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Abstract

Background

Discrimination between glioblastoma (GB) and radiation necrosis (RN) post-irradiation

remains challenging but has a large impact on further treatment and prognosis. In this

study, the uptake mechanisms of 18F-fluorodeoxyglucose (18F-FDG), 18F-fluoroethyltyro-

sine (18F-FET) and 18F-fluoromethylcholine (18F-FCho) positron emission tomography

(PET) tracers were investigated in a F98 GB and RN rat model applying kinetic modeling

(KM) and graphical analysis (GA) to clarify our previous results.

Methods

Dynamic 18F-FDG (GB n = 6 and RN n = 5), 18F-FET (GB n = 5 and RN n = 5) and 18F-

FCho PET (GB n = 5 and RN n = 5) were acquired with continuous arterial blood sampling.

Arterial input function (AIF) corrections, KM and GA were performed.

Results

The influx rate (Ki) of 18F-FDG uptake described by a 2-compartmental model (CM) or

using Patlak GA, showed more trapping (k3) in GB (0.07 min-1) compared to RN (0.04 min-1)

(p = 0.017). K1 of 18F-FET was significantly higher in GB (0.06 ml/ccm/min) compared to

RN (0.02 ml/ccm/min), quantified using a 1-CM and Logan GA (p = 0.036). 18F-FCho was
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rapidly oxidized complicating data interpretation. Using a 1-CM and Logan GA no clear dif-

ferences were found to discriminate GB from RN.

Conclusions

Based on our results we concluded that using KM and GA both 18F-FDG and 18F-FET

were able to discriminate GB from RN. Using a 2-CM model more trapping of 18F-FDG was

found in GB compared to RN. Secondly, the influx of 18F-FET was higher in GB compared

to RN using a 1-CMmodel. Important correlations were found between SUV and kinetic or

graphical measures for 18F-FDG and 18F-FET. 18F-FCho PET did not allow discrimination

between GB and RN.

Introduction
Differentiating tumor recurrence form radiation necrosis (RN) during follow-up of glioblas-
toma (GB) patients post-treatment remains challenging. The incidence of RN in GB patients
was reported to be 30% and correct diagnosis has a large impact on further treatment and prog-
nosis [1]. The primary mechanisms of RN are vascular endothelial injury or damage to oligo-
dendroglia [2]. Because of the disruption of the blood brain barrier (BBB) in both GB and RN,
contrast enhancement is usually present on both MRI and CT. Therefore these entities cannot
be distinguished based on conventional CT or MRI only. In GB, increased membrane turnover,
vascularity and cellularity found by MR spectroscopy (MRS), perfusion, and diffusion should
lead to suspicion of a tumor [1]. However, in most institutions these techniques are not used
routinely. PET is also promising, possibly able to visualize differences in metabolic activity
between GB and RN. Multiple studies investigated the potential of 18F-fluorodeoxyglucose
(18F-FDG) in discriminating RN from tumor, however, equivocal results have been published
[3–6]. Pöpperl et al. confirmed that recurrence had focal 18F-fluoroethyltyrosine (18F-FET)
uptake with significantly higher uptake compared to non-recurrence [7]. A major advantage of
18F-FET is the lack of uptake in inflammatory tissue [8]. Furthermore, 18F-fluoromethylcho-
line (18F-FCho) was suggested to be promising in separating RN form tumor recurrence
[9,10,11]. At present, 18F-FCho is mainly used for restaging of prostate cancer in case of bio-
chemical relapse [12]. Degrado et al. introduced 18F-FCho for brain tumor imaging [13]. The
potential of 18F-FDG and 18F-FET using standard uptake values (SUV) was confirmed in our
previous in vivo study. Using 18F-FCho PET, uptake in GB was not significantly different from
RN [9]. SUV is the most widely used parameter for PET analysis but do not take into account
possible influences on quantification by blood volume and metabolite formation [12,14].
Therefore, our goal was to characterize and further clarify the mechanism of uptake of
18F-FDG, 18F-FET and 18F-FCho in GB and RN quantitatively using kinetic modeling (KM),
as already described in [9]. For 18F-FDG, a two tissue compartmental model with one input
function (2C1i) was proposed [15,16] and suggested to be useful for differentiating high-grade
glioma from brain lymphoma [17]. Our hypothesis suggests a higher k3 in GB compared to
RN. Also Patlak graphical analysis (GA) has been proposed for analyzing 18F-FDG PET
[14,18,19]. Quantification of 18F-FET uptake, mediated by large amino acid transporters
(LAT), B0+ and B0 transport mechanisms [8], has been shown to be feasible using Logan GA
and one tissue compartment model analysis (1C1i) [20]. The only assumptions in applying
Logan analysis were reversible binding of the tracer and linearity of the given expressions,
which are met for FET [14,18,20]. Assuming a higher amount of amino acid transport
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mechanisms in tumor, K1 is hypothesized to be higher in GB than in RN. The kinetic model
for 18F-FCho is not clear because of its oxidative metabolism to 18F-Fluorobetaine (18F-FBet)
[12,20,21,22]. Therefore in this study, next to GA, three compartmental models were evaluated,
including 1C1i, 2C1i and a model using three compartments containing two input functions
(18F-FCho and 18F-FBet) (3C2i).

Materials and Methods

F98 GBmodel
Our GB rat model was optimized previously (Fig 1A–1D) [9]. F98 GB cells, obtained from
ATCC1 (CRL-2397), were inoculated in the right frontal hemisphere (Fig 1A) of 39 female
Fischer F344 rats (Charles River1) (body weight 177±8 g). The rats were anesthetized with
ketamine/xylazine (4/3; 0.13 ml/100 g). Post-surgery, a close follow-up of the animals was per-
formed (body temperature, wound healing and behavior). Animals were kept separately post-
inoculation.

RNmodel
Induction of RN in normal brain tissue in a second group of 34 female Fischer F344 rats
(Charles River1) (209±39 g) was achieved using the small animal radiation research platform
(SARRP, Xstrahl1, Surrey, UK). Conformal arc micro-irradiation was optimized previously
[23]. 3 arcs and a 3x3 mm collimator were used for the delivery of 60 Gy in a single dose
(Fig 1E). RN was confirmed when hyperintense signal on T2-weighted MRI and contrast-
enhancement on T1-weighted MRI was visible (Fig 1F and 1G).

All animals were kept under environmentally controlled conditions (12-h normal light/dark
cycles, 20°C–24°C, and 40–70% relative humidity) with food and water ad libitum. Follow-up
of all animals was done by monitoring their body weight, food, water intake and their activity
and normal behavior. The method of euthanasia was a lethal dose of pentobarbital sodium
(160 mg/kg). Euthanasia was performed prior to the experimental endpoint if a decline of 20%

Fig 1. GB and RNmodel. Location for inoculation of F98 glioblastoma cells ($A), glioblastoma T2-weighted (B) and T1-weighted
contrast-enhanced (C) MRI, hematoxylin and eosin staining (D) confirms the presence of glioblastoma tumor cells (1), central tumor
necrosis (2) and abundant blood vessels in the perinecrotic tumor rim (3), dose plan for radiation therapy inducing RN (E), radiation
necrosis T2-weighted (F) and T1-weighted contrast-enhanced (G) MRI and hematoxylin and eosin staining (H) confirming a large
necrotic area with profound vascular changes (4), surrounded by a rim of macrophages (5).

doi:10.1371/journal.pone.0161845.g001
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body weight was observed or when the normal behavior severely deteriorated (e.g. lack of
grooming). The study was approved by the Ghent University Ethical Committee on animal
experiments (ECD12/28-A2).

Multimodality imaging to localize GB and RN
MRI. Eight days post-inoculation (p.i.) MRI was performed using a 7 Tesla micro-MR sys-

tem (PharmaScan 70/16, Bruker BioSpin, Ettlingen, Germany) to confirm tumor growth in the
GB group. Follow-up of tumor growth was done twice a week p.i. using MRI. Previous optimi-
zation of the RN model showed no lesion earlier than 5 months post-irradiation. Therefore, in
the RN group, longitudinal MRI was performed weekly to detect RN, starting 5 months post-
irradiation. For MRI protocol details, see [9]. Fig 1 shows T2- and contrast enhanced
T1-weighted MRI of GB and RN. In the GB group, in case of confirmed tumor growth on day
eight p.i., PET with arterial blood sampling (ABS) and MRI for tumor delineation were
acquired on day 14–16 p.i.. In the RN group, in case of a confirmed contrast-enhancing RN
lesion on MRI, PET was acquired within the week.

Dynamic PET with ABS. Catheterization. A catheter was placed in the arteria (a.) femora-
lis and vena (v.) femoralis measuring the whole blood AIF without blood loss (Fig 2). Rats were
anesthetized with 2% isoflurane mixed with oxygen (0.3 L/min). Femoral vein, artery and
nerve were separated (microscope, Optika1). The distal end of the vena/arteria was bound and
blood flow was blocked. Using a 25G (BD1) needle an orifice was made to insert a 40 cm PE50
tubing filled with heparine solution (50 U/ml).

PET. Dynamic list mode acquisitions of 20 min for 18F-FCho (GB n = 5 and RN = 5), 55
min for 18F-FET (GB n = 5 and RN = 5) and 60 min for 18F-FDG PET (GB n = 6 and RN = 5)
were acquired (37 MBq). In addition, a 30-min late 18F-FDG PET static scan was acquired 240
min p.i.. All scans were reconstructed into a 200x200x64 matrix by a 2D Maximum Likelihood
Expectation Maximization algorithm (LabPET 1.12.1, TriFoil Imaging1, Northridge CA)
using 60 iterations and a voxel size of 0.5x0.5x1.157 mm. No partial volume corrections were
performed. Time frames for 18F-FDG scans were 12x10s/6x20s/6x1min/10x2min/6x5min, for
18F-FCho 12x10s/6x20s/6x1min/2x5min and for 18F-FET 12x10s/6x20s/6x1min/10x2min/
5x5min.

PET quantification
Semi-quantitative analyses. Details on SUV calculation can be found in our previous

publication [9]. The uptake in the last 20 min (18F-FDG and 18F-FET) or the last 10 min
(18F-FCho) was selected to calculate lesion-to-normal tissue ratios (LNRs), analogous to [9].
LNRmean is defined as the ratio of SUVmean in the tumor or RN VOI to SUVmean in the refer-
ence VOI. LNRmax is defined as the ratio of SUVmax in the tumor or RN VOI to SUVmean in
the reference VOI. Cubic VOIs of 3 × 3 × 3 mm located in the contralateral occipital region
were used as a reference.

Quantitative analyses. Calibration factor, dispersion, decay, and delay AIF correction.
The calibration factor was calculated using the calibration TAC and PET. Decay correction was
performed after defining the start time of the acquisition. A delay of 10 s was included. The
AIF was corrected for dispersion using the formula of Convert et al. [24,25]:

Ca ðtÞ ¼ gðtÞ þ tdisp x dg=dt

Ca (t) was the dispersion corrected blood curve, g(t) was the measured blood time-activity and
τdisp was a constant calculated as described by [24].
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Fig 2. Arterial blood sampling set-up. The micro-PET system (FLEX Triumph II, TriFoil Imaging1,
Northridge CA) was used. At a distance of 10 cm the arterial catheter was fixed and inserted in the detector of
the Twilite system (Swisstrace GmbH, Switserland). Using a shunt and a pump system a continuous blood
flow was enabled (200 μl/min). Data acquisition was performed with PMOD (3.405, PMOD technologies1,
Zürich, Switserland). The system was calibrated weekly.

doi:10.1371/journal.pone.0161845.g002
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Plasma-blood ratio. 18F-FDG, plasma-blood ratios were described by Weber et al. [26].
18F-FET plasma-blood ratios were obtained by collecting blood 1-30-55 min (n = 2) and 5-15-
40 min (n = 2) p.i. (37 MBq). 18F-FCho plasma-blood ratios were determined 1-5-15 min p.i.
(n = 3).

Metabolite correction. Metabolite correction was required for 18F-FCho due to its fast oxi-
dation in the liver and kidneys (S3 Fig). Metabolites in plasma were determined using the
method of Bansal et al. [27]. Aqueous and organic fractions were separated and counted. The
aqueous layer (100 μl) was injected to a HPLC column (Alltech1, Grace). The HPLC consisted
of a Waters 1525 binary pump (Waters, Milford, MA, USA), a Waters Breeze data acquisition,
and an Alltima silica NP column (5 μm, 10x250 mm). The eluent was collected in 30-sec frac-
tions and measured using a γ counter (Cobra1, Packard Canberra).

Kinetic modeling. KM was performed using PMOD selecting 2C1i for 18F-FDG, 2C1i or
1C1i for 18F-FET and 2C1i, 1C1i or 3C2i for 18F-FCho. For FDG a lumped constant (LC) of
0.89 was selected [28] and the plasma glucose level was determined in a rat with 6 h food depri-
vation. The models were described by micro-parameters: K1, k2, k3 and k4 [15]. The influx (Ki)
was calculated as K1

�k3/(k2+k3) and the phosphorylation rate (Kp) as k3/(k2+k3). The distribu-
tion volume Vd (K1/k2) was quantified when applying 1C1i. Tracer plasma curves were fitted
using a three-exponential decay function [22]. Model fitting was optimized by (1) visual
inspection, (2) evaluation of standard errors (SE), and (3) goodness-of-fit displayed by the
Akaike information criterion (AIC), Schwartz criterion (SC) and model selection criterion
(MSC). The AIC criterion estimates an information-theoretic measure, the Kullback—Leibler
distance, which quantifies the information lost, if a model is used which only approximates the
true model [29]. The Schwartz criterion (SC), also called Bayesian Information Criterion
(BIC), attempts to identify a posteriori what the most probable model is for a particular data
set. The SC is similar to the AIC but includes an additional penalty for the number of data
points and therefore favors simpler models [30]. Another criterion used in the Scientist Soft-
ware (MicroMath, Saint Louis, Missouri USA) is the Model Selection Criterion (MSC) [31].
The preferred model is the one with the lowest AIC value, the lowest SC value and the highest
MSC value. No threshold was applied.

Graphical analysis. Patlak regression was applied characterizing 18F-FDG, 18F-FET and
18F-FCho uptake. If the data were consistent with this model, the curve became linear with a
slope Ki (= K1.k3/k2+k3) and an intercept V (distribution volume). Logan GA was applied to
the 18F-FET and 18F-FCho data. The slope K represented K1/k2 for 1C1i and K1/(k2(1+k3/k4))
for 2C1i [14,18]. Parametric images of Ki and Vt were calculated and a Gaussian smoothing fil-
ter (FWHM 1�1�1 mm) was applied (Fig 3).

Statistical analysis
Statistical analysis of the SUV, LNRs, KM and GA derived variables between GB and RN was
performed using the Mann-Whitney U non-parametric test. Spearman correlations (Rs)
between SUV variables and kinetic/graphical measures were calculated. A probability value
p< 0.05 is considered statistically significant.

Results

GB and RNmodel
GB. Eight days post-inoculation, a contrast-enhancing tumor was visible on MRI in the right
frontal region (n = 31). Confirmation MRI was negative in 8 rats. Typical MRI showed hyper-
intense signal on T2-weighted MRI (Fig 1B) and contrast enhancement on T1-weighted MRI
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(Fig 1C). On the day of PET imaging, the mean contrast enhancing tumor volume on
T1-weighted MRI was 99 ± 73 mm3 (n = 16). GB histology was confirmed (Fig 1D) [9,23].

RN. In 15 rats RN was visible on MRI 31±6 weeks post-irradiation and these were included
for PET with ABS. If no lesion was visible 34±4 weeks post-RT, they were not included (n = 17).
RN was characterized by a heterogeneously hyperintense signal in the center on T2-weighted
MRI (Fig 1F), and a heterogeneous hyperintense signal on contrast-enhanced T1-weighted MRI
(Fig 1G). On the day of PET imaging, the mean contrast enhancing tumor volume on
T1-weighted MRI was 36 ± 20 mm3 (n = 15). RN histology was confirmed (Fig 1H) [9].

PET quantification
Semi-quantitative analysis. PET images and SUV analysis are given in S1 Fig.
18F-FDG. On the early 18F-FDG scan, mean SUVmax (7.68±1.92 for GB and 4.54±1.47 for

RN), mean LNRmean (1.5±0.18 for GB and 0.98±0.07 for RN) and mean LNRmax (2.62±0.42 for
GB and 1.24±0.11 for RN) were significantly lower in RN compared to GB (p = 0.017;
p = 0.004 and p = 0.004, respectively). The difference in SUVmax (6.59±1.70 for GB and 3.26
±0.86 for RN), LNRmean (2.33±0.81 for GB vs. 1.29±0.09 for RN) and LNRmax (4.49±0.49 for
GB vs. 1.93±0.25 for RN) was higher on the late 18F-FDG PET images than on the PET images
reconstructed from the last time frame of the dynamic acquisition (both p = 0.008).

18F-FET. Mean SUVmax and SUVmean values are borderline non-significantly different
between GB and RN (p = 0.071). The LNRmean (2.15±0.12 for GB and 1.61±0.17 for RN) and
LNRmax (3.61±0.21 for GB and 2.30±0.34 for RN) were statistically significantly different
between GB and RN (p = 0.036).

18F-FCho. Mean SUVmax and SUVmean were not significantly different between GB (0.69
±0.09 and 0.32±0.08, respectively) and RN (0.87±0.17 and 0.44±0.06 respectively) (p = 0.095).
Also the LNRmean and the LNRmax were not significantly different between GB and RN
(p = 0.095 and p = 0.841, respectively), with slightly lower values for GB (1.49±0.14 and 3.24
±0.77, respectively) compared to RN (1.84±0.31 and 3.63±0.76, respectively).

Quantitative analysis. Dispersion correction. Based on the catheter internal diameter
(spanv = 43.5), withdrawal speed (v = 200 μl/min) and distance between animal and detector

Fig 3. T1- and T2-weighted MRI and parametric maps of the Patlak slope (Ki) and Logan slope (Vt) in GB and RN. Ki of
18F-FDG (row 1) and Vt of 18F-FET (row 2) were higher in GB than in RN. Vt shows heterogeneously increased values both in GB
and RN lesions on 18F-FCho PET (row 3).

doi:10.1371/journal.pone.0161845.g003
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(d = 10 cm), τdisp was 4.63 s [24]. The original blood curves and their dispersion-corrected
blood curves are displayed in S2A Fig.

Plasma-blood ratio. The plasma-to-blood ratios, given in S2B Fig, were included in the
kinetic analysis. The plasma-to-blood ratio for 18F-FDG decreased from 1.59 to 1.04 [26]. For
18F-FET, the ratio slightly increased from 1.10 to 1.30. The 18F-FCho ratio was stable over
time (0.97 to 1.03).

Metabolites of 18F-FCho. The fraction of lipophilic compounds in plasma was lower than
15% for all time points, see S1 Table. More than 85% of the radioactivity was found in the
hydrophilic fraction, which was injected onto the HPLC. One hydrophilic metabolite, assumed
to be 18F-FBet, appeared in plasma and amounts to 29.3% 15 min p.i. The fraction of plasma
radioactivity contributing to 18F-FCho decreased to 17.2%. Phospho-18F-FCho was detected
at low plasma concentrations (2.8% 15 min p.i.). Metabolite correction was applied including a
parent fraction curve in the analysis described by a 3-exponential function. The 18F-FBet frac-
tion curve was included applying 3C2i.

Kinetic modeling. Complete results are shown in S4 Fig and Table 1. For a graphical illustra-
tion of the results, see S4 Fig.

18F-FDG. S4A Fig. Plasma glucose level was 3.44 mmol/l. Mean k2 was significantly higher
in RN (0.28±0.03 min-1) than in GB (0.19±0.04 min-1) while mean k3 was significantly higher
in GB (0.07±0.03 min-1) than in RN (0.04±0.01 min-1) (p = 0.009 and p = 0.017, respectively).
K1 was not significantly different between GB and RN (p = 0.662) and k4 = 0 min-1 gave opti-
mal SE values. Both Kp and Ki were significantly higher in GB compared to RN (p = 0.004 and
p = 0.030, respectively).

18F-FET. S4B Fig. AIC and SC values were significantly different applying 1C1i compared
to 2C1i in GB (both p = 0.05), while no significant difference was found in RN (p = 0.917 and
p = 0.754, respectively). Equally, the MSC was only significantly different between 1C1i and
2C1i in GB (p = 0.05). In the RN group 1 MSC outlier value was detected. SEs were as low as
possible applying 1C1i, while high values of k3 SE (%) were found applying 2C1i (not shown).
Based on these observations, 1C1i was selected (Table 1). Data from 2 GB rats was excluded
because of unreliable data; in one animal due to a blood clot in the venous catheter influencing
the AIF and in another lesion due to a complete mismatch of the fitted TAC and the data
points in Pmod. K1 was significantly higher in GB (0.06±0.01 ml/ccm/min) compared to RN
(0.02±0.01 ml/ccm/min) (p = 0.036). k2 was not significantly different in GB (0.05±0.01 min-1)
compared to RN (0.05±0.01 min-1) (p = 0.250). Mean Vd was significantly higher in GB (1.09
±0.18 ml/ccm) than in RN (0.53±0.10 ml/ccm) (p = 0.036).

18F-FCho. S4C Fig Visual analysis of the fitted curves revealed comparable fits applying 1C1i
and 2C1i while bad fits were obtained applying 3C2i (not shown). No significant different AIC,
SC andMSC values were found between 1C1i and 2C1i in GB and RN. Applying 3C2i, higher
AIC and lower MSC were obtained compared to 1C1i/2C1i (Table 1). SEs were as low as possible
applying 1C1i, while high outlier values were found for k3 and k4 applying 2C1i and 3C2i, both in
GB and RN. As such, 1C1i was selected. K1 (0.11±0.03 ml/ccm/min in GB and 0.10±0.02 ml/ccm/
min in RN) and K2 (0,05±0,02 min-1 in GB and 0,07±0,01 min-1 in RN) were not significantly dif-
ferent between GB and RN (p = 0.530 and 0,251, respectively). Consequently, Vd was not signifi-
cantly different between GB (2.33±1.07 ml/ccm) and RN (1.43±0.37 ml/ccm) (p = 0.117).

Graphical analysis. Complete results are shown in S4 Fig and Table 1. For a graphical illus-
tration of the results, see S4 Fig.

18F-FDG. S4A Fig. Visually, a good fit was obtained by Patlak GA. Ki was significantly
higher in GB (0.04±0.01 ml/ccm/min) compared to RN (0.02±0.01 ml/ccm/min) (p = 0.017),
visible on the parametric maps (row 1, Fig 3). Ki (2C1i) was strongly correlated with the Patlak
slope with a Spearman correlation coefficient of 0.98 (p = 0.01).
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18F-FET. S4B Fig. Assuming that 18F-FET is a reversible bound tracer, Logan GA was
selected. An acceptable visual fit and SEs were obtained. Vt was significantly higher in GB (1.09
±0.20 ml/ccm) than in RN (0.52±0.06 ml/ccm) (p = 0.036). Parametric images showed a het-
erogeneous increased Vt in GB. In RN, Vt was slightly increased but showed a more homoge-
neous distribution (row 2, Fig 3). Vd and Vt were strongly correlated, with comparable values
(Spearman’s rho = 0.881).

18F-FCho. S4C Fig. Both Patlak and Logan GA were performed. Visually, a better fit was
obtained using Logan GA. However, the SEs of Ki were lower than the SEs of Vt. Both Ki (0.05
±0.02 ml/ccm/min in GB and 0.05±0.01 ml/ccm/min in RN) and Vt (1.02±0.26 ml/ccm in GB
and 0.96±0.20 ml/ccm in RN) were not significantly different between both groups (p = 0.465
and 0.602, respectively) (Table 1). Parametric images of Vt showed increased values within GB
and RN compared to normal brain tissue (row 3, Fig 3). Ki (2C1i) and Vd (1C1i) were not cor-
related with Ki and Vt, with a Spearman’s rho of 0.042 and 0.006, respectively.

Correlation between semi-quantitative and quantitative analysis. Spearman correla-
tions (Rs) between the kinetic/graphical measures and SUV variables were calculated for each
tracer. Rs and p values can be found in Table 2.

18F-FDG. Both on early and late 18F-FDG PET k2 was significantly negatively correlated
with SUVmax, LNRmean, and LNRmax (p = 0.038/0.002/0.016 and p = 0.011/0.010/0.015). K3

Table 2. Spearman correlation coefficients (Rs) between kinetic/graphical measures and SUV.

SUVmax SUVmean

Rs* p Rs* p

18F-FDGearly K1 0.509 0.110 0.818 0.002

k2 -0.555 0.011 -0.282 0.401

k3 0.765 0.006 0.565 0.070

Kp
# 0.791 0.004 0.564 0.071

Ki
£ 0.873 <0.001 0.791 0.004

Ki Patlak
¶ 0.900 <0.001 0.755 0.007

18F-FDGlate K1 0.406 0.244 0.503 0.138

k2 -0.661 0.038 -0.685 0.029

k3 0.663 0.037 0.523 0.121

Kp
# 0.806 0.005 0.697 0.025

Ki
£ 0.673 0.033 0.782 0.008

Ki Patlak
¶ 0.733 0.016 0.782 0.008

18F-FET K1 0.838 0.009 0.838 0.009

k2 0.855 0.007 0.855 0.007

Vd
§ 0.024 0.955 0.024 0.955

Vt Logan
k -0.024 0.955 -0.024 0.955

18F-FCho K1 0.207 0.567 -0.085 0.815

k2 0.261 0.467 0.067 0.854

Vd
§ 0.006 0.987 -0.085 0.815

Vt Logan
k 0.273 0.446 0.006 0.987

* Spearman correlation coefficients (Rs),
# Phosphorylation rate (Kp),
£ Influx rate (Ki),
¶ Slope of the Patlak curve-metabolic flux (Ki),
§ Distribution volume (Vd),
k Total distribution volume (Vt).

doi:10.1371/journal.pone.0161845.t002
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was significantly positively correlated with SUVmax, both on the early (p = 0.037) and late
(p = 0.006) scan. SUVmax was also correlated with Ki and Kp on the early (p =<0.001/0.004)
and late (p = 0.033/0.005) 18F-FDG PET. Scatterplots of late SUVmax correlations can be found
in Fig 4A.

18F-FET. SUVmax, SUVmean, LNRmean and LNRmax were significantly positively correlated
with K1 (p = 0.009/0.009/0.031/0.002) and k2 (p = 0.007/0.007/0.003/0.022). Scatterplots of
SUVmax correlations can be found in Fig 4B.

18F-FCho. No significant correlations were found between 18F-FCho SUV variables and
kinetic/graphical parameters.

Discussion
The potential of 18F-FDG and 18F-FET SUV analysis for discriminating GB and RN was con-
firmed in our previous publication. SUV values of 18F-FCho PET were not able to differentiate
GB and RN [9]. To clarify those results, in this study, we explored the uptake mechanisms of
the three tracers using KM and GA. KM is the most accurate method to analyze PET but
required ABS and AIF corrections [14]. No metabolite correction was applied for 18F-FDG
and 18F-FET because both are metabolically relatively stable in vivo. The percentage of intact
FET of total plasma radioactivity is 95% 5 min and 87% 120 min p.i., indicating that the frac-
tion of metabolites is low [8]. For 18F-FCho, metabolite correction was necessary due to the
known oxidation of choline in hepatocytes and nephrocytes to betaine, which is an important
donor of methyl groups for synthesis of methionine and serves as an osmolyte (S3 Fig)
[27,32,33]. This side reaction complicates data interpretation of 18F-FCho PET.

A major factor influencing uptake in RN and GB is passive leakage through a damaged
BBB, present in GB due to its aggressive nature and in RN due to irradiation endothelial cell
damage [34]. This will influence K1, which accounts for both the transport of the tracer from
the blood to the interstitial space and the uptake from the interstitial space into the cell by cer-
tain transporters. However, K1 is not able to differentiate between passive leakage and uptake
by a transport mechanism [35]. When a 2C1i was applied to model uptake of 18F-FDG in GB
and RN, k4 was set to zero [15]. K1 was not significantly different between GB and RN. There-
fore, we cannot conclude a higher amount of GLUT in GB compared to RN. A major consider-
ation is that the contribution of passive diffusion of 18F-FDG due to BBB breakdown is
unknown. However we could hypothesize that the K1 in GB influenced by the cerebral blood

Fig 4. Spearman correlation (Rs) scatterplots between kinetic parameters and SUVmax for late 18F-FDG and 18F-FET PET.
Late 18F-FDG SUVmax is negatively correlated with k2 and positively correlated with k3, Ki and Kp (A). 18F-FET SUVmax is positively
correlated with K1 and k2 (B).

doi:10.1371/journal.pone.0161845.g004
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flow, cerebral blood volume, GLUT transport and disrupted BBB is somehow comparable to
the K1 in RN predominantly influenced by severe BBB disruption. Phosphorylation of
18F-FDG by hexokinase (k3/Kp) was significantly higher in GB compared to RN while outward
transportation of non-phosphorylated tracer (k2) was higher in RN than in GB. This implies a
higher influx rate in GB. Using Patlak analysis, Ki was also higher in GB. SUVmax, was posi-
tively correlated with k3, Kp, Ki and the Patlak slope, both using the dynamic or the delayed
18F-FDG imaging protocol (Table 2). A negative correlation was found between SUVmax and
k2, fitting the assumed 2C1i model. This could mean that the differences in SUVmax could be
explained by differences in both k2 and k3. A higher k2 in RN compared to GB could be
explained by the severe vascular damage leading to a faster wash-out. Based on these results
more trapping of 18F-FDG occurs in GB and quantification is possible using KM or GA, how-
ever, GA is not able to discriminate K1 from k3 [14].

Based on the SEs, 1C1i was selected quantifying 18F-FET uptake in GB and RN. This was
assumed due to the Na+-independent route of FET transport via LAT and the Na+- dependent
activity via system B0,+ and B0. Since large neutral amino acids enter normal brain tissue, dis-
ruption of BBB is not a prerequisite for intratumoral 18F-FET accumulation [8, 36]. K1, Vd

and Vt were significantly higher in GB compared to RN, probably by the presence of more L,
B0,+ and B0 transporters in GB. Clinical results in different tumor types indicate that transport
mechanisms of FET may be more complex and one may speculate that FET is selectively trans-
ported by LAT2 [10]. A different K1 between GB and RN might also relate to differences in
cerebral blood flow and cerebral blood volume, which is known to be higher in GB due to
neoangiogenesis. An equal amount of 18F-FET efflux (k2) between GB, mediated by the LAT
antiporter and partially leakage, and RN, mediated by mainly leakage, was shown. Both K1 and
k2 were positively correlated with SUVmax, which could be explained by the antiporter function
of the amino-acid transporter. The significant correlations found between SUV and quantita-
tive measures could indicate that SUV captures the differences in K1 and k2 (Table 2). Though
KM allowed the absolute quantification and better characterization of 18F-FDG and 18F-FET
uptake in GB and RN, looking at the TACs in S2 Fig and based on our previous results [9], it
appears that a static image 40–60 min p.i. was able to differentiate GB and RN as well as the
parametric images derived from the kinetic analysis.

2C1i was expected for quantifying 18F-FCho uptake due to the presumed phosphorylation
of 18F-FCho with subsequent incorporation in cellular membranes [21,22]. The percentage
18F-FCho in plasma decreased rapidly concomitant with the appearance of a hydrophilic
metabolite, most likely 18F-FBet (S3 Fig). Phosphatidylcholine is the most important metabo-
lite of choline. In the mitochondria of liver and kidney choline is oxidized to betaine [27]. Cho-
line is also a precursor of the neurotransmitter acetylcholine. Acetylcholine could also be
synthesized and released from nonneuronal cells, however, its role outside of neurons is not
clearly defined [33]. Uptake of choline radiotracers by muscle is low, however, an increase has
been shown by Bansal et al. over the first 20 min post-injection, most likely reflecting uptake of
betaine metabolites [27]. However, the percentage of total plasma radioactivity attributed to
18F-FBet was lower compared to the literature [22,27,32]. Verwer et al. suggested that this fast
metabolization could play a role in the inability of KM to accurately distinguish between the
first compartment (K1 and k2) and signal originating from blood volume in the VOI and
between K1 and k3 [12]. It was also suggested that K1, partly determined by angiogenesis and
microvessel density, and not the phosphorylation (k3) was the key factor for choline uptake
[21]. This is in line with the assumption that a static uptake value 1 h p.i. could be reliable for
choline kinetics due to the involvement of choline transport in the first minutes, whereas CK
gets involved mostly in the later time period [21]. These assumptions are in favor of a 1C1i
model. Recently, 1C1i with metabolite-corrected AIF was proposed for quantifying 18F-FCho
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uptake in prostate cancer [12]. In this study, quantification of 18F-FCho uptake reached opti-
mal fitting using a reversible model. However, K1 and Vt were not significantly different
between GB and RN. As such, we cannot conclude an increased choline transporter-like pro-
teins mediated transport or a higher expression of CK in GB compared to RN. Unfortunately,
due to the inability of differentiating K1 and k3, the amount of 18F-FCho uptake mediated by
leakage through the damaged BBB or active trapping was not possible. Only uptake by passive
diffusion was negligible due to its polar characteristics [21]. Furthermore, the immediate meta-
bolization raises the question if leakage of 18F-FBet through the damaged BBB played a role.
Probably a more metabolically stable 18F-labeled choline tracer would overcome this fast oxi-
dation problem [37]. As such, although 18F-FCho seemed promising for differentiation of
tumor recurrence and RN in the clinic [38,39], this was not confirmed in our pre-clinical
study. However, we should keep in mind that the metabolism of choline tracers in humans is
slower than in rodents and that the uptake was only investigated in one glioma model
[12,26,32,37].

Conclusion
Using a 2C1i model more trapping of 18F-FDG (k3) was found in GB compared to RN. Sec-
ondly, the influx of 18F-FET was higher in GB compared to RN using a 1C1i model. Important
correlations were found between SUV and kinetic or graphical measures for 18F-FDG and
18F-FET. Based on these results we assume that SUV is able to capture kinetic differences. For
18F-FCho, a 1 compartmental model is suggested for absolute quantification, but does not
allow clarifying the uptake mechanism in GB and RN.

Supporting Information
S1 Fig. Contrast-enhanced MRI and semi-quantitative PET analyses of glioblastoma (GB)
and radiation necrosis (RN). For clarity, the brain is contoured in white. 18F-FDG PET 40–60
min postinjection (A-B-C) and 240 min postinjection (D-E-F). 18F-FET PET 35–55 min post-
injection (G-H-I) and 18F-FCho PET 10–20 min postinjection (J-K-L).
(PDF)

S2 Fig. Blood curves and time activity curves.Whole blood and dispersion corrected blood
curve (A), plasma-blood ratios (B) and time activity curves (TACs) (C) of 18F-FDG, 18F-FET
and 18F-FCho in GB and RN.
(PDF)

S3 Fig. Metabolization pattern of 18F-FCho. 18F-FCho enters the cell by CTL, is mainly
phosphorylated by CK forming PC which, in turn, will be converted to PPC by Pcyt and CPT.
PPC is a major constituent of the cellular membrane. In mitochondria of the liver and kidneys,
choline is oxidized to betaine by CD and BAD, which enters the one-carbon cycle and serves as
a methyl donor in the remethylation of homocysteine to methionine.
(PDF)

S4 Fig. Kinetic modeling and graphical analysis of 18F-FDG (A), 18F-FET (B) and
18F-FCho (C) in GB and RN. Schematic diagram of the selected compartmental model (left)
and fitting parameters, kinetic constants and Patlag/Logan plot (right).
(PDF)

S1 Table. Percentage of 18F-FCho metabolites present in arterial plasma.
(PDF)
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