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Abstract

Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming
increasingly common in biodiversity science. Although several methods have been proposed, many of them are not
universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge
computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods
of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and
three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing
and new methods. The benchmark was performed under two alternative situations: query sequences were available in the
corresponding reference sequence databases in one, but were not available in the other. In the former situation, the
commonly used ‘‘1-nearest-neighbor’’ (1-NN) method, which assigns the taxonomic information of the most similar
sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest
precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high
rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-
nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both
situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially
observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results.
The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or
species level identification in all the barcode loci examined. Therefore, we need to accelerate the registration of reference
barcode sequences to apply high-throughput DNA barcoding to genus or species level identification in biodiversity
research.

Citation: Tanabe AS, Toju H (2013) Two New Computational Methods for Universal DNA Barcoding: A Benchmark Using Barcode Sequences of Bacteria, Archaea,
Animals, Fungi, and Land Plants. PLoS ONE 8(10): e76910. doi:10.1371/journal.pone.0076910

Editor: Diego Fontaneto, Consiglio Nazionale delle Ricerche (CNR), Italy

Received May 27, 2013; Accepted August 25, 2013; Published October 18, 2013

Copyright: � 2013 Tanabe, Toju. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grant-in-aid by Funding Program for Next Generation World-Leading Researchers (GS014) by the Japan Society for the
Promotion of Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: akifumi.tanabe@gmail.com

Introduction

Biodiversity surveys are important when formulating policies for

the conservation of endangered species, assessing the environ-

mental impacts of land development projects, and exploring novel

bioproducts [1,2]. In biodiversity surveys, taxonomic identification

of collected organismal specimens is a major bottleneck process.

Taxonomic identification based on DNA sequences (a.k.a. DNA

barcoding or molecular identification) is promising in that it

enables the application of standardized and high-throughput

taxonomic identification protocols in biodiversity research [3–8].

Given that traditional taxonomic identification based on mor-

phology is often difficult for species-rich lineages of soil fungi,

marine/freshwater plankton, and prokaryotes, DNA barcoding

offers an alternative or supplemental research approach for the

description and identification of these microorganisms [9–12].

Moreover, because extracellular DNA released into soil or water

can be PCR-amplified and/or sequenced [13], the DNA

barcoding of such ‘‘environmental DNA’’ dissolved in water

potentially enables ultrarapid surveys of aquatic macroorganisms

in a lake [14,15]. Consequently, such recent technical develop-

ments and the declining cost of DNA sequencing have increased

the opportunities to utilize DNA barcoding in ecological and

evolutionary studies [13,16,17]. However, the development of a

theoretically firm framework to ‘‘translate’’ raw DNA sequencing

data into organismal taxonomic information is crucial (see Coissac

et al. [18] and references therein).

The existing methods for inferring organismal taxonomy based

on DNA sequencing data are classified into four categories, i.e.,

‘‘tree-based,’’ ‘‘composition-based,’’ and ‘‘similarity-based’’ ap-

proaches, and their hybrids. These approaches vary in their

requirements for reference database information, prerequisite

phylogenetic or machine-learning analyses, and their potential

taxonomic range of application. In the tree-based approach, the

taxonomy of an operational taxonomic unit (OTU) of a query is

inferred by placing the OTU within a given reference phylogenetic

tree as implemented in software such as MLTreeMap [19] and

pplacer [20]. In the composition-based approach, a query
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sequence is assigned to a taxonomic unit based on the pattern-

recognition of a k-mer-length word composition as implemented in

PhyloPythiaS [21], TACOA [22], and RDPClassifier [23]. In this

approach, the word composition of reference sequences needs to

be learned by the programs before performing the taxonomic

assignment of a query sequence. In contrast to these two

approaches that need prerequisite phylogenetic or word-compo-

sition analyses, the similarity-based approach requires only raw

reference sequences with taxonomic information that is available

in public nucleotide databases. Conducting nucleotide (or protein)

BLAST searches [24] and taxonomic assignment manually (i.e.,

with users’ eyes) or by using MEGAN [25] is the most commonly

used method in this approach. SOrt-ITEMS [26] and CARMA3

[27] are also based on BLAST searches and enable automated

BLAST search and taxonomic assignment using their own

similarity cutoff. BRONX [28] also uses a similarity-based method

based on a unique search engine for similar sequences. In

particular, MEGAN assigns a query sequence to the lowest

taxonomic level common to the BLAST-hit database sequences

that are similar to the query sequence (lowest common ancestor

[LCA] algorithm [25]). The hybrid approaches of taxonomic

assignments include a combination of similarity-based and tree-

based approaches as implemented in SAP [29] or a combination

of similarity-based and composition-based approaches as provided

in PhymmBL [30]. For example, ‘‘Barcoder’’ and ‘‘Constrai-

nedNJ’’ algorithms implemented in SAP [29] first conduct similar

sequence retrievals from a reference database using BLAST, and

the multiple sequence alignment of a query and the retrieved

sequences is subsequently performed. Those programs then place

the query OTU within Bayesian [31] or neighbor-joining [32]

phylogenetic trees.

As the size of public nucleotide databases is growing rapidly,

one of the most important measures for choosing among the

existing taxonomic assignment methods is the ability to handle

huge reference sequence databases. The similarity-based method

is therefore promising because it is less computationally intensive

in such preprocessing stages as prerequisite phylogenetic/word-

composition analyses and database construction.

To further explore the possibility of the use of a similarity-based

approach in high-throughput DNA barcoding, the theoretical

background of the approach needs to be rigorously investigated. In

commonly used similarity-based barcoding programs such as

MEGAN [25], users are required to set arbitrary BLAST-search

parameters. For example, in the n%-nearest-neighbor (n%-NN)

approach, the parameter n designates the minimum cutoff identity

in the retrieval of reference database sequences that are similar to

a query. The n%-identical reference sequences are then processed

by the LCA algorithm, wherein the taxonomic unit common to all

the n%-identical sequences is assigned to the query at a taxonomic

level as low as possible (e.g., genus; [25]). An alternative

parameter, k, is similarly used in the retrieval of the k-most similar

reference sequences to a query sequence (k-nearest-neighbor [k-

NN] approach). However, a simple question arises at this point:

how large n/k value should be given? In an extreme situation,

wherein the reference sequences of all potentially observable

species are available in a reference database, the setting k~1 is

expected to return the best result. However, reference nucleotide

databases are far from complete in most organismal taxa (e.g.,

[11]), and hence the optimal n or k values should differ among

queries. Thus, we need to develop a generalized theoretical

criterion that enables us to choose optimal k or n values for each

query.

In this study, we propose two new DNA barcoding methods that

are based on a firm criterion for searching similar sequences. After

describing the details of the new methods, we conducted an

intensive benchmarking exercise using publicly available database

sequences of bacterial/archeal 16S, animal COX1, fungal internal

transcribed spacer (ITS), and three plant chloroplast (rbcL, matK,

and trnH-psbA) barcode loci. The two methods, nearest-neighbor-

centric auto-k-NN (NNCauto) and query-centric auto-k-NN

(QCauto), provided an intuitive theoretical background for the

DNA barcoding of all types of organisms and genetic loci, i.e., they

are universally applicable. As the methods were developed with

the aid of the similarity-based approach, the fast processing of

large data sets was possible. Moreover, the new methods are

characterized by consistently low misidentification rates in the

DNA barcoding of various organismal groups. We present the

results of a benchmark of several existing methods and our new

methods, and thereby review the characteristics of those methods.

Figure 1. Schematic illustration of the relationship between query and reference sequences. A query sequence (filled circle) and
reference sequences similar to the query sequence (open circle) are shown. The range of nucleotide variation of the genus V (gray area) is shown
with reference sequences of species a and b in the genus (A and B, respectively). Distance between the sequences represents genetic distance in the
schematic two-dimensional space. (a) A case in which our new criterion works well. The query falls within the nucleotide variation range of genus V.
(b) A case in which our new criterion might produce misidentification. Because the genetic distance between a query sequence and the sequence
similar to it (A) is smaller than the genetic distance between sequence A and sequence B, the query sequence will be assigned to the genus V under
our new criterion.
doi:10.1371/journal.pone.0076910.g001
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Materials and Methods

Developing and Implementing the New Methods
A previous study has proposed a criterion for choosing an

optimal n/k value [33]. Under the proposed ‘‘all species barcodes’’

criterion, ‘‘the maximum genetic distance between a query

sequence and the reference barcode sequences of the resulting

(output) taxonomic unit needs to be smaller than the minimum

distance between the query sequence and the reference barcode

sequences of all the other taxonomic units’’ [33]. This criterion is

intuitive, but is computationally intensive in the calculation of the

maximum distance between a query and the reference barcode

sequences of the resulting taxonomic unit. This criterion often fails

taxonomic assignment, especially when the presence of the DNA

sequences that lack barcode regions (i.e., non-barcode sequences)

in a database inflates the maximum genetic distance between a

query and the reference sequences of the resulting taxonomic unit.

To solve these problems, we herein propose a new criterion.

The criterion met when ‘‘the maximum genetic distance among

the reference barcode sequences of the resulting taxonomic unit is

larger than the minimum genetic distance between a query

sequence and the reference barcode sequences of all taxonomic

units’’ (Fig. 1). As shown below, we can examine whether this

criterion is fulfilled without undertaking a computationally

intensive calculation of the maximum genetic distance among

the reference barcode sequences of resulting taxonomic units.

Thus, the new methods proposed here are much less computa-

tionally intensive than ‘‘all species barcodes’’ and are free of the

influence of the contamination of non-barcode sequences in

reference sequence databases.

Nearest-Neighbor-Centric Auto-k-Nearest-Neighbor

(NNCauto) Method. The implementation of the NNCauto

method can be summarized in four steps. First, reference database

sequences similar to a query sequence (Q) were BLAST-searched,

and then the nearest-neighbor sequence (A) and its distance

(BLAST raw score) to a query sequence (hereafter, DQA) was

obtained (step I; Fig. 2a). Second, reference sequences similar to A

were also BLAST-searched, and the ‘‘borderline sequence’’ (B),

whose distance to A (hereafter, DAB) was smallest in the sequences

that were farther from A than Q (i.e., DABwDQA), was obtained

(step II; Fig. 2b). Third, a BLAST-search of reference sequences

similar to A was performed again, and then all the ‘‘neighborhood

sequences’’ (hereafter, Ns) whose distance to A was equal to or

smaller than DAB were retrieved (i.e., DAB§DAN, where DAN

represents the distance between A and an N; step III; Fig. 2c).

Finally, a taxonomic unit was assigned to the query at the lowest

taxonomic level where the taxonomic information for all of the

nearest-neighbor (A), borderline (B), and neighborhood (N)

sequences was consistent (i.e., LCA algorithm; step IV). When

multiple nearest-neighbor sequences existed, the borderline (B)

and neighborhood (N) sequences were searched for each nearest-

neighbor sequence (A), and all of the nearest-neighbor (A),

borderline (B), and neighborhood (N) sequences were used in the

LCA process. Because DAB is equal to or smaller than the

maximum genetic distance among the reference barcode sequenc-

es of the resulting (output) taxonomic unit, the new criterion

mentioned above was fulfilled by this method and the query

sequence was expected to fall within the nucleotide variation range

of the resulting taxonomic unit (Fig. 1).

Query-Centric Auto-k-Nearest-Neighbor (QCauto)

Method. In the QCauto method, steps I, II, and IV are the

A

Figure 2. Schematic illustration of the NNCauto and QCauto methods. The processes of the NNCauto method are summarized as follows: (a)
By a BLAST-search of a query sequence (Q), a nearest-neighbor sequence (A) is retrieved. (b) By a BLAST-search of A, a borderline sequence (B) is
retrieved. (c) By an additional BLAST-search of A, all neighborhood sequences (open circles) are retrieved. Finally, the query is identified at the lowest
taxonomic level where the taxonomic information of all the neighborhood sequences including A and B is consistent with each other (i.e., lowest
common ancestor algorithm [21]). In the QCauto method, the processes a and b are shared with the NNCauto method, but neighborhood sequences
are retrieved by a BLAST-search of Q (d). After the search of neighborhood sequences, the query is identified by the LCA algorithm as in the NNCauto
method. A bidirectional arrow indicates genetic distance between two sequences, and a dotted circle represents the range of nucleotide variation
that meets the requirement of a BLAST-search.
doi:10.1371/journal.pone.0076910.g002
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same as in the NNCauto method. In step III of the QCauto

method, the distance between a query (Q) and borderline (B)

sequences (DQB) was calculated. A BLAST-search of reference

sequences similar to the query was then performed, and

subsequently, all the neighborhood sequences (Ns) whose distance

to the query sequences was equal to or smaller than DQB were

retrieved (i.e., DQB§DAN; Fig. 2d). If multiple borderline (B)

sequences existed, the borderline sequence that was closest to the

query (Q) sequence was used in step III. Because DQB is equal to

or smaller than the maximum genetic distance among the

reference barcode sequences of the resulting taxonomic unit, the

new criterion was also fulfilled by this method, and the query

sequence was expected to fall within the range of nucleotide

variation of the resulting taxonomic unit.

The process of the QCauto method is more intuitive than that

of the NNCauto method in that it searches for neighborhood

sequences (Ns) around a query (Fig. 2d). However, the QCauto

method is expected to be slower than the NNCauto method: while

the BLAST-searches in steps II and III could be integrated in the

NNCauto method, the QCauto method required independent

BLAST-searches in steps II and III.

Availability. The two new methods (NNCauto and QCauto)

described above were implemented in the software package

‘‘Claident’’, which is available at http://www.claident.org/ under

GNU General Public License ver. 2. In addition to the NNCauto

and QCauto methods, the program supports the n%-NN, k-NN,

and n%-k-NN methods. The n%-k-NN method uses the k-most

similar sequences of n%-identical sequences. This program

requires BLAST+ [34] for the BLAST-search of nearest-neighbor

(A), borderline (B), and neighborhood (N) sequences.

Performance Benchmark of the New and the Existing
Methods

Construction of the Reference Sequence Databases and

the Taxonomy Databases. The reference sequence databases

of animal COX1 (COI), bacterial/archaeal 16S, fungal ITS, and

matK, rbcL, and trnH-psbA spacer of land plants (Embryophyta)

were constructed by the following procedure. The NCBI (http://

www.ncbi.nlm.nih.gov/) GenBank nucleotide sequence database

was searched using the keywords described in Table S1, and the

GenBank IDs (GIs) of the matched sequences were retrieved. The

GIs of the sequences that had both genus- and species-level

taxonomic information were then selected in the NCBI taxonomy

database (downloaded from the NCBI ftp server on May 15,

2012). These selected GIs were used to construct the local

reference sequence databases of the respective barcode loci listed

above. Reference sequences were extracted from the NCBI nt

sequence database (downloaded from NCBI ftp server on May 11,

2012) using the selected GIs. For each local database of reference

sequences, the corresponding local NCBI taxonomy database was

constructed. Although we also tried to construct the reference

databases of protist/algal 18S and 28S rDNA, the number of

sequences obtained was too small to perform a benchmark despite

their high phylogenetic diversity.

Selection of Query Sequences. To perform a benchmark of

the new and existing DNA barcoding methods, up to 100 genera

per order for land plants, and 500 genera per phylum/division for

animals, bacteria/archaea, and fungi were randomly selected from

the above-mentioned taxonomy databases. One sequence was

then randomly selected from each of the selected genera in each

organismal group.

For the benchmark of each query, results were obtained under

two types of setting: the full-length sequences of queries were used

under the ‘‘full-length’’ setting, while 200 contiguous nucleotide

sites were randomly retrieved from query sequences that were used

under the ‘‘mini-barcode’’ [35–37] query setting.

Running Benchmark. The assignment performances of the

nai€nnve Bayesian classifier implemented in RDPClassifier ver. 2.5

[23], Barcoder and ConstrainedNJ implemented in SAP ver. 1.0.6

[29], and the 1-NN, 5-NN, 97%-NN, 99%-NN, NNCauto, and

QCauto methods implemented in Claident ver. 0.1.2012.06.16

were measured and compared by no-leave-one-out cross-valida-

tion (no-LOOCV) and leave-one-out cross-validation (LOOCV).

These methods represented composition-based, similarity-based,

and hybrid approaches. The selection of the methods was based

on assignment speed, machine-learning speed, and the limitation

of computing resources (e.g., amount of memory). Programs based

on a tree-based approach were not applicable to the benchmark

due to their prerequisites. NCBI BLAST ver. 2.2.26 [24] and

NCBI BLAST+ 2.2.26+ [34] were used in SAP and Claident,

respectively.

The taxonomic assignment of the above-mentioned queries was

conducted using the local reference sequence databases of each

organismal group. In the benchmark based on no-LOOCV, all

query sequences were retained in the corresponding local

database. Therefore, no-LOOCV simulates the situation in which

the query sequence is known and has been deposited on reference

databases. In contrast, each query sequence was removed from the

corresponding reference database in the LOOCV: this setting

simulates the situation in which the query is unknown sequence.

The minimum global alignment similarity of the best BLAST hit

was set to 0.5 in the analyses with Barcoder and ConstrainedNJ

because no similar sequences were retrieved when the default

value was used. For the 97%-NN and 99%-NN methods, the

maximum number of nearest-neighbor sequences was set to be

100. For all the other parameters, the default settings of each

program were used. Both the full-length and the 200-bp-long

mini-barcode query settings were used in this benchmark. Because

the reference sequence databases of animal COX1, bacterial/

archaeal 16S, and fungal ITS were too large to run LOOCV for

RDPClassifier, the LOOCV was not used in the program for the

barcode loci.

Summarizing the Benchmark. To summarize the bench-

mark results, the number of correctly identified taxonomic levels

was used as an index representing the degree of correctness of

taxonomic assignment. This correctness index has the maximum

value 6 when the taxonomic information at all the phylum/

division, class, order, family, genus, and species levels is correctly

assigned, whereas the index has the minimum value 0 when

taxonomic information at all the six taxonomic levels is

erroneously assigned to a query or a query remained unidentified

even at the phylum/division level. However, the correctness index

alone does not fully depict the success/failure of taxonomic

identification because a low correctness score provides no

information on whether a query is assigned to an incorrect taxon

(i.e., misidentified) or it is unidentified due to the lack of similar

DNA sequences in a reference database.

Therefore, we also measured the degree of misidentification

caused by each method. The number of incorrectly identified

taxonomic levels was used for this purpose. This incorrectness

index has the maximum value 6 when the taxonomic assignment

of all the six taxonomic levels is incorrect. Meanwhile, the index

has the minimum value 0 when the taxonomic assignment does

not return incorrect results at any taxonomic level; note that this

included the situation in which a query is unidentified even at the

phylum/division level. The frequency of queries with their

respective correctness or incorrectness values (scores) was deter-

mined for each method for each of the animal COX1, bacterial/

New Methods for Universal DNA Barcoding
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archaeal 16S, fungal ITS, plant matK, plant rbcL, and plant trnH-

psbA regions.

Several previous studies used accuracy, sensitivity (a.k.a. recall

rate), and/or specificity for comparing the performance of

taxonomic assignment among different methods [21,38]. Howev-

er, these indices need to be calculated at each taxonomic level. On

the other hand, by using correctness and incorrectness indices, we

can evaluate to what degree the queries are successfully identified,

misidentified, or unidentified, taking identification results at all the

examined taxonomic levels into account. Detailed benchmark

results at each taxonomic level are provided as supplementary

ones. In the supplementary analysis, the frequencies of correctly

identified queries, incorrectly identified queries, and unidentified

queries were determined at each taxonomic level for each barcode

locus. Unidentified queries were further classified into two

categories: queries unidentified at the focal taxonomic level and

incorrectly identified at higher taxonomic levels, and queries

unidentified at the focal level but not incorrectly identified at

higher levels.

Results

Characteristics of Constructed Reference Databases and
Query Sequences

From the NCBI nt sequence database, local reference sequence

databases were constructed with 608,412 animal COX1, 338,405

bacterial/archaeal 16S, 147,695 fungal ITS, 43,555 plant matK,

53,573 plant rbcL, and 11,714 plant trnH-psbA sequences. The

numbers of query sequences (genera) were 3,714 for animal COX1,

1,642 for bacterial/archaeal 16S, 1,073 for fungal ITS, and 3,012

for plant matK, 3,754 for plant rbcL, and 1,262 for plant trnH-psbA.

All the local reference sequence data sets and the query sequences

are available as Datasets S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,

S11, S12, S13, S14, S15, S16, S17, S18.

No-Leave-One-Out Cross-Validation
As expected from the definition of no-LOOCV, high (5–6)

correctness scores were observed most frequently for the 1-NN

method at all the examined barcode loci in this type of cross-

validation (Fig. 3). In the taxonomic assignment using fungal ITS,

Figure 3. Frequencies of correctness scores in the no-LOOCV of full-length query sets. The number of correctly identified taxonomic levels
is used as an index representing the degree of correctness of taxonomic assignment. This correctness index has the maximum value 6 when the
taxonomic information at all the phylum/division, class, order, family, genus, and species levels is correctly assigned. On the other hand, the index has
the minimum value 0 when taxonomic information at all the six taxonomic levels is erroneously assigned to a query or a query remains unidentified
even at the phylum/division level. 1NN, 5NN, 97%, 99%, Bar, CNJ, RDP, NNC, and QC means 1-NN, 5-NN, 97%-NN, 99%-NN, Barcoder, ConstrainedNJ,
RDPClassifier, NNCauto, and QCauto methods, respectively. (a) Animal COX1. (b) Bacterial/Archaeal 16S. (c) Fungal ITS. (d) Plant matK. (e) Plant rbcL. (f)
Plant trnH-psbA.
doi:10.1371/journal.pone.0076910.g003
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plant rbcL, and plant trnH-psbA, Barcoder and ConstrainedNJ

displayed a high proportion of very low (0–2) correctness scores

(Fig. 3c, e, and f). No clear difference was observed regarding the

incorrectness scores among the nine methods for all the examined

barcode loci (Fig. 4). However, RDPClassifier, Barcoder, and

ConstrainedNJ occasionally returned incorrect taxonomic infor-

mation.

Leave-One-Out Cross-Validation
In the LOOCV, the 1-NN method displayed high (5–6)

correctness scores as shown in the no-LOOCV (Fig. 5), but the

taxonomic assignment by this method resulted in a remarkably

high proportion of misidentification (Fig. 6). The 97%-NN and

99%-NN methods displayed low (0–2) correctness scores most

frequently for animal COX1, bacterial/archaeal 16S, and plant

matK (Fig. 5a, b, and d). Likewise, Barcoder and ConstrainedNJ

displayed low correctness scores for fungal ITS, plant rbcL, and

plant trnH-psbA (Fig. 5c, e, and f). The results of the 5-NN,

NNCauto, and QCauto methods were similar to each other, but

the NNCauto and QCauto methods were more conservative than

5-NN when they were evaluated by the incorrectness index (Figs. 5

and 6). Between the two new methods, the QCauto method

returned more conservative results than the NNCauto method

(Figs. 5 and 6).

Detailed Benchmark Results
Overall, qualitatively and quantitatively similar results were

obtained under the full-length (Figs. 3, 4, 5, 6) and mini-barcode

(Figs. S1, S2, S3, S4) settings based on both the no-LOOCV and

LOOCV. Detailed results of full-length query benchmarks for

each barcode locus at each taxonomic level are shown in Figs. S5

and S6.

Discussion

In the benchmark based on no-LOOCV, the 1-NN method

most frequently returned perfect identification results (i.e.,

correctness = 6) of all the methods tested for all the barcode loci

(Fig. 3). Given that a query sequence was not removed from a

reference sequence database in a no-LOOCV, this result suggests

that the 1-NN method is the best DNA barcoding method, if the

barcode sequences of all potentially observable species are

registered to a reference database. However, in the LOOCV,

the 1-NN method returned erroneous identification results (i.e.,

Figure 4. Frequencies of incorrectness scores in the no-LOOCV of full-length query sets. The number of incorrectly identified taxonomic
levels is used as an index representing the degree of incorrectness of taxonomic assignment. This incorrectness index has the maximum value 6 when
the taxonomic assignment of all the six taxonomic levels is incorrect. On the other hand, the index has the minimum value 0 when the taxonomic
assignment does not return incorrect results at any taxonomic level: note that this includes the situation in which a query is unidentified even at the
phylum/division level. 1NN, 5NN, 97%, 99%, Bar, CNJ, RDP, NNC, and QC represent the 1-NN, 5-NN, 97%-NN, 99%-NN, Barcoder, ConstrainedNJ,
RDPClassifier, NNCauto, and QCauto methods, respectively. (a) Animal COX1. (b) Bacterial/Archaeal 16S. (c) Fungal ITS. (d) Plant matK. (e) Plant rbcL. (f)
Plant trnH-psbA.
doi:10.1371/journal.pone.0076910.g004
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high incorrectness scores) most frequently among the examined

methods (Fig. 6). As the LOOCV simulates the situation in which

DNA samples contain undescribed or poorly investigated species/

taxa, the observed frequency of unsuccessful taxonomic identifi-

cations by the 1-NN method is a serious concern. Taking into

account that the sequence databases of most barcode loci do not

contain all species in their target taxonomic groups (e.g., [11]), the

1-NN method could lead to severe misidentification in DNA

barcoding.

In the LOOCV, the 97%-NN and 99%-NN methods produced

low correctness scores compared to the other methods, especially

for the taxonomic identification of animal COX1, bacterial/

archaeal 16S, and plant matK loci (Fig. 5). This type of method

using identity-cutoff values often fails to find sequences similar to a

query, thereby leaving a high proportion of queries ‘‘unidentified’’

(Fig. S6). Furthermore, these n%-NN methods should be used with

caution because they can result in high rates of misidentification

(incorrectness .3) for such barcode loci as bacterial/archaeal 16S

and plant trnH-psbA loci compared to our new methods (Fig. 6).

RDPClassifier, a composition-based approach, displayed high

correctness scores in the no-LOOCV (Fig. 3). Thus, as with the 1-

NN methods, a composition-based approach potentially enables

efficient taxonomic identification if a reference sequence database

includes sequences of all the potentially observable species.

However, RDPClassifier returned erroneous identification results

most frequently of all the methods in the no-LOOCV for all the

examined barcode loci (Fig. 4). Moreover, in the LOOCV, this

composition-based approach returned nonzero incorrectness

scores frequently for all of the plant barcode loci examined

(Fig. 6d–f).

The hybrid of similarity-based and tree-based approaches,

which was implemented as Barcoder and ConstrainedNJ methods

in SAP, produced very low rates of successful identification for

fungal ITS and plant trnH-psbA loci in both the no-LOOCV and

LOOCV (Figs. 3c, 3f, 5c, and 5f). Given that these loci display

considerably high variation in their sequence lengths, the difficulty

in achieving multiple sequence alignments may be responsible for

the high proportion of incorrect taxonomic assignment by

Barcoder and ConstrainedNJ. These two methods also often

failed to achieve taxonomic identification in the DNA barcoding

based on plant rbcL (Figs. 3e and 5e). As the tree-based part of the

Barcoder and ConstrainedNJ methods required at least 95% node

support by default, the low interspecific sequence variation in the

plant rbcL gene presumably hampered taxonomic identification by

the locus.

Among the methods based on a similarity-based approach, the

5-NN, NNCauto, and QCauto methods were characterized by a

low frequency of misidentification in the LOOCV (Fig. 6) and

intermediate degrees of correct identification in both the no-

LOOCV and LOOCV (Figs. 3 and 4). Of the similarity-based

Figure 5. Frequencies of correctness scores in the LOOCV of full-length query sets. 1NN, 5NN, 97%, 99%, Bar, CNJ, RDP, NNC, and QC
represent the 1-NN, 5-NN, 97%-NN, 99%-NN, Barcoder, ConstrainedNJ, RDPClassifier, NNCauto, and QCauto methods, respectively. (a) Animal COX1.
(b) Bacterial/Archaeal 16S. (c) Fungal ITS. (d) Plant matK. (e) Plant rbcL. (f) Plant trnH-psbA. See the caption of Fig. 3 for the explanation of the
correctness index.
doi:10.1371/journal.pone.0076910.g005
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methods, the QCauto method had identification success rates

comparable to the 5-NN and NNCauto methods (Fig. 5) and

displayed a lower proportion of misidentification compared to the

remaining two methods (Fig. 6). The QCauto method was

therefore the most conservative choice among the examined

methods. Meanwhile, the QCauto method requires a longer

computational time than the 5-NN and NNCauto methods. Given

that the 5-NN method enables fast execution because of the

simplicity of its algorithm, it may be suitable for the rapid

processing of a large number of query sequences. Otherwise, the

QCauto method is ideal because it enables more accurate

taxonomic identification. However, great care should be taken in

applying the 5-NN method to empirical work because no firm

theoretical background exists for retrieving a fixed number of

similar sequences in the course of DNA barcoding. Therefore, the

NNCauto method could be a good alternative to the QCauto

method because its similar sequence search process has a strictly

defined theoretical background like the QCauto method (Fig. 2),

but it is less computationally intensive than the QCauto method.

Overall, the proportion of queries that were successfully

identified to genus or species level (i.e., correctness score = 5 or

6) was less than 50% for most combinations of the DNA barcoding

methods and genetic loci in the LOOCV (Fig. 5). For all the

methods examined in this study, the failure of taxonomic

identification resulted mainly from the absence of reference

sequences similar to the queries (‘‘unidentified’’) rather than

misidentification (‘‘incorrectly identified’’; Fig. S6). Thus, increas-

ing the number of reference sequences as well as enhancing the

taxon coverage of the reference databases is of particular

importance to increase the efficiency of DNA barcoding.

Moreover, in a similarity-based approach, relaxing the settings

of the LCA-algorithm-based taxon assignment could reduce the

proportion of ‘‘unidentified’’ queries. Basically, the LCA algorithm

is very stringent in that it allows identification at a taxonomic level

only when the taxonomic information of all similar sequences are

consistent with each other [25]. Because reference sequence

databases contain many misidentified sequences, the stringency of

the LCA algorithm may produce ‘‘unidentified’’ results. There-

fore, by tolerating a small proportion of similar sequences whose

taxonomic information is inconsistent with that of the remaining

similar sequences, the proportion of unidentified queries may be

reduced to some extent. Although the newly developped progam

Claident implements this ‘‘relaxed-LCA’’ algorithm, the degree of

such relaxation should be optimized by users by performing

independent runs with different relaxation parameter values.

The causes of misidentification in the benchmark analysis can

be classified into five main categories: 1) the error of the taxonomic

information in used query sequences, 2) the error of the taxonomic

information in used reference sequences, 3) the use of inappro-

priate sequence similarity indices, 4) the application of inappro-

Figure 6. Frequencies of incorrectness scores in the LOOCV of full-length query sets. 1NN, 5NN, 97%, 99%, Bar, CNJ, RDP, NNC, and QC
represent the 1-NN, 5-NN, 97%-NN, 99%-NN, Barcoder, ConstrainedNJ, RDPClassifier, NNCauto, and QCauto methods, respectively. (a) Animal COX1.
(b) Bacterial/Archaeal 16S. (c) Fungal ITS. (d) Plant matK. (e) Plant rbcL. (f) Plant trnH-psbA. See the caption of Fig. 4 for the explanation of the
incorrectness index.
doi:10.1371/journal.pone.0076910.g006
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priate criteria in retrieving similar sequences, and 5) a discrepancy

between the taxonomic system and phylogenetic information.

Categories 1 and 2 result in apparent misidentification, wherein

the proportion of successful taxonomic assignments by each

method is underestimated. In contrast, categories 3 and 4 result in

actual misidentification, wherein the low proportion of successful

identification in a benchmark illuminates the need to improve

reference sequence databases and/or DNA barcoding methodol-

ogies. For category 5, any discrepancy between a taxonomic

system and the phylogeny of a used barcoding locus can result in

misidentification in a benchmark. For example, ancestral poly-

morphisms in a barcode locus and subsequent incomplete lineage

sorting can cause the sharing of multiple identical alleles among

sister species, thereby hampering taxonomic identification with the

barcode locus at species level [33,39,40].

To reduce misidentification in the categories 1 and 2, erroneous

taxonomic information in public nucleotide databases should be

corrected. Alternatively, the proportion of misidentification may

be reduced by using qualified databases that include the sequences

of the specimens identified by experienced experts. Databases such

as BOLD [41], SILVA [42], and UNITE [43] potentially provide

a basis for reliable taxonomic identification by means of DNA

barcoding, but the number of sequences registered to these

databases remains quite small. With regard to sequence identity

indices (category 3), we herein used BLAST raw scores based on

the local alignment similarity provided by BLAST+ for the

taxonomic assignment of the k-NN, n%-NN, NNCauto, and

QCauto methods. The application of global-alignment similarity

instead of local-alignment similarity may improve identification

performance as previously reported for the 1-NN method [44],

although calculating global-alignment similarity is computationally

much more intensive. To reduce the category 4 misidentification,

the application of the QCauto (or NNCauto) method is

recommended as detailed above. Finally, to reduce misidentifica-

tion under category 5 conditions, we need to adopt multiple

strategies. For example, the hierarchical structure of taxonomy

should be reexamined, especially for clades that have recently

undergone adaptive radiation. In addition, for the species

described by polyphyletic or paraphyletic lineages, haplotypes of

respective monophyletic lineages need to be registered to reference

sequence databases.

Intriguingly, misidentification was more frequent at genus level

than at all the other levels for all barcode loci in the LOOCV (Fig.

S6). While genus name is essential for the description of a novel

species, higher-level taxonomy can be left unresolved. Therefore, a

discrepancy between a taxonomic system and phylogenetic

information can be most frequently caused at genus level, and

the discrepancy may induce erroneous taxonomic information of

reference sequences, resulting in relatively high misidentification

rates at genus level in the LOOCV. Thus, a detailed investigation

of our benchmark results will help to recognize the characteristics

of current taxonomic systems.

Several existing benchmark studies of DNA barcoding are based

on simulations with artificially generated data sets [45,46] or with

real database sequences of a single organismal taxon [45,47]. We

reported herein the benchmark results of a wide variety of existing

methods and novel DNA barcoding methods by using the existing

sequences of bacteria, archaea, animals, fungi, and land plants. As

detailed above, further improvements in identification algorithms

as well as the quantitative/qualitative enhancements of reference

sequence databases are required to promote taxonomic, evolu-

tionary, and ecological studies of diverse organisms by means of

high-throughput DNA barcoding.

Supporting Information

Dataset S1 Reference sequence sets of animal COX1.
Nucleotide sequences used as reference sets of animal COX1.

(ZIP)

Dataset S2 Reference sequence sets of bacterial/ar-
chaeal 16S. Nucleotide sequences used as reference sets of

bacterial/archaeal 16S.

(ZIP)

Dataset S3 Reference sequence sets of fungal ITS.
Nucleotide sequences used as reference sets of fungal ITS.

(ZIP)

Dataset S4 Reference sequence sets of matK of land
plants. Nucleotide sequences used as reference sets of matK of

land plants.

(ZIP)

Dataset S5 Reference sequence sets of rbcL of land
plants. Nucleotide sequences used as reference sets of rbcL of land

plants.

(ZIP)

Dataset S6 Reference sequence sets of trnH-psbA of
land plants. Nucleotide sequences used as reference sets of trnH-

psbA of land plants.

(ZIP)

Dataset S7 Full-length query sequence sets of animal
COX1. Nucleotide sequences used as full-length query sets of

animal COX1.

(ZIP)

Dataset S8 Full-length query sequence sets of bacterial/
archaeal 16S. Nucleotide sequences used as full-length query

sets of bacterial/archaeal 16S.

(ZIP)

Dataset S9 Full-length query sequence sets of fungal
ITS. Nucleotide sequences used as full-length query sets of fungal

ITS.

(ZIP)

Dataset S10 Full-length query sequence sets of matK of
land plants. Nucleotide sequences used as full-length query sets

of matK of land plants.

(ZIP)

Dataset S11 Full-length query sequence sets of rbcL of
land plants. Nucleotide sequences used as full-length query sets

of rbcL of land plants.

(ZIP)

Dataset S12 Full-length query sequence sets of trnH-
psbA of land plants. Nucleotide sequences used as full-length

query sets of trnH-psbA of land plants.

(ZIP)

Dataset S13 Mini-barcode query sequence sets of
animal COX1. Nucleotide sequences used as mini-barcode

query sets of animal COX1.

(ZIP)

Dataset S14 Mini-barcode query sequence sets of
bacterial/archaeal 16S. Nucleotide sequences used as mini-

barcode query sets of bacterial/archaeal 16S.

(ZIP)
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Dataset S15 Mini-barcode query sequence sets of fungal
ITS. Nucleotide sequences used as mini-barcode query sets of

fungal ITS.

(ZIP)

Dataset S16 Mini-barcode query sequence sets of matK
of land plants. Nucleotide sequences used as mini-barcode

query sets of matK of land plants.

(ZIP)

Dataset S17 Mini-barcode query sequence sets of rbcL
of land plants. Nucleotide sequences used as mini-barcode

query sets of rbcL of land plants.

(ZIP)

Dataset S18 Mini-barcode query sequence sets of trnH-
psbA of land plants. Nucleotide sequences used as mini-

barcode query sets of trnH-psbA of land plants.

(ZIP)

Figure S1 Frequencies of correctness scores in the no-
LOOCV of mini-barcode query sets. The number of

correctly identified taxonomic levels is used as an index

representing the degree of correctness of taxonomic assignment.

This correctness index has the maximum value 6 when the

taxonomic information at all the phylum/division, class, order,

family, genus, and species levels is correctly assigned. On the other

hand, the index has the minimum value 0 when taxonomic

information at all the six taxonomic levels is erroneously assigned

to a query or a query remains unidentified even at the phylum/

division level. 1NN, 5NN, 97%, 99%, Bar, CNJ, RDP, NNC, and

QC represent the 1-NN, 5-NN, 97%-NN, 99%-NN, Barcoder,

ConstrainedNJ, RDPClassifier, NNCauto, and QCauto methods,

respectively. (a) Animal COX1. (b) Bacterial/Archaeal 16S. (c)

Fungal ITS. (d) Plant matK. (e) Plant rbcL. (f) Plant trnH-psbA.

(EPS)

Figure S2 Frequencies of incorrectness scores in the no-
LOOCV of mini-barcode query sets. The number of

incorrectly identified taxonomic levels is used as an index

representing the degree of incorrectness of taxonomic assignment.

This incorrectness index has the maximum value 6 when the

taxonomic assignment of all the six taxonomic levels is incorrect.

On the other hand, the index has the minimum value 0 when the

taxonomic assignment does not return incorrect results at any

taxonomic level: note that this includes the situation in which a

query is unidentified even at the phylum/division level. 1NN,

5NN, 97%, 99%, Bar, CNJ, RDP, NNC, and QC represent the 1-

NN, 5-NN, 97%-NN, 99%-NN, Barcoder, ConstrainedNJ,

RDPClassifier, NNCauto, and QCauto methods, respectively. (a)

Animal COX1. (b) Bacterial/Archaeal 16S. (c) Fungal ITS. (d)

Plant matK. (e) Plant rbcL. (f) Plant trnH-psbA.

(EPS)

Figure S3 Frequencies of correctness scores in the
LOOCV of mini-barcode query sets. 1NN, 5NN, 97%,

99%, Bar, CNJ, RDP, NNC, and QC represent the 1-NN, 5-NN,

97%-NN, 99%-NN, Barcoder, ConstrainedNJ, RDPClassifier,

NNCauto, and QCauto methods, respectively. (a) Animal COX1.

(b) Bacterial/Archaeal 16S. (c) Fungal ITS. (d) Plant matK. (e) Plant

rbcL. (f) Plant trnH-psbA. See the caption of Fig. S1 for the

explanation of the correctness index.

(EPS)

Figure S4 Frequencies of incorrectness scores in the
LOOCV of mini-barcode query sets. 1NN, 5NN, 97%, 99%,

Bar, CNJ, RDP, NNC, and QC represent the 1-NN, 5-NN, 97%-

NN, 99%-NN, Barcoder, ConstrainedNJ, RDPClassifier,

NNCauto, and QCauto methods, respectively. (a) Animal COX1.

(b) Bacterial/Archaeal 16S. (c) Fungal ITS. (d) Plant matK. (e) Plant

rbcL. (f) Plant trnH-psbA. See the caption of Figure S2 for the

explanation of the incorrectness index.

(EPS)

Figure S5 Frequencies of ‘‘correctly identified at the
focal level’’, ‘‘incorrectly identified at the focal level’’,
‘‘unidentified at the focal level but incorrectly identified
at higher level’’, and ‘‘unidentified at the focal level and
correctly identified at higher level’’ in the no-LOOCV of
full-length query sets. 1NN, 5NN, 97%, 99%, Bar, CNJ,

RDP, NNC, and QC represent the 1-NN, 5-NN, 97%-NN, 99%-

NN, Barcoder, ConstrainedNJ, RDPClassifier, NNCauto, and

QCauto methods, respectively.

(EPS)

Figure S6 Frequencies of ‘‘correctly identified at the
focal level’’, ‘‘incorrectly identified at the focal level’’,
‘‘unidentified at the focal level but incorrectly identified
at higher level’’, and ‘‘unidentified at the focal level and
correctly identified at higher level’’ in the LOOCV of
full-length query sets. 1NN, 5NN, 97%, 99%, Bar, CNJ,

RDP, NNC, and QC represent the 1-NN, 5-NN, 97%-NN, 99%-

NN, Barcoder, ConstrainedNJ, RDPClassifier, NNCauto, and

QCauto methods, respectively.

(EPS)

Table S1 Used search keywords for retrieving the
GenBank IDs of the sequences of respective barcode
loci.

(CSV)
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