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Abstract

Resistance of pathogenic bacteria to standard antibiotics is an issue of great concern, and

new treatments for bacterial infections are needed. Antimicrobial peptides (AMPs) are

small, cationic, and amphipathic molecules expressed by metazoans that kill pathogens.

They are a key part of the innate immune system in both vertebrates and invertebrates. Due

to their low toxicity and broad antimicrobial activities, there has been increasing attention to

their therapeutic usage. Our previous research demonstrated that four peptides—DAN1,

DAN2, HOLO1 and LOUDEF1—derived from recently sequenced arthropod genomes

exhibited potent antimicrobial effects in-vitro. In this study, we show that DAN2 protected

100% of mice when it was administered at a concentration of 20 mg/kg thirty minutes after

the inoculation of a lethal dose of E. coli intraperitoneally. Lower concentrations of DAN2—

10mg/kg and 5mg/kg protected more than 2/3s of the mice. All three dose levels reduced

bacterial loads in blood and peritoneal fluid by 10-fold or more when counted six hours after

bacterial challenge. We determined that DAN2 acts by compromising the integrity of the E.

coli membrane. This study supports the potential of DAN2 peptide as a therapeutic agent for

treating antibiotic resistant Gram-negative bacterial infections.

Introduction

Prior to the discovery of antibiotics, the majority of deaths in all age groups were associated

with infection by pathogenic bacteria. Over the past 80 years, conventional antibiotics have

been routinely used to treat bacterial infections, and this has markedly reduced morbidity and

mortality from bacterial infections. The widespread feeding of antibiotics to farm animals for

non-therapeutic purposes and an excessive use of antibiotics to treat people who often have no

bacterial infection has selected for bacterial strains that resist multiple antibiotics. The threats

from multidrug resistant bacteria such as Methicillin-resistant Staphylococcus aureus

(MRSA), extended-spectrum beta-lactamase (ESBLs) multi-drug resistant tuberculosis

(MDR), and all-antibiotic resistant superbug gonorrhea are increasing at an alarming rate

worldwide [1,2]. According to the WHO report, there were 490,000 cases of multi-drug
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resistant TB globally in 2016 [2]. Increasing the available treatments for antibiotic resistant

bacteria is necessary to prevent mortality and morbidity due to these infectious agents. In this

context, the potential of antimicrobial peptides (AMPs) as promising candidates for novel

antimicrobial agents deserves attention.

The biological world abounds in antimicrobial peptides since, for many organisms, they are

the primary antimicrobial defense against bacteria, fungi and viruses. Over millions of years,

natural selection of organisms that survive infections has driven the diversity of antimicrobial

peptides, and metazoans have all evolved unique cohorts of antimicrobial peptides. The

immense number, structural diversity, and multiple modes of action of these AMPs confers

advantages when dealing with antibiotic resistance [3,4]. These peptides are usually 12–100

amino acids long, positively charged and amphipathic [5]. The positive charge is a consistent

feature of these peptides and likely supports electrostatic interaction with negatively charged

bacterial membranes. These highly positively charged amino acids rich in arginine and lysine

have been shown to be important in AMP-mediated killing of various food borne pathogens

[6]. More than 2,500 AMPs have been identified in various organisms [7]. Several peptides

have been used clinically or are in clinical trials to treat bacterial infection, chronic wound

healing, cystic fibrosis and other pathologies characterized by difficult-to-treat infections.

Polymyxins, lipopeptides discovered in 1947, and colistin are cytotoxic peptides that are clini-

cally used as last resort drugs for patients with multi-drug resistant bacterial infection [8]. The

LTX series of synthetic antimicrobial peptides have promising antibacterial activity against

Staphylococcus aureus infections [9]. Daptomycin, a lipopeptide, is active against Gram-posi-

tive bacteria only [10]. P-113, a histidine rich antimicrobial peptide that is originally derived

from human saliva, has potent activity against fungal infections in HIV patients with oral can-

didiasis [11]. These peptides all display rapid action of killing and low minimum inhibitory

concentrations (MIC) [8].

Every organism has a defense system against pathogenic infections [12]. The highly sophis-

ticated vertebrate defense system utilizes both an innate and an adaptive immune system

whereas invertebrates, for the most part, lack the latter [13]. AMPs are integral components of

immunity in multicellular animals and play a major role in protecting these organisms from

pathogens. Individual AMPs vary in efficacy against different classes of pathogens, but AMPs

as a group have activity against all classes of single-cell pathogenic microorganisms, including

Gram-positive and Gram-negative bacteria, protozoa, yeast, fungi, and viruses. Antimicrobial

peptides are grouped structurally and by sequence and organism source as cecropins, insect-

defensins, glycine-rich proteins, proline-rich proteins.

A variety of cecropins and insect defensins have been studied and reported in the literature

[14,15]. Cecropins are a family of cationic antimicrobial peptides of 31–39 residues with a

broad spectrum of activity against Gram-negative and Gram-positive bacteria, as well as fungi.

They were first isolated from the hemolymph of the giant silk moth, Hyalophora cecropia [16].

They lack cysteine, so they cannot form disulfide bridges [17]. Another large group of AMPs,

defensins are 28–42 (~4 kDa) cationic AMPs with six conserved cysteine residues that can

form three disulfide bridges [15,18]. They typically affect Gram-positive bacteria [15,18].

In our previous research, we have identified putative insect AMPs by searching newly

sequenced arthropod genomes using known AMPs as homology templates [19]. We screened

six cecropin and defensin derived peptides-DAN1, DAN2, HOLO1, LOUDEF1, INVICT1,

and IXI for antimicrobial activity in vitro against several microbes including Gram-positive

bacteria, Gram-negative bacteria and a single fungus. The results from radial diffusion assays

and broth microdilution assays demonstrated potent antimicrobial activities of four peptides

—DAN1, DAN2, LOUDEF1, and HOLO1. Cecropin family members, DAN1 and DAN2,

were most effective against Gram-negative bacteria including E. coli and P. aeruginosa. In
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addition, these peptides were not toxic to mammalian cells even at concentrations ten and

twenty times higher than the minimum inhibitory concentration (MIC) to inhibit the growth

of bacteria as demonstrated by minimal hemolysis of sheep erythrocytes [1].

In vitro studies for efficacy against Gram-negative bacteria and lack of toxicity against

erythrocytes encouraged us to perform more definitive in vivo preclinical studies to determine

whether DAN2 could protect against lethal infection without overt toxicity. In this paper, we

present the results of DAN2 treatment of acute lethal infection with E. coli and its mechanism

of microbicidal activity.

Materials and methods

2.1. Synthesis and application of peptide

DAN2 was identified in the inferred translation of genomic sequence data from the monarch

butterfly (Danaus plexippus). The peptide was commercially synthesized by GenScript (Piscat-

away, NJ), which utilized solid phase peptide synthesis, and purified the peptide using HPLC

to>85% purity. We dissolved the peptide in 0.01% acetic acid solution and stored it at -70˚C

in working stock solutions (5 mg/mL) for antimicrobial assays. An aliquot of stock solution

was diluted in sterile PBS solution before administering it into mice.

2.2. Bacterial strains

E.coli strain ATCC 25922 (Serotype 06, Biotype 1) was purchased from American Type Cul-

ture Collection. This is a standard laboratory and non-multi drug resistant strain that does not

express a toxin.

2.3. Mouse strains

Female C57BL/6 mice (6–8 weeks of age, approximately 20 g) were obtained from Jackson

Laboratory. Animal studies were specifically approved by the IACUC of Dartmouth (Protocol

number 00002014). They were kept in a temperature-controlled room under a 12 h light 12 h

dark cycle with free access to commercial solid food and water. The mice were anesthetized

using isoflurane prior to drawing blood and euthanized by an approved method while under

anesthesia.

2.4. Preparation of bacteria

Bacteria were cultured in Mueller Hinton Broth (MH broth) with aeration at 37˚C for 12

hours to obtain a stationary growth phase. On the day of infection, a fresh culture was made by

inoculating bacteria into MH broth to make a final 100-fold dilution. The number of viable

bacteria in the fresh culture was estimated based on the optical density at 600 nm. After doing

manual colony counts, we calculated that an O.D.600 of 0.4 contains approximately 2.0 × 108

CFU/ml E. coli (ATCC 25922). The bacteria were washed with sterile PBS two times (8700

rpm for 5 mins) and re-suspended in PBS before administering to mice.

2.5. Mouse infection model

Mice were inoculated intraperitoneally (i.p.) with 2.2�107CFU, (130 μl) of E. coli ATCC 25922.

30 minutes after bacterial challenges, the control mice received PBS by i.p. injection whereas

the treatment mice received peptide by i.p. injection. Mice were monitored at least every hour

for the first 24 hours. We observed that the infected mice started showing symptoms of illness

such as hunched posture and ruffled fur 6–8 hours after bacterial challenge. Some of these

mice appearing ill would recover and the endpoint criteria used was lack of responsiveness, at
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which point the animals were euthanized. Animals that had symptoms of illness were moni-

tored every 30 minutes until they either appeared normal or were euthanized. Mice that sur-

vived for the first 24 hours were monitored daily for 5 days after infection. None of the mice

that survived the 24 hours after bacterial challenge had observable symptoms of illness during

subsequent days.

2.6. Bacterial counts in blood and peritoneal lavage

Bacterial counts were determined from blood and peritoneal fluid after 6 hours of bacterial

challenge using a protocol described previously [20]. After injecting mice with 2.2 × 107 CFU

of E. coli and different doses of DAN2, the mice were anesthetized using isoflurane prior to

drawing blood. The blood was collected retro-orbitally using a heparinized capillary and

placed in a heparinized Eppendorf. Mice were then euthanized by cervical dislocation while

still under anesthesia. 3 mL of PBS was then injected into mice intraperitoneally, and the abdo-

men was gently massaged. Approximately 1 ml of fluid was drawn using a syringe and col-

lected in a tube. Blood and peritoneal fluids were then diluted to an appropriate dilution, from

which 100 μl was plated on MH agar plate. The plates were incubated overnight at 37˚ C and

colonies were counted manually after 12–18 hours of incubation. A total of 20 mice were used

to determine the bacterial loads in blood and peritoneal fluid in mice treated with different

concentration of DAN2.

2.7. Flow cytometric analysis

The integrity of the bacterial membrane after the treatment with DAN2 was determined via

staining with Propidium Iodide (PI)[21,22]. If there are holes in the membrane, PI enters the

bacteria, binds to DNA and fluoresces. The bacterial strain was grown to the exponential

phase (O.D.600 = 0.4) and re-suspended in PBS to a final concentration of 106 CFU/ml after

washing twice with PBS. Bacteria were mixed with DAN2 at a concentration of 24 μg/ml

(twice the MIC) and were incubated for 30 min at 37˚ C. The bacteria were stained with PI

solution (1 mg/ml) for 10 minutes at room temperature in the dark. Flow cytometric measure-

ments were performed and the data were evaluated using Flojo software. Heat killed bacteria

was used as a positive control. The bacterial solution was incubated in flow cytometry tube at

85˚ C water bath for five minutes before adding PI.

Results

3.1. DAN2 protects mice from lethal bacterial challenge

The antimicrobial effect of DAN2, confirmed by several in-vitro tests such as the radial diffu-

sion test and a broth micro-dilution assay, was assessed for the ability to protect mice from

infection using an acute mouse model of infection. Bacterial concentration of 2. 2 × 107 CFU

was determined to be a lethal concentration in all mice (LC100). We challenged mice with this

concentration of bacteria by i.p injection and treated i.p. with different concentrations of

DAN2 30 minutes after infection. Infected untreated mice started showing symptoms 6–8

hours after bacterial challenge and reached the endpoint within 12 hours.

A preliminary experiment involved six mice in a treatment group that received 20 mg/kg of

peptide and six mice in a control group that received PBS only after 30 minutes of bacterial chal-

lenge. All the mice treated with 20 mg/kg survived for five days, while all the control mice

reached the endpoint within 12 hours (S1 Fig). In order to determine the least effective concen-

tration that could protect all the mice from lethality, we performed another set of experiments

with four different concentrations of DAN2 (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg).

Cecropin-like antimicrobial peptide protects mice from lethal E.coli infection
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As shown in the Fig 1, when the mice were treated with 5 mg/kg and 10 mg/kg of DAN2,

we observed survival rates of 67% and 83% respectively. Out of six mice that received 5 mg/kg,

two mice reached the endpoint in 20 hours, while one mouse that received 10 mg/kg reached

the endpoint at around 22 hours (S2 Fig). This indicates that 5 mg/kg and 10 mg/kg of DAN2

prolonged the survival of those mice. However, all the infected mice that were treated with 20

mg/kg of DAN2 survived, demonstrating that the effective dose 100 (EC100) of DAN2 is 20mg/

kg.

Fig 1. The infected mice exhibited dose-dependent response to survival. All the mice of four groups were injected intraperitoneally (i. p.) with a

lethal dose, 2.2 × 107 CFU of E. coli and treated with different concentration of DAN2 after 30 minutes of bacterial challenge. The control group only

received bacterial suspension and PBS. All the treated mice were monitored for five days. There were 6 mice/group.

https://doi.org/10.1371/journal.pone.0220344.g001
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3.2. DAN2 reduces bacterial counts in blood and peritoneal fluid after 6

hours of challenge

In order to document the impact of DAN2 on bacterial counts in vivo, we assayed bacterial

loads in blood and peritoneal fluid in mice that received varying doses of peptide. This

approach assesses the microbicidal or microbiostatic activity of DAN2. 4 mice were used in

each treatment and were infected with 2. 2 × 107 CFU. All mice in a group received a given

concentration of DAN2 (0 mg/kg, 5 mg/kg, 10 mg/kg and 20 mg/kg) after 30 minutes of bacte-

rial infection. Peritoneal fluid and blood were collected after 6 hours of bacteria challenge and

the blood or peritoneal wash was plated in dilutions to provide bacterial counts.

As shown in Fig 2, bacterial loads in peritoneal fluid of the treated mice were significantly

lower than that of the control mice and similar to each other regardless of the DAN2 dose.

There was an approximately 150-fold decrease in bacteria in the treated mice compared to

control mice after 6 hours of infection. One-way ANOVA analysis was performed to compare

the effect of DAN2 dose on bacterial loads. A significant difference was observed in the bacte-

rial loads between the experimental treatment groups (F 3, 11 = 17. 8, p = 0.0002). Post-hoc

comparisons using Tukey HSD tests (α = 0.05) indicated that there was a significant reduction

in bacterial growth in mice treated with 20 mg/kg when compared with the control mice

(p< 0.0005). Similarly, the difference between 10 mg/kg and control or 5 mg/kg and control

was also statistically significant (p< 0.005).

Similarly, the bacterial load in blood was found to have decreased approximately 100-fold

in mice treated with 20 mg/kg and 10-fold in mice treated with 10 mg/kg in comparison to the

control mice. There was no significant decrease in bacteria in the mice treated with 5 mg/kg

compared to PBS-treated mice. An analysis of variance (ANOVA) yielded significant differ-

ence in bacterial loads between the control and each treatment group (F 3, 12 = 12.57,

p = 0.0005). Post-hoc comparisons using Tukey HSD tests (α = 0.05) indicated that there was a

significant reduction in bacterial growth in blood in mice treated with 20 mg/kg as compared

to the control mice (p< 0.0005). The difference between 10 mg/kg and control was also statis-

tically significant (p< 0.05). However, a statistical significance was not observed between con-

trol and 5 mg/kg (p> 0.05).

3.3. DAN2 permeabilizes E.coli membrane

One identified mechanism of antimicrobial action of AMPs is forming pores in cytoplasmic

membranes which if not repaired quickly is lethal. We evaluated the integrity of the cell mem-

brane of E. coli using propidium iodide (PI), a DNA interacting dye that intercalates into DNA

of permeabilized membrane and fluoresces brightly. The fluorescence of PI in a bacterial cul-

ture demonstrates that the membrane integrity is compromised. Fig 3 shows the fluorescence

intensity of bacteria under different conditions. The bacterial cells treated with any of the

tested concentrations of peptide or heated to 85˚ C have large fractions of the population that

have admitted PI and fluoresce intensely. The area under the peak of higher fluorescence

quantitates the cell population. Most of the heat shocked bacterial cells (74%, Fig 3B) were

fluorescently labeled compared to the cells treated with peptide. The percentage of fluores-

cently labeled cells were 64%, 70% and 71% for the cells treated with 48 μg/ml, 36 μg/ml and

24 μg/ml of DAN2 respectively. Surprisingly, the intensity of fluorescing bacteria did not

increase in proportion to the increasing concentration of DAN2, which indicates that many

cells had compromised membranes at all of these treatment concentrations (Fig 3C, 3D and

3E). None of the samples, either heat shocked or peptide treated, showed any colony growth

when 100 μl of the samples were plated for colony count showing that virtually all the bacteria

were unable to divide, although not all fluoresced at the time of the assay.

Cecropin-like antimicrobial peptide protects mice from lethal E.coli infection
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Discussion

In the presence of the global threat from antibiotic resistance, antimicrobial peptides are

promising anti-infective agents. AMPs are particularly attractive because microbes are less

likely to develop resistance [23,24]. AMPs primarily target bacterial cell membranes, and it is

challenging for bacteria to preserve cell membrane structure and function while avoiding

Fig 2. DAN2 treated mice have reduced bacterial loads both in peritoneal fluid and blood. Four mice were infected and treated with 0

mg/kg, 20 mg/kg, 10 mg/kg and 5 mg/kg of DAN2 individually and bacterial count was determined after 6 hours of infections. The error

bars represent the standard deviation of the mean. The number of asterisks was used to denote the extent of statistical significance

amongst groups (� denotes p< 0.05, �� denotes p< 0.005, ��� denotes p< 0.0005).

https://doi.org/10.1371/journal.pone.0220344.g002

Cecropin-like antimicrobial peptide protects mice from lethal E.coli infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0220344 July 25, 2019 7 / 13

https://doi.org/10.1371/journal.pone.0220344.g002
https://doi.org/10.1371/journal.pone.0220344


membrane disrupting activity of peptide. In addition, unlike conventional antibiotics that tar-

get a specific biochemical process or a cell component, AMPs as a group have multiple modes

of action, making them resilient against bacterial resistance [23,24].

Our current study provides an insight into the antimicrobial activity of DAN2 in-vivo. We

found that DAN2 prolongs the survival of the mice in a dose dependent manner and more

importantly, a single bolus dose protects infected mice from lethal bacterial challenge. The

effective dose of DAN2 is comparable to other AMPs studied in the literature. A synthetic

AMP named M33 (9 amino acid residues long) protected 100% of mice infected with lethal

doses of E. coli and P. aeruginosa when administered at 12.5 and 25 mg/kg respectively [25].

Another study conducted in a rat model of septic shock demonstrated that a cecropin B

reduced the lethality when given i. p. immediately after E.coli challenge at 1 mg/kg [26]. This

suggests that the peptides belonging to the cecropin family can be effective in vivo. However,

only a few in vivo studies of cecropins have been reported.

Several studies suggest that the cationic AMPs interact with the negatively charged mem-

brane and form either ion channels or pores [23,24]. These cationic AMPs can also block intra-

cellular processes by inhibiting protein folding or activity of enzymes, [14,27,28]. However, the

cell membrane is reported as the primary target of cecropins [14]. We have found that DAN2

compromises the integrity of the bacterial membrane. Our in vitro study demonstrated that

DAN2 does not lyse mammalian RBC which supports its potential use clinically [19]. Unlike

bacterial cells which have 25% more anionic lipids that favor stronger electrostatic interaction,

the mammalian cell membrane has large amounts of charge-neutral components, such as

phosphatidylethanolamine, phosphatidylcholine, and sphingomyelin [29]. In addition, the

Fig 3. DAN2 disrupts the integrity of E.coli cell membrane. The DNA binding dye propidium iodide (PI) was used to

evaluate cell membrane permeability of E. coli ATCC 25922 via flow cytometry. 2.0 × 106 CFU/ml was incubated with

varying concentrations of peptide for an hour and PI added subsequently. Flow cytometry was performed using a FACScan

instrument. (A) Bacteria; (B) Heat treated (positive control); (C) DAN2 (48 μg/ml); (D) DAN2 (36 μg/ml); (E) DAN2

(24 μg/ml). Bacterial cells treated with either peptide or heat shocked have increased cellular fluorescence intensity of PI.

https://doi.org/10.1371/journal.pone.0220344.g003
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presence of cholesterol in mammalian cell membranes stabilizes the phospholipid bilayer and

hence reduces the pore-forming activity of AMPs.

While in vitro studies support lack of mammalian cell cytolysis by DAN2, it is possible that

in vivo utilization causes toxicity through a mechanism other than cytolysis. To further evalu-

ate potential toxicity of DAN2, we IP-injected C57BL/6 mice with 40 mg/kg (twice the highest

concentration tested in the protection assay). The mice were observed over 5 days for behav-

ioral changes associated with illness including weight loss, hunched posture, ruffled fur, and

slow response to handling. However, there were no symptoms of illness (data not shown).

After euthanasia the organs were observed by gross dissection and had no discernible abnor-

malities. Additionally, during treatment the infected mice that got sufficient DAN2 to protect

them from the infection did not demonstrate murine illness behaviors and following euthana-

sia the organs appeared normal upon dissection. Our in vivo studies show that DAN2 is not

toxic to mice when used to treat acute infection.

Several studies have suggested that AMPs work not only by disrupting the cell membrane,

but also by exerting immune-modulatory activity[30–36]. To date, a class of cecropin family

has been shown to stimulate the migration of leukocytes to the site of infection, reduce plasma

levels of tumor necrosis factor, endotoxins, and cytokines responsible for septic shock [26,37–

42] There has also been a report of increased anti-inflammatory cytokines (IL-4, IL-10) and/or

reduced pro-inflammatory molecules (IL-6, IL-8, TNF-alpha) following an administration of

cecropins [39,43]. These multiple modes of action of cecropin peptide awaits further investiga-

tion in the field.

As science has revealed the importance of normal flora in the host, the problem with dis-

ruption of normal flora from antibiotic use has been recognized. The standard antibiotics that

are administered orally are disruptive of the normal flora [44]. However, there is considerably

less information on the influence of AMPs on commensals. A report suggested that some com-

mensal bacteria defend themselves against AMPs the host secretes by modifying the negatively

charged phosphate group in their LPS [45]. Overall, there has been minimal investigation of

the impact of IV or IP administration of AMP on the normal flora, and our study of intraperi-

toneal administration of DAN2 did not monitor normal flora changes. Our expectation is that

while many commensals are likely susceptible to DAN2, IP administration would limit access

of a charged peptide to the normal flora and impact on normal flora would be minimal.

An argument against the potential use of AMPs as anti-infective agent is the expected devel-

opment of neutralizing antibodies when a given AMP is repeatedly applied to the same patient

[46]. This is an important issue since antibodies against a given peptide would be likely to

reduce the antimicrobial activity and since the peptide administration is temporally and per-

haps physically associated with an infection, the immune system response against it is more

likely to occur. One approach to avoid this problem is to not use a given peptide more than a

few times in the same patient. The number of potentially clinically useful AMPs in nature is

almost without limit. There could be hundreds of available peptides to treat any given infection

and the repeated use of the same peptide could be minimized to avoid neutralizing antibodies.

To date, most of the characterized peptides have been identified in arthropods and verte-

brates, particularly amphibian [47]. However, in virtually any organism in which they have

been sought, novel AMPs have been found. Recently AMPs have also been identified in a

broader range of organisms such as plants, Feijoa sellowiana Berg fruit [48] and shellfish Myti-
lus galloprovincialis mussel [49]. This argues that there is an inexhaustible supply of natural

AMPs and we have barely begun to identify, catalog and test them experimentally and clini-

cally. The developed technology to generate peptide in large quantities inexpensively further

supports the potential for AMPs to contribute to new treatments for bacteria resistant to
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standard antibiotics. The availability of such a pharmacy of studied AMPs would provide a

crucial tool to treat microbes that are resistant to standard small molecule antibiotics.

Our findings indicate that a cecropin type peptide, DAN2, has potential for clinical use.

The present research is a further step in examining the antimicrobial activity of DAN2 in the

process of developing this peptide as a therapeutic drug.
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S1 Fig. Survival percent of E. coli infected mice that received either 20 mg/kg of peptide or

PBS after 30 minutes of bacterial challenge. All twelve mice were infected with a lethal dose

of E. coli ATCC 25922 intraperitoneally (i.p.). The control group received 300μl of PBS after 30

minutes of bacterial challenge. Control mice showed 0% survivability, whereas 20 mg/kg pep-

tide ensured 100% survivability in E. coli infected mice.
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S2 Fig. Survival of C57BL/6 mice following E. coli infection and different doses of DAN2

over five days. The control group did not receive any peptide. Six mice were used per group. 5

mg/kg, 10 mg/kg and 20 mg/kg of peptide prolonged the survival of mice, but all control mice

reached the endpoint within 12 hours of bacterial infections.

(TIFF)
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