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The immune system produces a diverse repertoire of immunoglobulins in response to 
foreign antigens. During B-cell development, VDJ recombination and somatic muta-
tions generate diversity, whereas selection processes remove it. Using both proteomic 
and NGS approaches, we characterized the immune repertoires in groups of rats 
after immunization with purified antigens. Proteomics and NGS data on the repertoire 
are in qualitative agreement, but did show quantitative differences that may relate to 
differences between the biological niches that were sampled for these approaches. 
Both methods contributed complementary information in the characterization of the 
immune repertoire. It was found that the immune repertoires resulting from each anti-
gen had many similarities that allowed samples to cluster together, and that mutated 
immunoglobulin peptides were shared among animals with a response to the same 
antigen significantly more than for different antigens. However, the number of shared 
sequences decreased in a log-linear fashion relative to the number of animals that 
share them, which may affect future applications. A phylogenetic analysis on the NGS 
reads showed that reads from different individuals immunized with the same antigen 
populated distinct branches of the phylogram, an indication that the repertoire had 
converged. Also, similar mutation patterns were found in branches of the phylogenetic 
tree that were associated with antigen-specific immunoglobulins through proteomics 
data. Thus, data from different analysis methods and different experimental platforms 
show that the immunoglobulin repertoires of immunized animals have overlapping and 
converging features. With additional research, this may enable interesting applications 
in biotechnology and clinical diagnostics.
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inTrODUcTiOn

The basic understanding of the molecular biology that leads to diversity in the adaptive immune 
response emerged around 1980 (1), an effort that was awarded with a Nobel prize for Physiology and 
Medicine for Tonegawa. Yet, it is only in recent years that technology has advanced sufficiently to 
study the population of sequences that results from this recombination process and the subsequent 
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mutation and selection pressures for the formation of mature 
immunoglobulins (2). The high-throughput sequencing meth-
ods that are available allow researchers to obtain a listing of the 
repertoire of sequences that make up the antibodies or T-cell 
receptors that mediate the adaptive immune response. Research 
groups have started using and refining such tools to understand 
the development of immune responses, and envision potential 
applications of information on the immune repertoire.

Yet, it is challenging to obtain a sample for sequencing 
that properly reflects the repertoire of antibody proteins that 
is present in the serum, and even more the repertoire of an 
antigen-specific subset of sequences. One challenge is that not 
all cells with a rearranged immunoglobulin locus express immu-
noglobulin protein. Distinctions have been found between the 
B-cell receptor repertoire and the plasma cell repertoire that 
drives immunoglobulin expression (3). Another challenge is the 
tissue niche that is sampled for obtaining sequence information. 
The immune response is a compartmentalized process that takes 
place in circulating blood, in the interstitial space of (inflamed) 
tissues, and in lymphoid organs, such as lymph nodes, the 
spleen, or bone marrow. The timing and location of the sampling 
sites are likely to affect the immune repertoire that is observed, 
and not all sites are easily accessible, especially in human 
subjects. However, antibodies that are produced as a result of 
an immune response will generally end up in the circulation 
regardless of the site of production. Antibody proteins can be 
collected from serum and affinity-enriched in order to study  
an antigen-specific subset of molecules. For these reasons, 
we here study the immune repertoire with a combination of 
proteomics and NGS. In this way, we can obtain a more compre-
hensive picture of the differences but also similarities that exist 
between individuals after an immune response to a particular 
antigen. The techniques were already combined successfully in 
the past, and can help provide unique but not always consistent 
views on the repertoire (4–8).

We previously found evidence for common features bet ween 
antigen-specific immune sera. The findings are consistent with 
an increasing body of literature that reports commonalities in 
the sequence of immunoglobulins targeting a particular antigen 
(9–14). An immune repertoire consisting of sequences that are 
not unique to an individual is referred to as a public or stereo-
typed response. It is thought that such responses result from the 
selection of specific rearrangements during the initial immune 
response, or the selection of similar somatic mutations through  
a process of convergent evolution of the repertoire.

This experiment was designed with a number of distinguishing 
characteristics that define the data that were collected. First, the 
immune repertoire was studied in a group of laboratory outbred 
animals rather than in a heterogeneous population of human 
subjects. Second, the animals were all immunized with a purified 
antigen rather than with a pathogen that exposes a multitude of 
antigens and epitopes. Finally, the samples were analyzed with a 
combination of proteomics and long-read NGS, two techniques 
that provide complementary on the immune repertories and 
both allow us to examine the entire variable domain of the 
immunoglobulins. With proteomics, affinity-enriched antibod-
ies can be studied, but with limited sequence length or sequence 

accuracy. Our NGS method offers superior depth, read length, 
and sequence accuracy, and in combination the strengths of  
both can be combined. With this dataset, we aim to validate 
our earlier proteomics observations on convergence in antigen-
specific immune repertoires, perform an extended analysis with 
the NGS data, and establish the value of both techniques in the 
study of immune repertoires.

MaTerials anD MeThODs

Wistar rats were immunized and analyzed by proteomics as 
described earlier, and spleen material collected from these 
animals is now used for NGS analysis (10). Rat immunization 
and sample collection was performed by Genovac GmbH 
(Freiburg, Germany) under their local permits and regulatory 
framework. The immunization and three boosts were performed 
with either recombinant HuD or Keyhole Limpet Hemocyanine 
modified with dinitrophenyl (DNP) residues, each time with 
2-week intervals. HuD is an onconeural antigen related to a 
paraneoplastic neurological syndrome (15), and DNP was cho-
sen as a well-defined small epitope. Pre-immune and immune 
sera were collected, as well as a spleen cell suspension. IgG was 
isolated from the sera with Melon Gel (Invitrogen, Carlsbad, 
CA, USA), optionally affinity enriched against HuD or DNP-
ovalbumin immobilized on Aminolink Plus particles (Thermo 
Fisher Scientific, Rockford, IL, USA), digested with trypsin and 
analyzed by a 90 min gradient on a Pepmap Acclaim column, 
coupled to on an LTQ Orbitrap XL (Thermo Fisher Scientific, 
Bremen, Germany) set at 30,000 resolution MS1 in the Orbitrap 
and using dynamic data acquisition to produce CID MS–MS 
spectra in the ion trap.

For NGS, RNA was collected from 50 × 106 total splenocytes 
using Trizol (Life Technologies) and additional cleanup with an 
RNeasy spin column (Qiagen, Germantown, MD, USA). 5  μg 
RNA collected from splenocytes was reverse transcribed to 
cDNA with Superscript III (Invitrogen, Waltham, MA, USA) and 
primers complementary to the constant domains, which included 
a Unique Molecular Identifier segment (UMI; Supplementary 
Material). After the addition of Superscript III, reverse transcrip-
tion proceeded for 40 min at 50°C, after which the enzyme was 
inactivated at 70°C for 15 min. After cDNA product cleanup with 
AmpureXP beads (Beckman Coulter, Indianapolis IN, USA), 
PCR was performed with Phusion proofreading polymerase in 
HighFidelity buffer (New England Biolabs, Ipswich, MA, USA). 
The cDNA was amplified with a multiplex degenerate forward 
primer set and a common reverse primer. Forward PCR primers 
were designed with the HYDEN degenerate primer design tool 
(16) and are listed in the Supplementary Material. The PCR was 
run in a touchdown fashion for 26 cycles, each cycle reducing the 
annealing temperature by 0.5°C starting from 68°C. A final eight 
cycles were performed at 55°C. All extensions were performed 
at 72°C. The PCR product was purified using AmpureXP and 
concentrated by speedvac. Dual-indexed sequencing libraries 
were constructed from 120  ng of PCR amplicon according to 
the manufacturer’s instructions of the Ovation ultralow library 
kit (Nugen, San Carlos, CA, USA) using custom diversity adap-
tors with 1–8 random nucleotides before the PCR amplicon.  
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FigUre 1 | The NGS dataset included a small section of the constant 
domain that allows identification of the class of immunoglobulin. The reads 
were normalized, but the total number of processed reads included for  
each sample has also been plotted in white markers on the right axis. In all 
samples, the majority of reads belonged to the IgG class, followed by IgA 
and the other classes. Differences were observed between subjects but  
no relation to the treatment could be shown.
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FigUre 2 | Unsupervised hierarchical clustering of samples based on NGS 
data on the repertoire of unique CDR3 sequences. Cluster analysis based on 
other regions is provided in the Supplementary Figures.
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The library was quantified by qPCR and sequenced on a MiSeq 
with 2× 300  bp paired end chemistry (Illumina, San Diego,  
CA, USA). Material from all 10 samples was multiplexed in a 
single MiSeq run. Sequencing data were demultiplexed on index 
as well as PCR primer. Paired end reads were combined with 
PEAR and, subsequently, assembled using the MIGEC (17) 
pipeline, which processes the molecular barcode information for 
sequence error correction and to report expression levels with-
out PCR bias. Default parameters were used except a minimum  
UMI count of 1 in MIGEC. The resulting sequences were anno-
tated for germline alleles and regions with the High-VQuest 
service (18), and additional analysis was performed with the 
VDJTools package (19) for clustering of samples and tcR (20) to 
enumerate sequences overlapping between samples. VDJTools 
clustering was performed with the ClusterSamples function 
using the default distance parameter (clonotype overlap frequen-
cies). Phylogenetic trees were built with the FastTree program 
and visualized with the Archaeopteryx viewer (21, 22).

Analyses on proteomics data were performed using Progen-
esisQI for Proteomics 2.3 (Waters, Milford, MA, USA) for 
label-free quantitation and PEAKS Studio 6 (BSI Inc., Waterloo, 
ON, Canada) for sequence identification. Quantification is 
reported by ProgenesisQI as an integrated intensity under the 
isotopic peaks in the mass spectra, normalized for sample load-
ing. Search parameters in PEAKS allowed for a fixed cysteine 
carbamidomethylation and variable methionine oxidation, a 
precursor mass tolerance of 10 ppm and 0.5 Da tolerance for ion 
trap MS–MS spectra and 1 missed cleavage. A search database 
was constructed from productive reads reported by High-VQuest 
from all samples combined. At 239  MB, the FASTA file for  
this database was slightly smaller in size than the common Uniprot 
database. Peptide spectrum matches with a −10logP confidence 
better than 15 were included in further analysis.

Proteomics data are made available for public use at the 
ProteomeXchange Consortium (23) (DOI 10.6019/PXD006484). 
The NGS data can be obtained from the NCBI Gene Expression 
Omnibus as study GSE98855 (24).

resUlTs

The immunizations and proteomics dataset were described in 
earlier work (10). The sequence data were demultiplexed, yield-
ing between 1.0 × 106 and 2.2 × 106 paired end reads per biologi-
cal sample. After processing the raw reads and collapsing those 
sharing the same barcodes, we assessed the class distribution of 
the reads. 79% of the reads related to IgG, followed by IgA, IgM, 
IgD, and IgE (Figure 1). As observed in other studies, the rep-
ertoire distribution was very skewed, showing a limited number 
of clones making up the majority of the expressed repertoire 
(Figure S1 in Supplementary Material).

sample clustering by antigen
It was previously observed that animals immunized with differ-
ent antigens could be distinguished from each other based on 
a cluster analysis on a proteomics dataset of affinity-enriched 
antibodies from the immune sera. A similar approach was per-
formed on the immune repertoire data that were obtained from 

the splenocytes of these animals. The dataset consists of entire 
variable domain sequences, rather than the short peptide frag-
ments that were identified in the proteomics data. Within the 
variable domain of the immunoglobulin, the complementarity-
determining regions 1, 2, and 3 can be found as well as the 
surrounding framework regions. Unique rearrangements can be 
found in the CDR3 regions, and somatic mutations focus on the 
CDR regions but are not uncommon in the framework regions 
either. It is, therefore, of interest to assess several sections of the 
variable domain separately to assess similarities that may cluster 
the samples into groups. The dataset was processed with the 
High-VQuest service to annotate the various immunoglobulin 
regions in the sequence and to enable filtering for functional 
transcripts. The segments of interest were collected, collapsed 
to a unique set annotated with the read number, and the 
ClusterSamples function in the VDJTools package was then used 
to cluster the CDRs 1, 2, and 3 individually, as well as these CDRs 
together with their flanking framework regions. It was found 
that samples could be clustered according to the antigen that 
was used for the immunization based on all segments that were 
assessed, but clustering was strongest based on the CDR3 region, 
and became stronger by the inclusion of the flanking framework 
regions (Figure 2; Figure S2 in Supplementary Material).
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correlation between Proteomics  
and ngs Data
Proteomics data were acquired for both total IgG and affinity-
enriched IgG from all immune sera. The NGS data were derived 
from splenocytes taken at the same point in time from these 
animals. However, the splenocytes do not represent the only site 
of IgG production, and it was, therefore, of interest to investi-
gate the proportion of mass spectra that could be matched to 
reads in the NGS dataset, as well as the correlation between the 
number of reads and the intensity of mass spectrometer signals 
for a matching spectrum.

A database was constructed from all unique immunoglobulin 
sequences observed in all samples combined. This database 
was used to match MS/MS spectra with a PEAKS DB search. 
Affinity-enrichment yields previously suggested that the spe-
cific IgG makes up about 0.1% of the total amount of IgG. On 
the other hand, the spleen may be enriched for immune cells 
related to an active immune response, which would be the 
case after immunization and boosts. As shown in Table S1 in 
Supplementary Material, the fraction of MS/MS spectra that 
could be matched to the NGS results was larger in the case of 
the samples of total IgG than in the case of the affinity-enriched 
samples. This fits with the notion that the affinity-enriched IgG 
is a subset of the total repertoire, and that the splenocytes can be 
involved in immune responses against both the immunogen and 
numerous other antigens. Splenocyte IgG sequences that target 
such other antigens will remain unmatched to proteomics data 
on IgG affinity-enriched for the immunogen. The pre-immune 
sera show an intermediate number peptide spectrum matches, 
indicating an overlap between serum IgG and splenocytes in 
spite of being sampled 3 weeks apart.

While a single unified database was used for identifications, 
we separately compared searches performed with a database 
matching or mismatching the animal used for a proteomics 
sample. As a mismatching database, NGS data from an animal 
of the alternate immunization was used. It was found that a 
matched proteomics-NGS dataset typically yielded more 
peptide spectral matches than an unmatched set, and that a 
matched set yielded more unique hits that were not found in 
the unmatched set than vice versa (Table S2 in Supplementary 
Material). This supports the expectation that some of the 
unique rearrangements in the animals can be detected by 
both the proteomics data and the NGS data, but still about 
75% of the identifications were seen in both the matching and 
non-matching search. Additional searches against a UniProt 
database revealed that the proteomics samples consisted 
primarily of immunoglobulin-related peptides, but abundant 
serum proteins such as albumin or complement factors could 
be observed as well. The total number of PSMs against the rat 
Uniprot database was about 25% of the number found against 
the NGS database.

For all NGS sequences that had a match in the proteomics 
dataset, the number of (UMI corrected) reads containing that 
peptide was annotated for all samples, as well as the signal 
intensity in the proteomics data as determined by label-free 
analysis (ProgenesisQI). A good correlation between RNA and 
proteome data would suggest that the splenocytes are a good 

representation of the expressed repertoire in the serum. It was 
found that the correlation between affinity-enriched IgG and 
the splenocyte RNA was almost absent (median of pairwise cor-
relations 0.06, Figure S3 in Supplementary Material). As above,  
this fits with affinity-enriched IgG as a subset of the total reper-
toire. The correlation of the total serum IgG with the splenocyte 
RNA, while still modest (median of pairwise correlations 0.24), 
was significantly stronger than that of the affinity-enriched data. 
Correlations were not increased in a subset of the data with 
only higher confidence PSMs (−10logP > 40). The incomplete 
correlation suggests that many of the serum antibodies were 
not expressed by the B-cells from the spleen or cells clonally 
related to them, but rather other cell populations, possibly bone 
marrow-resident plasma cells. However, it cannot be excluded 
that the incomplete repertoire coverage depth of, in particular, 
the proteomics data affects the correlations that were found.

shared sequence Motifs
From proteomics data alone, it was previously concluded that 
certain peptides from antigen-specific immunoglobulins are 
shared among different animals, yet unique for the immunogen. 
In the current work, the NGS dataset presents an opportunity to 
validate the proteomics findings with an independent technique 
and to perform a more extensive exploration of the immune rep-
ertoire than was possible with the proteomics approach alone.

A small subset of peptides that was previously identified 
by proteomics as selective for one of the immunogens was 
evaluated in the NGS dataset. The peptide sequence was initially 
uncertain as only de novo interpretation of MS/MS spectra was 
available. As described in the previous section, these MS/MS 
spectra can be searched against a database from the matching 
NGS dataset, and the number of reads for matching sequences 
was enumerated and compared to the proteomics label-free 
quantitation. It was found that, in several cases, multiple unique 
sequences could be a potential match to the MS/MS spectra in 
the proteomics dataset. However, such sequences were always 
quite similar (leucine/isoleucine variants, or residue position 
swaps), and one variant always dominated the number of reads 
(Table S3 in Supplementary Material). The latter is most likely 
to correspond to the peptide that was observed in the proteom-
ics data. Again, we found that the quantitative correlation was 
low, but that both datasets agree qualitatively and corroborate 
the observation that these peptides associate with one of the 
immunogens. This has been illustrated for two of these peptides 
in Figure  3. Some other peptides that were quite abundant 
and shared in proteomics data could only be matched to low 
numbers of reads, or did not find a match at all, showing that 
the overlap between the datasets is not complete.

The size and read length of the NGS repertoire dataset permits 
a more detailed analysis of shared sequence segments. Similar to 
the cluster analysis, it was chosen to compare sharing for CDRs 
1, 2, and 3, for CDRs expanded with the flanking framework 
regions, and for the complete variable domain. The datasets 
were processed in R with the shared.repertoire function of the 
tcR library (20). The output lists the number of reads that were 
observed in each sample for a given shared sequence segment. 
In these data files, it was assessed how many sequences were 
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FigUre 4 | The number of shared peptides that were observed for CDR2 
sequences in the NGS dataset. Peptides that were shared among animals, 
but still unique to one of the antigens were enumerated and shown as a 
function of the number of subjects among whom they were shared, for HuD 
immunized animals (Red), DNP-immunized animals (Blue) and randomized 
groups of mixed composition (black, average ± SD, n = 10). A similar 
analysis for other regions in the immunoglobulin molecule is presented in 
Figure S4 in Supplementary Material.
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FigUre 3 | Data for two peptides [SSSTAFMQLSSLTPDDSAVYYCAR (a); ASGYTFTSYYIGWIK (B)] that were found to be associated with DNP immune sera in 
proteomics data. Shown are signal intensities in proteomics, and the number of reads in NGS data containing the same peptide. Matching DNP samples have been 
plotted with a connecting line.
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shared within but unique to one of the immunogen groups. This 
was done for both immunogen groups and also for randomized 
controls where sequences were to be shared between a mixed 
set of five animals from the dataset. For the latter, the average 
and SD of 10 randomized sets is shown. For all immunoglobulin 
segments that were tested, shared sequences were found in the 
datasets. The number of shared sequences was plotted against the 
number of animals among whom they were shared (Figure 4; 
Figure S4 in Supplementary Material). It was observed in all 
comparisons that the number of shared sequences was largest 
within animals immunized with the HuD antigen and less with 
the DNP antigen. In the scrambled control sets, sharing was less 
than within either HuD- or DNP-treated animals, which were 
typically outside the 95% confidence limit of these controls. The 
presence of shared sequence segments within a mixed control 
group could indicate some sharing events occur by chance alone, 
although all immunized animals were also littermates that did 
share exposure to other environmental factors. Therefore, all 
subjects can share immune responses against antigens other 
than the intended immunogen as well. Figure 4 and Figure S4 
in Supplementary Material showed the extent of sharing for 
peptides that are found in animals treated with one antigen but 
that are not found for the alternate antigen. The analysis was 
repeated for shared peptides but without further constraint on 
presence or absence in animals with the alternate antigen, and 
the results for the CDR3 were also included in a panel of Figure 
S4 in Supplementary Material. Without the constraint more 
shared peptides were found, but differences between antigens 
and random controls were reduced. Similar results were found 
for the other regions of the immunoglobulin molecule. Although 
the absolute number of shared sequences varied depending on 
the region of the immunoglobulin molecule, in all cases the 
number of shared sequences decreased in a log-linear fashion as 
a function of the number of samples in which they were shared.  
If this trend also holds for a larger number of subjects than 
studied here, this implies that the sharing of any single sequence 
segment among all members of a large population that responded 
to an immunogen will be quite rare. This may affect the design  

of diagnostic applications that rely on shared motifs in the 
immune repertoire.

For the CDRs 1 and 2, the number of shared sequences is 
increased when the flanking framework regions are included in 
the analysis. It may seem counterintuitive that longer sequences 
are shared more, but this could be explained by CDR sequences 
that are split up into unique entities because of distinct motifs 
in their framework regions and that are, thus, counted multiple 
times versus only once when considering the CDR alone. This 
observation does not hold for the CDR3, which shows similar 
levels of sharing with and without the surrounding frameworks. 
Possibly this relates to the higher diversity in de CDR3 and the 
lower number of reads per unique CDR3.

We analyzed the size distribution of the CDR3 sequences 
that were shared among animals and compared them to the size 
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distribution for the CDR3 in the entire dataset. We found that 
the shared CDR3 sequences were significantly shorter, which 
is consistent with other reports in the literature (13) (Figure 
S5 in Supplementary Material). While very long CDR3s have 
been associated with long-lasting and well-developed immune 
responses, it has also been shown that shared and shorter CDR3 
sequences still encode for antigen-specific sequences (13, 25). 
While the sharing of shorter CDR3 sequences seems to be favored; 
it is, therefore, still expected that the shared sequences represent 
normal antigen-specific antibodies.

Phylogenetic analysis
In order to interpret the relations between the immunoglob-
ulin sequences in the sample, a phylogenetic analysis was per-
formed. First, the 200 most abundant reads were taken from 
each biological sample, combined and aligned as IMGT-gapped 
amino acid sequences 1–108 and processed with FastTree. The 
result ing data were visualized as a circular phylogram with the 
Archaeopteryx viewer and color coded for the treatment group 
(Figure 5). Several branches can be identified in the phylogram 
that contained reads from only one treatment group, but that 
still represented all animals from that group. This suggests that  
the immunization led to homologous sets of sequences, also 
among the more highly expressed sequences.

While such sequences probably relate to the antigens of 
interest, we further explored phylogenetic relations based on 
a peptide (ASGYTFTSYYIGWIK) that emerged from the pro-
teomics data of affinity-enriched anti-DNP antibodies. While 
this peptide was also found among the high abundant subset 
analyzed above, we computed phylogenetic trees based on all 
productive reads from the MIGEC/High-V-Quest processing 
but for each animal separately. Subsequently, all reads contain-
ing the peptide were highlighted in an unrooted tree diagram 
(Figure 6; Figure S6 in Supplementary Material). These reads, 
probably related to anti-DNP immunoglobulins, clustered in 
distinct branches in the total repertoire. Subsequently, sequences 
from all nodes of such branches were listed, and for each sample 
a weblogo plot was constructed of the sequence repertoire, as 
well as one for the most homologous germline sequence (26). 
In these diagrams, it can be observed that, within the consensus 
sequence, up to four residue mutations are favored at selected 
positions, while otherwise the repertoire does not deviate much 
from the germline sequence (Figure 7).

Proteogenomic analysis of repertoires
The availability of NGS data enables an extended analysis of 
the proteomics data, and also an analysis of some discrepancies 
that were observed in the past. One limitation of bottom-up 
proteomics is the limited sequence length covered by a tryptic 
peptide. The large set of homologous peptides in an immu-
noglobulin digest makes is impossible to reconstruct the full 
protein sequence associated with a given peptide of interest. 
By matching the peptide MS/MS spectrum to the NGS dataset, 
full variable region sequences can be identified that contain the 
peptide of interest. Moreover, these full length sequences may 
contain other tryptic peptides that are also represented in the 
proteomics dataset. Thus, observations from one peptide may 

now be supported by observations on additional peptides from 
the same chain, which could otherwise not be recognized as 
related. We found several examples of such peptides, and indeed 
such peptides showed similarities in their abundance in the 
samples (Figure S7 in Supplementary Material). Still, differences 
were observed as well, which may relate to the fact that, while 
peptides occur within the same chain for a subset of the reads, 
also other reads are present within the repertoire that contain 
either one peptide or the other but not both.

During the analysis of the proteomics dataset, it was observed 
that CDR3 sequences were underrepresented in the results.  
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FigUre 6 | Phylogram generated from productive reads of one of the 
DNP-immunized animals. The peptide ASGYTFTSYYIGWIK was abundantly 
found in affinity-enriched immunoglobulins in the proteomics data. NGS 
reads that contain peptide motif were highlighted in red in the phylogram, 
and show a set of DNP-specific reads in relation to the overall repertoire. 
Figures for the other animals in this group are in Figure S7 in Supplementary 
Material.
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It was unclear whether this related to limitations in sample 
preparation, detection in the instrument, or proper identifica-
tion and recognition of these polymorphic regions as CDR3. 
One cause for poor detection can be long peptide lengths. For 
proteomics, the optimal peptide lengths range between 7 and 
15 amino acids. We performed an in silico digestion of the NGS 
dataset using the Bio:Protease Perl package, and enumerated the 
length of tryptic peptides encompassing the CDR3, defined as a 
peptide with tryptic sites that surround IMGT-numbered resi-
due 107 (Figure 8). The analysis revealed that the distribution 
peaked around 50-aa length, which is a length that adversely 
affects peptide detection. A secondary peak was observed for 
peptides of 2–5 aa, which is rather too short for detection and 
specificity. For comparison, the same algorithm was used to 
process a database with the human subset of the Uniprot protein 
database. That distribution, although long-tailed, peaks within 

the optimal range of 7–15 amino acids and is clearly differ-
ent from CDR3 peptides. The data show that the amino acid 
composition of the CDR3 region is poorly suited for conven-
tional trypsin-based proteomics and would benefit from either 
alternative proteases or from instrumental capabilities for larger 
molecules, such as high mass resolution and ETD fragmentation 
rather than only CID.

DiscUssiOn

The data presented combine NGS and proteomics analysis 
to show that immune responses result in antibody sequence 
fragments that are shared among subjects exposed to the same 
immunogen. The new NGS data provide a much deeper view on 
the immune repertoire, as well as an improved sequence accu-
racy. The proteomics data, however, still allows us to focus on an 
antigen-specific subset of immunoglobulin sequences.

similarity
A cluster analysis of the NGS data confirmed that, indeed, the 
immune repertoire of animals exposed to the same antigen 
contains similarities that allow them to be grouped accordingly. 
While this agrees with a similar analysis on proteomics data, this 
finding is nevertheless remarkable. First, the NGS data are based 
on the entire splenocyte repertoire and not on an antigen-specific 
subset of it. The majority of the repertoire is expected to relate 
to antigens other than the immunogen, but as the animals were 
treated the same except for the immunogen the antigen-specific 
response is the most likely component that drives the clustering. 
Second, it was found that sample clustering could be based on 
all complementarity-determining regions in the immunoglobulin 
molecule, including the CDR3. The latter was poorly represented 
in the proteomics dataset, and is considered the most diverse 
region of the molecule, driven by the random recombination of 
V, D, and J segments. Still, clustering of samples based on CDR3 
sequences followed similar patterns as for the other CDRs, show-
ing that homology and convergence occur in all of them.
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FigUre 8 | Length distribution of tryptic peptides encompassing the CDR3 
region obtained by in silico digestion of reads combined from all samples 
(green). The NGS data were appended with rat IgG2B sequence in order to 
include the first tryptic site located in the CH1 domain. For comparison, a 
similar digestion was performed on the human subset of the Uniprot protein 
database (red). The peptide size range that is optimal for shotgun proteomics 
analysis (7–15aa) has been highlighted in gray.
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shared Motifs
The repertoires of the samples were not only similar, many 
sequences could be identified that were exact matches between 
several animals in the dataset. The sharing of sequences in 
adaptive immune responses has been controversial in literature. 
While sharing has frequently been observed, interpretation 
whether this is a stochastic event driven by random chance, an 
experimental artifact or a selective process that demonstrates 
convergence in the immune repertoire remains under debate 
(11–13, 27–29). We looked into the NGS data for evidence of 
index hopping, an artifact that might explain shared sequences. 
However, we did not find reads with the same sequence and 
UMI barcode in different samples, indicating that the dual-index 
library preparation successfully prevented this problem. From 
the current dataset, we conclude that both chance and selection 
contribute to the sharing of sequences. Observations that sup-
port stochastic contributions are the decrease in the numbers 
of shared sequences as a function of the number of animals in 
which it is observed, the presence of shared sequences among 
animals treated with different immunogens, and shorter size 
distribution of CDR3 sequences in shared subsets compared 
to the total distribution of CDR3 sizes. On the other hand, the 
data show that sequence sharing is consistently higher among 
samples that share the same immunogen, and that samples can 
be properly grouped based on sequence similarities in their 
immune repertoires. Such observations support the view that 
repertoire convergence does indeed occur for the antigens that 
were investigated in this work.

Studies in the literature typically report convergence and 
sharing of the CDR3 region of the heavy chain, as this is known 
as the most diverse and most decisive for antigen specificity 
(13, 30). Here, we extend the analysis to the entire length of the 
variable domain and find that shared motifs can also be identi-
fied in and around the other two CDRs in the molecule. While 
the CDR3 may be the primary determinant of immunoglobulin 
specificity, finding that CDRs 1 and 2 similarly converge in 
response to an antigen indicates that they are still subject to 

somatic mutations and selection pressures and, thus, have a 
considerable contribution to binding (31).

antigen Dependence
Repertoire convergence has been reported for a limited but 
increasing number of antigens and conditions, including 
HIV, tetanus toxoid, Streptococcus pneumoniae, Haemophilus 
influenzae, Dengue fever and Sjögren’s syndrome (9, 11, 12, 
32, 33). We now add evidence for the HuD antigen and DNP 
epitopes and have done so with two independent techniques. 
The question arises whether such sharing can be expected 
from a majority of antigens, or that it should be considered an 
exception. The only definitive answer to this question can be 
provided by collecting a large collection of repertoire data for 
different individuals and antigens. While such comprehensive 
data are still lacking, the number of datasets showing sharing 
or convergence is increasing while datasets that demonstrate 
absence thereof remain lacking. We, therefore, expect the shar-
ing of motifs in the immune repertoire to be a more general 
phenomenon. We did find differences between both antigens in 
terms of the degree of sequence sharing between the repertoires, 
with the HuD antigen consistently sharing more sequence 
motifs than the DNP antigen. The HuD antigen is bigger and 
can expose more epitopes than the small DNP group. However, 
this should not have a big effect, as the NGS data consider not 
a specific subset but all antibodies in the repertoire, which may 
also include those targeting the KLH carrier protein used for 
DNP. Potential artifacts that could explain our observations 
were investigated, but no evidence was found for problems in 
index cross-contamination, or for significant differences in the 
number of reads for the samples. It is, therefore, more plausible 
that antigens differ intrinsically in the amount of sequence 
sharing that they elicit. It is conceivable that the fraction of 
distinct VDJ rearrangements that leads to specific binding 
early in the B-cell response inversely correlates with the degree 
of sharing between individuals, but a more extensive dataset 
covering more than two antigens is required to support that 
concept with evidence.

immuno Proteogenomics
The combined use of proteomics and NGS was intended to 
obtain complementary information on the state of the immune 
repertoire. Indeed, it was possible to find evidence for reper-
toire convergence in both datasets, and specific observations 
could be cross-validated. On the other hand, the degree of 
quantitative correlation between the datasets was limited, and 
the fraction of MS–MS spectra that could be matched to NGS 
reads was relatively low. This suggests that the repertoires of 
expressed serum IgG and splenocyte mRNA overlap, but only 
partially. It has been reported that proteomics identification 
of immunoglobulins is more challenging than that of other 
proteomes (34). Also, as shown in Figure 8, workflows using 
trypsin have challenges for proteomics data that cover the 
CDR3. While specific peptide size distributions may shift for 
other immunoglobulin classes due to their CH1 sequence and 
also for other species, we expect that the length of CDR3 tryptic 
peptides can be a common problem. We did not observe an 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


9

VanDuijn et al. Immune Repertoire after Immunization

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1286

improvement of correlation between proteomics and NGS in a 
subset of high scoring PSMs from the dataset, and we, therefore, 
do not believe that misidentification plays an important role 
in the discrepancies that are observed. Rather, we suspect the 
expression of serum immunoglobulins in niches that were 
not covered by RNA sequencing, such as bone marrow plays 
an important role, as well as the sequencing of RNA of other 
cell lineages that does not encode immunoglobulins, but rather 
the B-cell receptor. Refinement of experimental choices and 
protocols should bring NGS and proteomics data closer into 
alignment, and indeed several successful datasets have been 
described in the literature (7, 8, 35, 36).

Potential applications
While it is clear that many sequences are shared among animals 
exposed to the same antigen, the data also show that the degree 
of sharing drops in a log-linear fashion as a function of the 
number of sharing individuals. This implies that it is unlikely 
that any one sequence motif can function as a marker for a 
large population of subjects. If this would be possible, a simple 
(proteomics) assay for the presence of such an amino acid motif 
could function as a proxy for a variety of immunological condi-
tions, such as response to a vaccination (37), pathogen infection, 
auto-immune disease, or a response against tumor-associated 
antigens. While such an application based on a single peptide 
seems unlikely based on the current dataset, it is still conceivable 
that a panel of peptides or peptide homology to a conserved motif 
could fulfill such a purpose. A test based on composite markers 
would be more complex, and proper discovery and validation 
of such markers would require more extensive datasets that 
protect against false discovery and give sufficient confidence that 
a candidate motif indeed is predictive of an immune response in 
a larger population.

Other applications may include the identification of specific 
clonal expansions in immune sera for the production of mono-
clonal antibodies, or characterization of immune responses 
that target pathogens or in auto-immune conditions. In recent 
work, it has been shown that in the T-cell receptor, sequences 
are not only shared between individuals, but it is even feasible to 
predict epitope specificity based on new unseen sequence data 
(38, 39). Extension of such methods to immunoglobulin reper-
toires could accelerate the development of new applications of 
repertoire analysis.

An important aspect of future work is the location of  
sampling for repertoire analysis. Lymphoid organs and lympho-
cytes infiltrating at disease locations are very much of interest, 

but may be unrealistic sampling locations for many human 
applications. A comparison of such sampling locations with more 
readily accessible PBMCs, also in relation to time after antigen 
exposure, could help decision making on the best strategy in 
the development of new applications. Such an analysis could 
also include a comparison on which combination of cellular 
compartments best reflects immunoglobulin proteins that can 
be observed in serum, and which combination of compartments 
is most representative for the immunology of localized disease 
processes in an organism. It is also conceivable that the sharing 
of sequences that we observe in spleen and serum is more pro-
nounced when considering a distinct niche, for example local 
to the disease. While modern NGS and proteomics techniques 
provide rapidly expanding views on the makeup of the adap-
tive immune response, the underlying processes and dynamics 
remain incompletely understood.
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