination Rabbit plasma slide agglutination Rabbit plasma tube agglutination

1 S. epidermidis S. epidermidis - - -

2 S. epidermidis S. epidermidis/hominis - - -

3 S. epidermidis S. epidermidis - - -

4 S. epidermidis S. epidermidis - - -

5 S. epidermidis S. epidermidis - - -

6 S. epidermidis S. epidermidis - - -

7 S. lugdunensis S. lugdunensis - - -

8 S. epidermidis S. epidermidis - - -

9 S. aureus S. aureus + + +

10 S. epidermidis S. epidermidis/hominis - Autoagglutination -

11 S. aureus S. aureus + - +

12 S. aureus S. aureus + + +

13 S. aureus S. aureus + + +

14 S. aureus S. aureus + + +

15 S. epidermidis S. epidermidis - - -

16 S. epidermidis S. epidermidis - Autoagglutination -

17 S. epidermidis S. epidermidis - Autoagglutination -

18 S. lugdunensis S. lugdunensis - - -

19 S. aureus S. aureus + + +

20 S. aureus S. aureus + + +

21 S. aureus S. aureus + + +

22 S. aureus S. aureus + + +

23 S. aureus S. aureus + + +

24 S. aureus S. aureus + + +

25 S. epidermidis S. epidermidis - - -

26 S. aureus S. aureus + + +

https://doi.org/10.1371/journal.pone.0246478.t003

Fig 3. The ability of staphylococcal strains to produce biofilms (weak, moderate, strong), evaluated at 24, 48 and

72 hours.

https://doi.org/10.1371/journal.pone.0246478.g003
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aureus it was noticed a higher percentage of strains able to produce strong biofilm, at 24 hours

(44,28% of the strains), 48 hours (44.83% of the strains) and 72 hours (58.62% of the strains),

compared with coagulase negative strains 29.58%, 28.17%, and 45.07%.

3.4. Phenotypic characterization of secreted virulence factors production

Most of the strains produced caseinase (89%), lipase (71%) and lecithinase (67%). The produc-

tion of haemolysins was noticed in 35% of the strains, while esculinase was identified in 27%

of them. A quarter of the strains were positive for DN-ase production, 11% for gelatinase, and

only 2% for amylase.

Only 2 strains were negative for the tested virulence factors, while from the positive ones

(98), the majority expressed two or three of the assessed soluble virulence factors (26, respec-

tively 28 strains).

Regarding the distribution according to the type of infection, most of the tested soluble vir-

ulence factors were identified from acne or other sources of purulent secretions. The majority

of strains isolated from acne produced 2 or 3 virulence factors, while the number of virulence

factors secreted by bacteria from other sources of purulent secretions was relatively homoge-

nous. Of the coagulase-negative strains, 2.83% strains did not secreted any virulence factors,

12.68% secreted only one factor, 30.99% strains secreted 2 factors, 33.8% strains secreted 3 fac-

tors, 7.04% strains secreted 4 factors, 7.04% strains secreted 5 factors, 5.63% strains secreted 6

factors, none of the strains secreted seven virulence factors. Most of the S. aureus strains (9

strains) produced 4 virulence factors (Fig 4). The ability of these strains to produce proteases

(i.e. caseinase) and pore forming toxins (i.e. lipase, lecithinase) could explain the severity of

associated clinical manifestations in such infections, like the development of painful pustules,

nodules and/or cysts. Moreover, we noticed an increased capacity of the strains isolated from

acne or other sources of purulent secretions to produce more virulence factors, than the ones

isolated from folliculitis, furunculosis, hidradenitis suppurativa or postsurgical wounds.

3.5. Molecular characterization of virulence genes

The molecular analysis showed that from the 26 strains, 16 of them (61.53%) harboured the

cna gene, 15 (60%) hlg gene, 15 (60%) clfB gene, 14 (53.84%) clfA gene, 13 (50%) tst gene, 10

(38.46%) fnbA gene, 7 (26.92) coag gene, 6 (23.07%) fnbB gene, 5 (19.23%) luk-PV gene, 5

Fig 4. The distribution of staphylococcal strains by the number of virulence factors secreted (from none to seven)

and by the source of infection. The majority of strains isolated from acne produced two or three virulence factors,

while the number of virulence factors secreted by bacteria from other sources of purulent secretions was relatively

homogenous.

https://doi.org/10.1371/journal.pone.0246478.g004
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(19.23%) fib gene, 2 (7.69%) bbp gene, and none the ebpS gene. The taxonomy and the molecu-

lar virulence profile of each of the analyzed strains can be seen in Table 4.

Of the 15 strains possessing the hlg gene, only six revealed a positive result in the phenotypic

testing (3 strains of S. aureus, and 3 strains of S. epidermidis). The strains positive at PCR for

the bbp gene (2 strains of S. aureus) or the fib gene (1 strain of S. epidermidis and 4 strains of S.

aureus) produced a strong biofilm. For the strains possessing clfB gene, the biofilm production

was strong for four of them (4 strains of S. aureus), moderate for five (four strains of S. epider-
midis and 1 strain of S. aureus), and weak for six (5 strains of S. aureus, and 1 strain of S. epi-
dermidis). For the presence of the fnbA gene, we have not observed a pattern in the biofilm

production, while for the fnbB half of the strains produced a strong biofilm, 3 out of 6 strains,

all S. aureus. In almost a third of the strains the presence of cna gene was associated with a

strong biofilm 6 out of 16 strains (3 strains of S. aureus, 2 strains of S. epidermidis, 1 strain of S.

lugdunensis).
Most of the strains that developed a strong biofilm were isolated from purulent secretions

of other sources (51.61%), a third from acne (32.25%), and less from furunculosis (6.45%),

while for the ones with a weak biofilm production, acne was the main pathology (34%), fol-

lowed by folliculitis (11.76%) and furunculosis (11.76%).

Two of the S. aureus strains harbored nine and ten of the 11 tested virulence genes (strains

19, 20). For other two S. aureus strains we identified a similar virulence profile consisting in

Table 4. Virulence genes profiles of the analyzed strains (“+” and “-” indicate the presence and the absence of the gene).

No. strain Species bbp clfA clfB fib fnbA fnbB tst coag cna hlg luk
1 S. epidermidis - + + - + - + - + - -

2 S. epidermidis - + + - + - + - + + -

3 S. epidermidis - + + - + - - - + + -

4 S. epidermidis - - - - - - + - + + +

5 S. epidermidis - + + - - + + - + - -

6 S. epidermidis - - + + + + - - - - -

7 S. lugdunensis - - - - - - - - + + +

8 S. epidermidis - - - - - - + - - - -

9 S. aureus - + + + + - - + + + -

10 S. epidermidis - - - - - - + - + + -

11 S. aureus - + + - - + + - + + -

12 S. aureus - + + - - + + + + + -

13 S. aureus - + + - + - + + - - -

14 S. aureus - + + - + - - - - - -

15 S. epidermidis - - - - - - - - - - -

16 S. epidermidis - - - - - - - - - - -

17 S. epidermidis - - - - - - - - + + -

18 S. lugdunensis - - - - - - + - + + +

19 S. aureus - + + + + + + + + + +

20 S. aureus + + + + + - - + + + +

21 S. aureus + + + + - + + + - - -

22 S. aureus - + + - + - - - + + -

23 S. aureus - - - - - - - - - - -

24 S. aureus - + + - - - - - - - -

25 S. epidermidis - - - - - - - - + + -

26 S. aureus - - - - - - + + - + -

https://doi.org/10.1371/journal.pone.0246478.t004
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the presence of 7 virulence genes (58.33%), with the exception of coag gene (strains 11, 12).

The other strains harbored 7 different genes (63.63%) (two strains of S. aureus, number 9 and

21), 6 genes (54.54%) (one strain of S. epidermidis and one strain of S. aureus), 5 genes

(45.45%) (strains 1, 3, 5, 13, 22), 4 genes (36.36%) (strains 4, 6, 7, 18), 3 genes (27.27%) (strains

10, 14, 26), 2 genes (18.18%) (strains 17, 24, 25) and 1 gene (9.09%) (strain 8). Only 3 out of

the 26 analyzed strains didn’t exhibit any of the analyzed genes.

Regarding the distribution of genes for each species, the number of virulence genes identified

in S. epidermidis strains varied between 0 and 6 genes. S. aureus harbored between 0 and 10 dif-

ferent virulence genes, and S. lugdunensis had 4 genes. S. aureus strains had a median of 5.5

genes, while for coagulase-negative staphylococci the median number of harbored genes was 4.

Approximately 20% of the strains screened for the presence of genes encoding virulence

factors were S. aureus. Comparing the proportions between S. aureus and coagulase-negative

staphylococci strains having the gene, a two to four times higher number of positive strains

was observed among S. aureus strains for the following genes bbp, clf, clf, fib, fnbB, and tst.

4. Discussion

Staphylococcus spp. colonize a large proportion of the healthy human population, the carriage

rate reported in different studies varying from 37.8% nasal carriers to 54.7% when throat sam-

pling was included [5].

Staphylococcus spp. is also involved in a variety of infections, with multiple localizations

and diverse evolutions [23]. The high variety of staphylococcal infections may be explained

through the diversity of produced virulence factors, surface proteins, polysaccharides,

enzymes, and toxins [23].

According to the results of the present study, all the strains expressed at least one virulence

factor, most frequently being identified the production of caseinase, lipase, and lecithinase.

Although the strains were isolated from localized infections, the identification of these factors

is of great importance. The majority of the staphylococcal strains produced lecithinase, a factor

that contributes to the dissemination of infection, revealing the risk of a severe evolution of an

otherwise localized infection. Moreover, the production of lipase translates into the ability to

convert local host tissues into nutrients vital for bacterial development and also augments the

possibility to penetrate and affect host tissues [40].

The adherence to substrate is significantly increased in the case of difficult to treat infec-

tions. For example, in a study that included 103 strains of S. aureus isolated from nosocomial

infections, more than half of the strains had an adherence index over 80%, most frequently in

an aggregative pattern [40]. The ability to attach to an inert substrate and to develop biofilms

seems to vary depending on the pathology from which the strains have been isolated (infected

skin lesions, respiratory illnesses, and others). In the study of Kot B et al., 2018, the strongest

biofilm was formed by strains originating from infected skin wounds compared to other

infected organs (Eg. respiratory tract) [41]. In our study, the strains from purulent secretions

(including wounds) also showed a significant ability to develop biofilms in vitro.

The types and severity of infections are influenced by the soluble factors produced by bacte-

ria. For example, in some studies, the most virulent strains were isolated from blood cultures

and peritoneal liquid, while in ocular infections were found bacteria with less virulent factors

production [40].

Other studies from our country reported that the most frequently identified genes in Staph-
ylococcus spp. were clfA, clfB, fib, ebpS, less luk-PV or tst, results similar to ours [40, 42].

Studies from other countries report a smaller percent of tst positive strains, like 12.8% in a

study including strains collected from an Iranian hospital [43],<1% in a hospital from Tianjin

PLOS ONE Virulence features of staphylococcal strains isolated from difficult-to-treat skin and soft tissue infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0246478 February 2, 2021 12 / 17

https://doi.org/10.1371/journal.pone.0246478


[44] or none in Benin [45]. On the other side, a study from our country on strains isolated

from skin infections following adverse drug reactions, found no strains harboring the tst gene

[46].

Regarding the harboring of fib gene compared with the approximately 20% presence in our

strains, other Romanian studies reported 14% [46]. For the presence of bbp gene we had simi-

lar results, but for hlg gene we had more than approximately 60% of the strains positive, a

much higher percent than the one of 7%, reported by Gheorghe I et al., 2016 [46]. The impor-

tance of their presence is enhanced by the increased ability of the strains to produce a strong

biofilm. Compared with our results, where more than half of the tested strains presented the

clfA and clfB genes, other studies from our country showed that only 36%, respectively 37% of

the strains had the genes [46].

The presence of clfA and clfB, genes that encode clumping factors have an extremely impor-

tant role in the adhesion to host cells, which might influence the long term and difficult to

treat infections [47]. In difficult to treat infections, most often antimicrobial therapy is not effi-

cient, especially if the isolated strain produces multiple virulence factors, the evolution may

have multiple complications [48]. Alternative therapies must be identified, for example, the

anti-staphylococcal vaccine has started to regain attention [48]. Being frequently identified in

staphylococcal infections, clfA was studied in the development of anti-staphylococcal vaccine,

which administered intra-nasal in mice, reduced the risk of staphylococcal arthritis and renal

abscesses, most probably thanks to a Th1 and Th17 cellular immune response [49]. In the

United States of America, approximately 108 000 persons suffer annually of invasive infections

with MRSA. An estimation of the administration of a staphylococcal vaccine with 40% effi-

ciency and 64% coverage for persons over 65 years old and 35% for the rest, might reduce the

number of infections by 17.6% and the number of deaths by 4,260 [47].

In four strains of S. aureus PCR testing yielded negative results for the coag gene (strains 11,

12, 23, 24). For the same strains phenotypic tests to determine the presence of coagulase (latex

agglutination, rabbit plasma slide agglutination and rabbit plasma tube agglutination) were

positive, except for a negative rapid plasma slide agglutination test in strain 11. Coag gene was

identified only in S. aureus strains. The information from the published scientific literature on

coag gene negative Staphylococcus aureus is scarce, but there exist reports of such genotypic

virulence patterns [50–52]. On the other hand, there were published cases of negative pheno-

typic coagulase tests in S. aureus strains [53, 54]. It was also mentioned the possibility that oth-

erwise considered coagulase negative staphylococci, such as S. lugdunensis and S. schleiferi
subsp.schleiferi, may produce clumping factor [51, 55]. These results may be due to coagulase

gene polymorphism [56], to mutations of the coag gene in the regions of the primers used for

molecular tests, the presence of other factors that may lead to coagulase positive phenotypic

tests, such as other clumping factors coded by clfA or clfB (both positive in strains 11,12, 24)

[51, 57], or others. We aim to perform a systematic review on the subject, to discuss the sensi-

tivity and specificity of different laboratory tests and debate the gold standard use of PCR in

differentiating coagulase negative and positive staphylococci, as well as to conduct a future

study to identify phenotypically and genotypically the coagulase virulence factor in a statisti-

cally relevant number of S. aureus strains.

5. Conclusions

Resistance and tolerance to antimicrobials represent great obstacles in treating staphylococcal

infections, since it was observed that in some cases, although the strains were susceptible to the

majority of available antimicrobial drugs, the evolution was severe and with limited response

to treatment. In these cases, one of the possible explanations might be the virulence profile of
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the strains. We have analyzed 100 Staphylococcus spp. strains obtained from various wounds

and identified a wide range of virulence factors, such as proteases, pore forming toxins, lipases

and DN-ases. The most frequently described virulence features were the protease caseinase

and the pore forming toxin lipase, and almost half of the strains were able to produce a strong

biofilm after 72 hours incubation in standard, static conditions. Most often we identified the

following virulence genes: cna, hlg, clfB, clfA, tst, fnbA and coag, and for the strains possessing

the fnbB, can, bbp and fib gene we noticed a higher biofilm development capacity. The identi-

fied factors are well known for their ability to enhance the bacterial attachment, penetration in

the affected tissue and dissemination, increasing the risk of severe evolution of infection.

Strains isolated from purulent secretions were higher biofilm producers, results supported also

by the molecular analysis, for which the most often identified genes were those involved in

adhesion. Moreover, we observed that the strains isolated from acne produced more frequent

the analyzed virulence factors.

These results support the idea that virulence is a key element in the development of the

infectious process and understanding the diversity and complexity of virulence modulation

represents one of the major alternative strategies for new and personalized therapeutic

approaches.
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