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Abstract: The cuticular layer of the insect exoskeleton contains diverse compounds that serve
important biological functions, including the maintenance of homeostasis by protecting against
water loss, protection from injury, pathogens and insecticides, and communication. Bactrocera tryoni
(Froggatt) is the most destructive pest of fruit production in Australia, yet there are no published
accounts of this species’ cuticular chemistry. We here provide a comprehensive description of B. tryoni
cuticular chemistry. We used gas chromatography-mass spectrometry to identify and characterize
compounds in hexane extracts of B. tryoni adults reared from larvae in naturally infested fruits.
The compounds found included spiroacetals, aliphatic amides, saturated/unsaturated and methyl
branched C12 to C20 chain esters and C29 to C33 normal and methyl-branched alkanes. The spiroacetals
and esters were found to be specific to mature females, while the amides were found in both sexes.
Normal and methyl-branched alkanes were qualitatively the same in all age and sex groups but
some of the alkanes differed in amounts (as estimated from internal standard-normalized peak
areas) between mature males and females, as well as between mature and immature flies. This study
provides essential foundations for studies investigating the functions of cuticular chemistry in this
economically important species.

Keywords: cuticular hydrocarbons; cuticle; chemical communication; GC-MS; methyl branched
alkanes; chemical ecology; volatiles

1. Introduction

The cuticular layer of the insect exoskeleton contains a range of mostly aliphatic compounds,
including normal and branched alkanes, alkenes, saturated and unsaturated esters, alcohols,
saturated and unsaturated fatty acids, ketones, and aldehydes [1]. Cuticular hydrocarbons usually
contain 20 to 50 carbons, and compounds with other functional groups vary from 12 to 54
carbons [2–4]. A primary function of cuticular hydrocarbons is to protect against desiccation [5,6],
injury, and infection [7–12]. Cuticular compounds, including hydrocarbons, are also commonly
important for chemical communication [2,5,6,13], including species recognition [14–17], mimicry [18],
and as pheromones [19] in diverse insect taxa. For example, some cuticular hydrocarbons serve as
sex pheromones in house fly [20], the circumboreal fly [21], moths [22], bees [23] and the cowpea
weevil [24]. Cuticular hydrocarbons also serve as aggregation pheromones in some insects, including
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Drosophila [25], termites [26] and cockroaches [27]. Sexual selection has been a driving force for the
evolution of sexual dimorphism in animals [28], and many insect taxa exhibit sexual dimorphism in
cuticular chemistry [29]. For example, sexually dimorphic cuticular hydrocarbons have been found in
Drosophila [30–32] and have been implicated in female attractiveness and male mating success [21].

Tephritid fruit flies are amongst the world’s most economically damaging insect pests [33].
Some aspects of tephritid fruit fly semiochemistry have received significant attention, particularly
the pheromones [34,35] they use to attract mates and for aggregation and the particular compounds
found in fruit, food and certain flowers to which they are attracted [36–47]. Some work has also been
performed on fruit fly cuticular chemistry because their cuticular chemical profiles tend to be highly
species-specific [48,49] and have been used to resolve species, cryptic species and geographic variation
in larvae [50–52] and adults [53–58]. Beyond their use as chemotaxonomic tools, however, relatively
little work has been performed on tephritid cuticular compounds. In an important recent exception,
allyl-2,6-dimethoxyphenol has been proposed as a short-range male attractant in Bactrocera dorsalis [59].
Most cuticular compounds are aliphatic, so this case is also notable for its involvement of an
aromatic compound.

In Australia and in some Pacific Islands, the Queensland fruit fly, Bactrocera tryoni (Froggatt),
is an economically important pest of horticultural crops [60–62]. This species causes significant
economic loss by damaging crops [63] and by limiting market access [64]. While rectal gland and
volatile emission chemistry of B. tryoni has been documented [65–70], the cuticular chemistry of this
species has not. Given what is known for other insects, the composition of its cuticular chemical
profile is likely to be relevant to homeostasis, protection from pathogens, injury and insecticides [71],
and chemical communication. Understanding elements of cuticular chemistry related to homeostasis
may help to understand abiotic factors mediating bioclimatic potential of B. tryoni [72] and effects
of domestication, sex and age on desiccation resistance [73,74], and may also be important for
understanding environmental and sexual competence of sterile B. tryoni released in sterile insect
technique (SIT) programs to control pest populations [75–77]. To address this knowledge gap, and to
provide foundations for subsequent functional studies, the present study reports a qualitative
description of B. tryoni cuticular chemistry and identifies qualitative and quantitative variation
(the latter estimated from internal standard-normalized peak areas) related to maturity and sex.
Bactrocera tryoni specimens were obtained as larvae in infested fruits and cuticle extracts of emerged
adults were analyzed by gas chromatography-mass spectrometry (GC-MS).

2. Results

Cuticular Chemistry and Statistical Analysis

The identified compounds are all aliphatic; no trace of aromatic compounds was found. Typical
chromatograms of both immature and mature female and male B. tryoni are shown in Figure 1.
The chromatogram sections of shorter (A) and longer retention time compounds (B) of B. tryoni
adults are shown in Figure 2, where a typical chromatogram of a female is presented because the
chromatogram includes all the compounds that are also found in immature and mature females and
males. A range of non-alkanes, including spiroacetals, amides and esters and an assortment of C29 to
C33 methyl-branched alkanes represent the cuticular chemistry of wild B. tryoni adults.

The identities of 22 of the 32 non-alkane compounds found were confirmed with authentic
standards and the other ten were tentatively identified by comparison to fragment patterns in NIST
libraries (Table 1). Two of the compounds were 6,6-membered ring spiroacetals (compounds A2 and
A5 in Table 1 and Figure 2), four were aliphatic amides (compounds A1, A3, A4 and A6 in Table 1 and
Figure 2), and the remaining 26 were all esters of saturated/unsaturated and methyl branched saturated
fatty acids (compounds A7–A32 in Table 1 and Figure 2). The spiroacetals and saturated/unsaturated
and branched saturated esters were found to be specific to mature females, while the amides were
found in mature flies of both sexes (Table 1). In mature females, ethyl esters of saturated or unsaturated
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C12, C14, C16 and C18 are the most abundant, while methyl and propyl esters, and branched saturated
fatty acid esters are minor and trace, respectively. Methyl positions in the branched fatty acid esters are
ambiguous, because trace amounts of the compounds made it difficult for further analyses. The amount
of N-(3-methylbutyl)isobutyramide (A6) was about 2.5 times larger in mature male than in mature
females (p < 0.05, t-test), but the amount of N-(3-methylbutyl)propanamide (A4) was about 3.2 times
larger in mature females than in mature males (p < 0.05, t-test). The differences in the amounts of
the other amides, N-(3-methylbutyl)acetamide (A1) and N-(2-methylbutyl)propanamide (A3) were
not significant (p > 0.05 for all, t-test). The total amount of the amides was 2.6 times larger in mature
females than in mature males (p < 0.05, t-test). The results are illustrated in Figure 3.
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Figure 1. Typical chromatograms of hexane extracts of immature and mature female and male B. tryoni.
(A) immature female; (B) immature male; (C) mature female; (D) mature male.
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Figure 2. Representative chromatogram sections. (A) Non-alkanes in a chromatogram of a mature
female B. tryoni, which includes all compounds found in mature and immature males and females;
(B) Hydrocarbons (alkanes) section of chromatogram from a mature female B. tryoni. Note that
compounds in B are qualitatively identical in immature and mature females and males.
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Table 1. The compounds identified in hexane washes of B. tryoni that eluted early in chromatograms (section A in Figure 2).

No Identity MM KI Ref.KI (Ref) Characteristic/Diagnostic EI Ions

A1 * N-(3-Methylbutyl)acetamide 129.12 1131 1137 [78] 129 (M+), 114, 86, 73, 60 (CH3COHNH2
+)

A2 2,8-Dimethyl-1,7-dioxaspiro[5,5]undecane 184.15 1140 1147 [78] 184 (M+), 140, 115/112 (M-C5H8/C5H8O), 97, 69
A3 * N-(2-Methylbutyl)propanamide 143.13 1198 143 (M+), 114, 86, 74, 57
A4 * N-(3-Methylbutyl)propanamide 143.13 1204 143 (M+), 128 (M-CH3), 114 (M-C2H5), 100, 87, 74, 57
A5 # 2-Ethyl-8-methyl-1,7-dioxaspiro[5,5]undecane 198.16 1230 1237 [78] 198 (M+), 169, 129/126 (M-C5H8/C5H8O), 115/112 (C6H10/C6H10O), 97, 83, 69, 55
A6 * N-(3-Methylbutyl)isobutyramide 157.15 1233 157 (M+), 142, 101, 71, 57
A7 Ethyl dodecanoate (ethyl laurate) 228.38 1591 1593 [79] 228 (M+), 183, 157, 115, 101, 88, 73, 70, 60 (CH3CO=OH+)

A8 # Ethyl 6-methyldodecanoate 242.22 1662 242 (M+), 213, 199, 185, 157, 143, 101, 88, 83, 70, 55
A9 Propyl dodecanoate 242.22 1680 1685 [80] 242 (M+), 201, 183, 157, 143, 115, 102, 61 (C3H7OH2

+, base peak)
A10 Ethyl tridecanoate 242.22 1691 1695 [81] 242 (M+), 199, 197, 157, 101, 88
A11 Methyl tetradecanoate 242.22 1722 1724 [82] 242 (M+), 157, 143, 101, 87, 74
A12 Ethyl (E)-9-tetradecenoate (ethyl myristolaidate) 254.22 1769 254 (M+), 208/209 (loss of EtOH/EtO), 166, 124, 88, 55
A13 Ethyl (Z)-9-tetradecenoate (ethyl myristoleate) 254.22 1778 254 (M+), 208/209 (loss of EtOH/EtO), 166, 124, 88, 55
A14 Ethyl tetradecanoate (ethyl myristate) 256.43 1790 1793 [80] 256 (M+), 213, 157, 101, 88

A15 # Ethyl 4-methyltetradecanoate 270.26 1836 270 (M+), 213, 101 (M-C12H25, base peak), 88
A16 # Ethyl 12-methyltetradecanoate 270.26 1862 270 (M+), 227, 213, 157, 101, 88
A17 # Propyl tetradecanoate 270.26 1887 1893 [83] 270 (M+), 229, 211, 172, 129, 102, 61 (C3H7OH2

+, base peak)
A18 Ethyl pentadecanoate 270.26 1890 1897 [84] 270 (M+), 227, 199, 157, 101, 88
A19 Methyl (Z)-9-hexadecenoate 268.44 1902 1909 [78] 268 (M+), 236/237 (loss of MeOH/MeO), 194, 152, 96, 74, 55
A20 Methyl hexadecanoate 270.26 1923 1927 [85] 270 (M+), 227, 143, 87, 74
A21 Ethyl (E)-9-hexadecenoate (ethyl palmitelaidate) 282.26 1965 282 (M+), 236/237 (loss of EtOH/EtO), 194, 152, 96, 88, 69, 55
A22 Ethyl (Z)-9-hexadecenoate (ethyl plamitoleate) 282.26 1970 1975 [86] 282 (M+), 236/237 (loss of EtOH/EtO), 194, 152, 96, 88, 69, 55
A23 Ethyl hexadecanoate (ethyl palmitate) 284.27 1990 1993 [80] 284 (M+), 241, 157, 101, 88

A24 # Ethyl 15-methylhexadecanoate 298.29 2029 298 (M+), 255, 157 (M-C10H21), 101, 88
A25 # Ethyl 4-methylhexadecanoate 298.29 2035 298 (M+), 241 (M-C4H9), 101 (base peak), 88
A26 # Ethyl 14-methylhexadecanoate 298.29 2062 298 (M+), 269, 255, 241, 199, 157, 101, 88
A27 # Propyl 9-hexadecenoate 296.27 2067 296 (M+) 281, 237, 194 (M-C3H7COOCH2)
A28 Ethyl (Z,Z)-octadeca-9,12-dienoate (ethyl linoleate) 308.27 2158 2155 [87] 308 (M+), 262/263 (loss of EtOH/EtO), 178, 135, 95, 81
A29 Ethyl (Z)-9-octadecenoate (ethyl oleate) 310.29 2168 2168 [88] 310 (M+), 264/265 (loss of EtOH/EtO), 222, 180, 97, 55
A30 Ethyl (E)-9-octadecenoate (ethyl elaidate) 310.29 2171 2174 [89] 310 (M+), 264/265 (loss of EtOH/EtO), 222, 180, 97, 55
A31 Ethyl octadecanoate 312.54 2190 2191 [90] 312 (M+), 269, 157, 101, 88

A32 # Ethyl 11-eicosenoate 338.57 2366 338 (M+), 292/293 (M-EtOH/EtO), 250, 208, 97, 55

MM: molecular mass, KI: Kovats’ retention index, Ref.KI (Ref): reference KI if available for a similar column type, active phase and temperature conditions, with references in parentheses;
* indicates that the compound is present in both sexes of mature adults, all other compounds being mature female specific; # indicates the compound was only tentatively identified.
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Figure 3. Internal standard-normalized peak areas of N-(3-methylbutyl)acetamide (A1), N-(2-methylbutyl)
propanamide (A3), N-(3-methylbutyl)propenamide (A4) and N-(3-methylbutyl)isobutyramide (A6) in
section A in Figure 2 in female and male B. tryoni. Standardized peak areas were obtained by dividing
the peak area of a compound by the peak area of the n-hexadecane internal standard. Error bars
represent standard errors. The results of t-test comparisons between the sexes are shown (ns is not
significant; * p < 0.05, ** p < 0.01).

The 34 tentatively identified hydrocarbons, all methyl-branched alkanes with C29 to C33 carbon
backbones, are summarized in Table 2. Unsaturated hydrocarbons were not detected. Most are mono- or
dimethylalkanes, with only a few trimethylalkanes found. Monomethyl branches appeared exclusively
at odd carbon positions in odd carbon alkanes and at even carbon positions in even carbon alkanes.
Comparisons in the amounts of individual hydrocarbons between sexes are illustrated in Figure 4.
The most abundant alkanes were mono- and dimethylhentriacontane (C31) isomers (compounds B18 to
B24 in Figures 2B and 4), with the 11-, 13- and 15-methylhentriacontanes (B18) appearing at the highest
intensity in chromatograms. Although dimethyl branches were separated by 1, 3, 5, 7, 9, 11, or 13
methylene groups, a majority of dimethyl branches were separated by 3 and 5 methylenes. Trimethyl
branches were separated by [3,3], [3,5] or [3,11] methylenes.

There were significant effects of sexual maturity, sex and the interaction between these two
variables on the amounts of the normal and methyl branched alkanes (sexual maturity F1,2276 = 81.90,
p < 0.0001; F1,2276 = 10.56, p < 0.005; sexual maturity * sex F1,2276 = 4.10, p < 0.05, respectively).
The amounts of alkanes in mature flies were 2.3 (±1.3) times larger than those in immature flies on
average. The amounts of compounds B1, B3, B4, B5, B6, B7, B9, B10, B11, B12, B13, B18, B19, B20, B21,
B22, B22, and B24 were higher in mature females than in mature males (p < 0.05, t-test). The amounts
of these compounds were 1.7 (±0.5) times greater in mature females than in mature males on average.
There was no significant difference in the amount of hydrocarbons between immature females and
immature males (p > 0.05, t-test).
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Table 2. The tentatively identified cuticular hydrocarbons found in n-hexane washes of B. tryoni (section B in Figure 1).

No Identity MM KI Ref.KI (Ref) Characteristic/Diagnostic EI Ions

B1 11-; 13-; 15-MeC29 422.82 2929 2932 [91] 280/281,168/169; 252/253, 196/197; 224/225(s)
B2 7-MeC29 422.82 2946 2940 [51] 336/337, 112/113
B3 5-MeC29 422.82 2952 2949 [91] 364/365, 84/85
B4 9,13-DiMeC29 436.50 2966 2963 [91] 322/323, 140/141, 252/253, 210/211
B5 7,11-DiMeC29 436.50 2970 350/351, 112/113, 280/281, 182/183
B6 3-MeC29 422.82 2976 2973 [91] 392/393, 56/57
B7 5,11-DiMeC29; 5,13-DiMeC29 436.50 2986 2983 [91] 378/379, 84/85,280/281, 182/183; 378/379, 84/85, 280/281, 210/211
B8 4, x, 22-TriMeC29 (x = 14 or 16) 450.52 3009 392/393, 84/85, 252/253, 224/225, 336/337, 126/127
B9 12-Me; 14-MeC30 436.50 3025 3031 [92] 280/281,182/183; 252/253, 210/211
B10 8-MeC30 436.50 3034 3040 [93] 336/337, 126/127
B11 6-MeC30 436.50 3041 3045 [93] 364/365, 98/99
B12 4-MeC30 436.50 3055 3065 [93] 392/393, 70/71
B13 8,12-DiMeC30; 8,14-DiMeC30 450.52 3061 3064 [94] 350/351, 126/127, 280/281, 196/197; 350/351, 126/127, 253/252, 225.224
B14 6,14-DiMeC30; 6,12-DiMeC30 450.50 3071 378/379, 98/99, 252/253, 224/225; 378/379, 98/99, 280/281, 196/197

B15 4,12-DiMeC30; 4,14-DiMeC30; 4,20-DiMeC30 450.52 3088 3098 [94] 406/407, 70/71, 280/281, 196/197; 406/407, 70/71, 225/224, 253/252; 406/407,
70/71, 309/308, 169/168

B16 n-C31 436.50 3100 436

B17 4,8,12-TriMeC30; 4,8,14-TriMeC30; 4,8,20-TriMeC30 464.53 3115
70/71, 420/421, 350/351, 140/141, 280/291, 210/211;
70/71, 420/421, 350/351, 140/141, 252/253, 238/239;
70/71, 420/421, 350/351, 140/141, 322/323, 168/169

B18 11-; 13-; 15-MeC31 450.52 3129 3130 [92] 308/309, 168/169; 280/281, 196/197; 250/251, 224/225
B19 7-MeC31; 9-MeC31 450.52 3137 3140 [93] 364/365, 112/113; 336/337, 141/140
B20 5-MeC31 450.52 3147 3150 [93] 392/393, 84/85
B21 11,15-DiMeC31 464.53 3153 3155 [93] 322/323, 168/169, 252/253, 238/239

B22 9,13-DiMeC31; 9,15-DiMeC31; 11,13-DiMeC31;
13,15-DiMeC31

464.53 3157 3159 [92] 350/351, 140/141, 280/281, 210/211; 350/351, 140/141, 252/253, 238/239; 322/323,
168/169, 280/281, 210/211; 294/295, 196/197, 252/253, 238/239

B23 7,13-DiMeC31;7,15-DiMeC31 464.53 3164 378/379, 112/113, 280/281, 210/211; 378/379, 112/113, 252/253, 238/239
B24 3-MeC31 450.52 3170 3172 [91] 420/421, 56/57
B25 5,11-DiMeC31; 5,13-DiMeC31 464.53 3178 3180 [95] 406/407, 84/85, 182/183, 308/309; 406/407, 84/85, 280/281, 210/211
B26 12-; 14-; 16-MeC32 464.53 3223 3225 [57] 308/309, 182/183; 280/281, 210/211; 252/253, 238/239
B27 8-; 10-MeC32 464.53 3225 3225 [57] 364/365, 126/127; 336/337, 154/155
B28 10,14-DiMeC32 478.55 3233 3254 [94] 350/351, 154/155, 280/281, 224/225
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Table 2. Cont.

No Identity MM KI Ref.KI (Ref) Characteristic/Diagnostic EI Ions

B29 8,12-DiMeC32; 8,14-DiMeC32; 8,16-DiMeC32 478.55 3257 3263 [96] 378/379, 126/127, 308/309, 196/197; 378/379, 126/127, 280/281, 224/225; 378/379,
126/127, 252/253 (s)

B30 4-MeC32 464.53 3267 3265 [97] 420/421, 70/71
B31 6,16-DiMeC32 478.55 3285 406/407, 98/99, 252/253
B32 9-; 11-MeC33 478.55 3327 3335 [93] 364/365, 140/141; 336/337, 168/169
B33 13-; 15-; 17-MeC33 478.55 3330 3335 [93] 308/309, 196/197; 280/281, 224/225; 252/253 (s)
B34 9,23-DiMeC33 492.56 3359 378/379, 140/141, 350/351, 168/169

MM: molecular mass; KI: Kovats retention index; Ref.KI (Ref): reference KI if available with references in parenthesis; (s) indicates ions from symmetrical structures.
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Figure 4. Internal standard-normalized peak areas of individual cuticular hydrocarbons (the alkanes in section B in Figure 2) in the two sexes of B. tryoni. Standardized
peak areas were obtained by dividing the peak area of a compound by the peak area of the n-hexadecane internal standard. B28 and B29 co-eluted and hence the sum
of their amounts are presented together. Error bars represent standard errors. The results of t-test comparisons between the sexes are shown (ns is not significant;
* p < 0.05; **p < 0.01; *** p < 0.001).
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3. Discussion

The present study finds that the n-hexane-extracted cuticular chemistry of B. tryoni includes
a complex mixture of at least 66 compounds, including two spiroacetals, four aliphatic amides,
26 saturated/unsaturated C12 to C20 methyl, ethyl and propyl esters and 34 methyl branched saturated
alkanes with a range of C29 to C33 carbon backbones. A previous study reported 14 cuticular compounds
in B. tryoni, including five fatty acid esters, two siloxanes and seven methyl branched alkanes [98].
We did not detect the siloxanes or the methyl branched alkanes, which are all shorter than the alkanes
found in the present study. We suspect that occurrence of the siloxanes in the previous work may
reflect impurities, and incorrect assignments may have been given for the shorter methyl branched
alkanes. The differences might have been also caused by technical differences; for example the previous
work extracted cuticular compounds in methanol for 20 min [98], while the present study extracted in
n-hexane for 3 min. The solvent choice of n-hexane was based on anticipated polarities of insect cuticular
compounds that are generally less or non-polar [99]. The method used in the present study is more
similar to methods widely used in studies of the cuticular hydrocarbons of other tephritids [53–59,100].

We found sexual dimorphism in several aspects of the cuticular chemistry of B. tryoni. In particular,
our data suggest that spiroacetals and esters are specific to mature females. Sex-related differences in
cuticular chemistry have also been reported in B. dorsalis, in which mature males have 7-monoenes
that are absent from mature females and immatures of both sexes [100]. We also found quantitative
differences between the sexes in their cuticular amides, which overall were more abundant in mature
females than mature males, even though they are known to be particularly abundant in the rectal
glands of mature males. Although the amides from male rectal glands have been suggested to function
as male sex pheromones [65,66,68], the functions of these compounds on the cuticle, and in rectal
glands of mature females, are not known. Our results indicate that more work is now needed on their
functions in both sexes, both in rectal glands and on the cuticle.

Most of the non-alkane components which we find in cuticular extracts of B. tryoni have also been
reported previously in rectal gland extracts of this species, with some of the same sex differences also
evident [65,67–69]. In particular, the spiroacetals, amides and saturated/unsaturated esters we found
in female cuticles had also been reported in female rectal glands. The presence of minute amounts of
the amides and absence of the spiroacetals found on male cuticles also matches the earlier findings
for male rectal glands, although the previous work also reported shorter chain esters (C5 or less)
in male rectal glands that were not found on cuticles. Notwithstanding the difference in the esters,
the similarities between the two extract types otherwise suggest that at least some of the non-alkane
components on the cuticle could originate in the rectal glands and be distributed over the body when
grooming, as has been described in some social insects [101,102]. The differences in the esters and the
quantitative differences in the amides noted above might in part reflect differences in volatility of the
various compounds.

The C12 to C20 esters we found in cuticle of mature female B. tryoni have also been reported in
the cuticle of females in five B. dorsalis complex species, but at different relative abundances between
the species, suggesting that they may have a role in species recognition [58,59]. On the other hand,
the methyl branched fatty acid esters found in the present study have not been previously reported in
either the emission profile or rectal gland extracts of B. tryoni [67], or other fruit flies. Methyl branched
fatty acid methyl, propyl or longer alkyl esters occur in other arthropods, such as spiders [103,104],
but, to the best of our knowledge, specific roles have not yet been identified for them in any species.
Branched fatty acid esters are biosynthetically feasible [105,106] and fatty acids are also the precursors
of other cuticular compounds and hydrocarbons [2]. Hence, the branched esters found in this study
may be intermediate products in the biosynthesis of other cuticular compounds.

While most of the C29 to C33 methyl branched alkanes detected in the present study have also
been reported in other organisms (see references in Table 2), several of them have not previously been
described in tephritids. Branched alkanes and/or unsaturated hydrocarbons have lower melting points
than the corresponding normal alkanes, allowing the waxy layer of insect cuticles to be flexible over a
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wide range of ambient temperatures [107,108]. Long chain hydrocarbons, and in particular branched
and unsaturated alkanes, have also been linked to desiccation resistance in a variety of insects [109–111].
However, to what extent that applies in B. tryoni adults remains unclear. While qualitatively similar
across the sexes and age groups studied, we found higher amounts of alkanes (as estimated from
internal-standard-normalised peak areas) in mature than immature flies but, at least in domesticated
flies from colonies maintained on artificial diets, desiccation resistance of B. tryoni decreases with
age [73].

Several normal and methyl branched C28 to C40 alkanes have also been reported previously in two
closely related taxa in the Bactrocera dorsalis complex, but as different isomers and in different amounts
between the two [57]. Such variation in cuticular hydrocarbon chemistry has also been reported
among species of another tephritid genus, Anastrepha [53,55,56,58,100], and even among populations
within Ceratitis rosa [55]. As with the esters above, these taxon-specific cuticular hydrocarbon
signatures may play a role in taxon recognition in nature, but they may also make excellent tools for
taxonomists [53,55–58,100]. Their use in taxonomy is directly relevant to the B. tryoni complex which,
despite its importance as a pest, is not well understood taxonomically. The B. tryoni complex includes
three other taxa; B. neohumeralis, B. aquilonis and B. melas [60]. Bactrocera tryoni is clearly differentiated
from B. neohumeralis in the timing of mating behavior [112], but the species status of B. aquilonis and
B. melas is still debated [113] and the four taxa differ in their pest status and quarantine restrictions in
various jurisdictions [113]. However, before cuticular chemistry can be used to resolve such taxonomic
issues it will be important to investigate the extent to which it can be influenced by diet, maturity and
the physical environment [114–116]. Given the population differences found in Ceratitis rosa [55], it will
also be important to determine whether cuticular chemistry varies between geographic regions and
during the course of domestication of species in the B. tryoni complex.

In summary, the present study provides the first detailed description of the cuticular chemistry of
B. tryoni, and finds some clear qualitative and quantitative differences as flies mature and between
the sexes. Our findings provide a foundation for studies addressing the roles of cuticular chemistry
in functions such as desiccation resistance, protection from pathogens and injury, and chemical
communication, as well as its potential application in resolving the taxonomy of the B. tryoni complex.

4. Materials and Methods

4.1. Chemicals

Ethyl dodecanoate (ethyl laurate), ethyl tridecanoate, propyl dodecanoate, methyl tetradecanoate,
ethyl (E)-9-tetradecenoate (ethyl myristelaidate), ethyl (Z)-9-tetradecenoate (ethyl myristoleate),
ethyl tetradecanoate (ethyl myristate), ethyl pentadecanoate, methyl (Z)-9-hexadecenoate,
methyl hexadecanoate, ethyl (E)-9-hexadecenoate (ethyl palmitolelaidate) (Z)-9-hexadecenoate
(ethyl palmitoleate), ethyl hexadecanoate (ethyl palmitate), ethyl (Z,Z)-octadeca-9,12-dienoate
(ethyl linoleate), ethyl (Z)-9-octadecenoate (ethyl oleate), ethyl (E)-9-octadecenoate (ethyl elaidate),
ethyl octadecanoate, hexadecane and straight-chain C8–C40 alkane standards were purchased
from Sigma-Aldrich (St. Louis, MO, USA), Nu-Chek-Prep and INC (Minneapolis, MN, USA) or
Alfa-Aesar. N-(3-methylbutyl)acetamide, N-(2-methylbutyl)propanamide, N-(3-methylbutyl)propanamide,
N-(3-methylbutyl)isobutyramide were synthesized by reactions of an appropriate amine and
an acid anhydride in water. Synthetic details are presented in Supplementary Materials.
2,8-Dimethyl-1,7-dioxaspiro[5.5]undecane was kindly provided by Ms. Sally Noushini.

4.2. Origin of Flies

Bactrocera tryoni larvae were collected from infested loquat fruits from a tree located in Marsfield
NSW Australia (33.766080 S, 151.100722 E). A 500 mL plastic container with approximately 300 g of
infested loquat fruits was placed on approximately a 1 cm deep layer of vermiculite in a 12.5 L plastic
box for larvae to complete development and exit the fruit to pupate. Pupae were sieved and moved to
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a fine mesh cage (47.5 × 47.5 × 47.5 cm) (Megaview Bugdorm 4S4545, Taiwan) where the flies emerged.
Identity of B. tryoni was confirmed by examining emerged flies under a stereomicroscope using the key
to tropical tephritid fruit flies [117] and Jane Royer kindly provided additional confirmation for the
identity of B. tryoni. Adults were separated by sex within three days of emergence, when still sexually
immature [118], and thereafter kept as single-sex cohorts of 80 flies in mesh cages (30.5 × 30.5 × 30.5 cm)
(Megaview Bugdorm 4S4545, Taiwan). Adult flies were provided with food by coating a small area of
the top of mesh cage with a paste prepared by mixing 15 g sugar, 5 g hydrolysate yeast (MP Biomedicals
LLC) and 4 mL tap water. Water was provided by placing an inverted vial (6 cm height, 4 cm diameter)
full of water on a sponge on the top of the mesh cage. All cages were maintained in a controlled
environment room at 25 ± 0.5 ◦C, 65 ± 5% RH and photoperiod of 11.5:0.5:11.5:0.5 light: dusk:
dark: dawn.

4.3. Extraction of Cuticular Compounds

Fifteen two-day old sexually immature flies of each sex and fifteen 20-day old sexually mature
virgin flies of each sex were used for the extraction of cuticular compounds. The flies were killed
by placing them in a 5 mL plastic vial on dry ice. Frozen flies were allowed to defrost at room
temperature for three minutes immediately before the following extraction procedure. n-Hexane was
chosen as the extraction solvent because many cuticular compounds found in other tephritids are less,
or non-polar [53–59,100]. A single fly was immersed in 400 µL of n-hexane that contained 1.5 µg/mL
n-hexadecane (Sigma-Aldrich, St. Louis, MO, USA) in a 1.5 mL clear glass vial. n-Hexadecane was used
as an internal standard to normalize peak areas for comparisons between groups. The vial containing
a fly was allowed to stand for three minutes at room temperature, then the fly was removed from
the n-hexane extract. If n-hexane extracts contained aqueous droplets, the droplets were removed by
adding sodium sulfate (Na2SO4) (Sigma-Aldrich, St. Louis, MO, USA) and gravity filtration. If samples
contained solid organic matter, the solid was removed by gravity filtration. Gravity filtration was
achieved by filtering the sample through a glass wool plug on the neck of a Pasteur pipette. n-Hexane
extracts were concentrated to 120 µL under a gentle stream of nitrogen gas and transferred to a glass
insert (150 µL) in a clear 1.5 mL GC vial. The samples were stored at 4 ◦C until analyzed.

4.4. Gas Chromatography Mass Spectrometry (GC-MS) Analysis

GC-MS analysis was carried out on a Shimadzu GCMS TQ8040 spectrometer equipped with a
split/splitless injector and SH Rtx-5MS (30 m × 0.25 mm, 0.25 µm film) fused silica capillary column.
The carrier gas was helium (99.999%) (BOC, North Ryde, NSW, Australia) at a flow rate of 1.0 mL/min.
An aliquot of 1 µL sample was injected at splitless mode where the injector temperature was 270 ◦C.
The temperature program was set initially at 50 ◦C (1 min), increased to 280 ◦C at a rate of 10 ◦C/min,
then increased to 302 ◦C at a rate of 2 ◦C/min. The ion source and transfer line temperatures were 200
and 290 ◦C, respectively. The ionization method was electron impact at a voltage of 70 eV. The spectra
were obtained over a mass range of m/z 47–650. The data were analyzed by Shimadzu GCMS Postrun
program (Shimadzu, Kyoto, Japan) and compared with the mass fragmentation patterns in NIST
libraries (NIST17-1, NIST17-2), and authentic standards. Retention indices (KI) were calculated with
the Kovats retention index equation [119] and compared with KI values published in the literature.
The structures of methyl-branched alkanes were assigned by using methods described in previous
studies [120–122]. Briefly, the chain length and number of methyl groups of a methyl-branched alkane
were established by examining an equivalent chain length and molar mass. The position of a methyl
group was then assigned by examining fragment ions.

4.5. Comparison between Groups

The data were normalized by dividing the GC peak areas of individual components by the peak
areas of the internal standard. The data were not normally distributed and hence were log-transformed
for statistical analyses. However, the raw data were used to generate the graphs. The data for normal
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and branched alkanes were analyzed by ANOVA to test for effects of sex and maturity on the amounts
of compounds. The individual amides and alkanes were compared between sexes by t-test.

Supplementary Materials: The following are available online. Synthetic details of the amides and Figure S1.
Mass spectra of 2-ethyl-8-methyl-1,7-dioxaspiro[5.5]undecane and methyl branched fatty acid esters.
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54. Vanickova, L.; Břízová, R.; Mendonça, A.L.; Pompeiano, A.; Nascimento, R.R.D. Intraspecific variation
of cuticular hydrocarbon profiles in theAnastrepha fraterculus(Diptera:Tephritidae) species complex.
J. Appl. Èntomol. 2015, 139, 679–689. [CrossRef]
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