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Abstract

Population pharmacokinetic base and covariate models were developed to study functional dupilumab for regulatory
submissions, using data from healthy volunteers and patients with moderate-to-severe atopic dermatitis (AD) receiving
intravenous or subcutaneous doses. Sixteen studies were pooled (N = 2115; 202 healthy volunteers, 1913 AD patients).
The best model was a 2-compartment model with linear and Michaelis-Menten elimination and 3 transit compartments
describing absorption. A stepwise approach to model building, with some parameters estimated using mostly rich data
and subsequently fixed, was used to avoid adverse effects of sparse data and a steep target-mediated phase on pharma-
cokinetic parameters, which require rich sampling for proper estimation. Parameterization of models in terms of rates
was a useful alternative to the parameterization in terms of clearances, allowing for a reduced number of covariates
while providing accurate predictions. While antidrug antibodies, albumin, race, body mass index, and Eczema Area and
Severity Index score were statistically significant covariates, only body weight had a notable effect on central volume,
explaining interindividual variability. The model adequately described dupilumab pharmacokinetics in phase 3 trials.
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Atopic dermatitis (AD) is a chronic, predominantly
type 2–driven inflammatory skin disease with eczema-
tous lesions and intense pruritus.1 The pathophysi-
ology of AD is influenced by a complex interplay
between genetic and environmental factors.2 There is
evidence suggesting that impaired skin-barrier func-
tion in patients with AD may allow for transcuta-
neous penetration of allergens, triggering a robust
type 2–mediated immune response, immunoglobulin
E–mediated inflammation (not always present), sus-
ceptibility to cutaneous infections, and chronic pruri-
tus substantially impairing the quality of life of AD
patients.2,3

Dupilumab is a fully human, VelocImmune-derived
monoclonal antibody,4,5 blocking the shared recep-
tor component for interleukin (IL)-4 and IL-13, cy-
tokines that are key drivers of type 2 diseases such as
AD, asthma, allergic rhinitis, and food allergies, which
are often associated as comorbidities.6 The binding of
dupilumab to human IL-4 receptor alpha (IL-4Rα) re-
sults in blockade of the functions of IL-4 and IL-13 sig-
nal transduction.7–12

The pharmacokinetics (PK) of dupilumab are typi-
cal for a human immunoglobulin G4 monoclonal an-
tibody, with distribution, linear, and target-mediated
phases after intravenous (IV) administration and ab-
sorption, linear, and target-mediated phases following
subcutaneous (SC) dosing.13 As is frequently observed
with monoclonal antibodies, the PK of dupilumab are
substantially nonlinear due to target-mediated clear-
ance. Dupilumab has a steep target-mediated phase,
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which is assumed to be due to the presence of the tar-
get receptor on the surface of circulating mononuclear
blood cells.14 The metabolic pathway of dupilumab has
not yet been characterized; however, as dupilumab is
a monoclonal immunoglobulin G4 antibody, it is ex-
pected to be degraded into small peptides and amino
acids via catabolic pathways in the same manner as
endogenous immunoglobulin G.15 Furthermore, no
meaningful effects of dupilumab have been found on
the PK of the cytochrome P450 (CYP) substrates, sug-
gesting that IL-4/IL-13 signaling has no significant ef-
fect on the activity of CYP3A4, CYP2C19, CYP2C9,
CYP1A2, or CYP2D6.16

Dupilumab is approved for SC administration for
the treatment of patients aged �12 years in the United
States with moderate to severe AD inadequately con-
trolled with topical prescription therapies or when
those therapies are not advisable, in Japan for the
treatment of adult patients with AD not adequately
controlled with existing therapies, and for use in pa-
tients aged �12 years with moderate to severe AD
who are candidates for systemic therapy in the Euro-
pean Union. Dupilumab is also approved for certain
patients with other type 2 inflammatory diseases, in-
cluding asthma and chronic rhinosinusitis with nasal
polyps, in multiple countries. The approved dosing
regimen in adults is a 300 mg every 2 weeks SC reg-
imen. Dupilumab demonstrated efficacy and an ac-
ceptable safety profile in early-phase and phase 3
clinical trials in adults and adolescents with mod-
erate to severe AD,7,10–12,17–20 asthma,8,21,22 chronic
rhinosinusitis with nasal polyps,23,24 and eosinophilic
esophagitis.25 Dupilumab is also under development
as a potential novel treatment in pediatric popula-
tions with asthma (NCT02948959) and food allergy
(NCT03682770).

The aim of this analysis was to perform a population
PK analysis for regulatory submissions using data from
16 dupilumab phase 1 to 3 trials in healthy volunteers
and patients with moderate to severe AD who received
IV or SC doses.

Methods
Study Design and Population
A population PK analysis was performed, including
data from trials described in Table S1.7,9–12,26,27 The
studies presented here were performed in accordance
with Good Clinical Practice guidelines and adhered
to the Declaration of Helsinki. The study protocols
and procedures were approved by the appropriate in-
stitutional review boards and ethics committees at each
study site. All participants provided written informed
consent before any study procedure was undertaken.

Overall, 16 studies were pooled for population PK
analyses; 2041 of 2115 participants on active treatment
and 18 243 of 20 809 samples were included in the anal-
yses (most excluded samples were collected before the
first dose). All data set creation and analyses followed
US Food and Drug Administration guidelines.

Assay Methodology
The quantitation of functional dupilumab was
performed using a validated enzyme-linked im-
munosorbent assay,13 with a lower limit of quantifi-
cation (LLOQ) of 0.078 mg/L in undiluted human
serum. Concentrations of functional dupilumab (ie,
dupilumab not bound to cell receptors and with at least
1 arm free for binding) were measured. In this func-
tional assay, dupilumab was used as the assay standard,
and human IL-4Rα served as the capture reagent. The
assay does not detect dupilumab when both binding
sites are occupied by soluble IL-4Rα, or when at least
one site is bound to membrane-bound IL-4Rα.

Unlike the total assay format, which can make the
target-mediated phase look linear and nonlinearity less
evident, the functional assay format used made nonlin-
earitymore transparent. Two versions of the dupilumab
functional assay used during drug development were
cross validated.

Anti-dupilumab antibodies (ADAs) were assessed in
serum samples using a validated electrochemilumines-
cence bridging immunoassay. The method involved 3
steps for the evaluation of ADAs in serum samples:
screening, confirmation, and titer determination. The
screening assay identified potentially positive samples;
samples that were positive in the screening assay were
then analyzed in the confirmation (drug specificity) as-
say. Samples were considered negative for ADAs if ei-
ther the screening or confirmation tests were negative;
samples that were positive in the confirmation assay
were considered to be positive for ADAs. A titration as-
say was then used to determine the ADA titer.

The functional dupilumab and ADA assays used in
these analyses had passed multiple regulatory reviews
during the regulatory submissions.

Population PK Analysis
While this manuscript does not propose new methods
of population PK analysis, it suggests a combination
of existing methods, allowing the analysis to account
for a steep target-mediated phase when data are sparse;
the target-mediated phase is the terminal phase when
target-mediated clearance dominates linear clearance,
decreasing the half-life over time. One of the goals
of this article is to present the methodology and re-
sults of the phase 3 population PK analysis conducted
for regulatory submission, rather than develop a new
structural model. The structural model used in this
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analysis was only slightly advanced by the addition
of transit compartments to the previously published
model, which supported early clinical development.13

Transit compartments allowed for more physiological
characterization of the absorption phase. Importantly,
and in contrast with our previous analysis,13 the models
described in this manuscript were developed for regu-
latory submission rather than for exploratory analyses
or developmental simulations; the modeling methodol-
ogy was advanced toward an analysis of a large phase
3 sparse data set, in which a broad variety of covari-
ates were explored and parameterization of the model,
in terms of clearance and elimination rates, was com-
pared between models. In addition, the study addresses
modeling issues associated with sparsity of data in the
presence of target-mediated clearance.

The population PK of dupilumab was conducted
using Monolix version 2016R1 (LIXOFT, Antony,
France) and NONMEM Version 7.3 (ICON Develop-
ment Solutions, Dublin, Ireland). Parameterization of
the model in terms of rates was chosen to reduce corre-
lations between PK parameters, avoid repetitive covari-
ates, and minimize potential overparameterization.13 A
sensitivity analysis using clearance instead of rates was
provided to demonstrate the accuracy of the results of
the primary covariate model.

The strategy was to estimate some parameters using
mostly rich data from early clinical studies, and subse-
quently fix them when phase 3 data were analyzed. This
stepwise approach tomodeling was used due to the sub-
stantially nonlinear PK of dupilumab and the availabil-
ity of sparse (primarily trough) concentrations reaching
beta phase in phase 3 trials, which cannot inform the
model about many parameters. Beta half-life represents
the half-life during the linear elimination phase, which
is also called beta phase when the target-mediated clear-
ance is saturated, and has negligible impact on this half-
life. Combining small rich and large sparse data sets in
the presence of a steep target-mediated phase led to in-
stability of parameters that require rich data for assess-
ment. However, this issue was not observed when rich
and small sparse data sets were combined.13

Four models were developed using the stepwise
approach; the structure of the models was the same
(Figure 1), while the number of fixed parameters, the
number of parameters with implemented between-
subject variability, and the number of studies were
different. Four studies were used inModel 1 (R668-AS-
0907, TDU12265, PKM14161, and R668-AD-1117).
The goal was to obtain good estimates of PK pa-
rameters that primarily required data from studies
with rich sampling schedules. Twelve studies (phase 1
through phase 2b) were analyzed usingModel 2 (R668-
AS-0907, PKM12350, PKM14161, PKM14271,
TDU12265, R668-AD-0914, R668-AD-1026,

R668-AD-1117, R668-AD-1121, R668-AD-1021,
R668-AD-1307, and R668-AD-1314). The primary
goal was to understand whether target-mediated
clearance is different between healthy volunteers and
patients with AD. The secondary goals were to (1)
understand the behavior of the model when values
below the limit of quantitation (BLQ) are excluded,
(2) understand the behavior of the model when pa-
rameters that became unstable with an increasing
proportion of sparse data were fixed, (3) use the test
population (normal volunteers vs patients with AD)
and assay as covariates in the model. Models 3 and 4
were the primary base and primary covariate models,
respectively. Only 3 pivotal phase 3 studies were used
in this analysis (R668-AD-1334, R668-AD-1416, and
R668-AD-1224) to inform regulatory submissions
about exposure and covariates.

Except for the central volume (Vc), elimination rate
(ke), omega (ω, standard deviation [SD] of between-
subject variability), sigma (σ , SD of measurement er-
ror), and covariate effects, parameters in Models 3 and
4 were fixed to values estimated from the phase 1 and
2 data. Weight was included as a covariate in all mod-
els, since it is well established that it is an important and
statistically significant covariate of Vc for monoclonal
antibody (mAb) PK.13,28

Forward inclusion and backward elimination were
applied to build both the base and covariate models. A
parameter remained in the model when the addition of
the covariate resulted in α �0.01 and removal of the
covariate resulted in α �0.001.

A multiplicative model was used to test for continu-
ous covariates:

Y (λi) = Y ·
[

λi

Central value(λi)

]θ

where Y(λi) is a population PK parameter adjusted for
the covariate, λi is an individual value of the covariate,
i is a subject number, Y is a population PK parameter
at median or another selected level of covariate called
central value, and θ is a parameter describing an effect
of the covariate on the population PK parameter.

The following multiplicative model was used to test
for dichotomous covariates:

Y (λi ) = Y · eθ ·λi

where Y is a population PK parameter when λi = 0; λi
is equal to 0 or 1.

The following variables were tested as potential
model covariates: body mass index (BMI), version of
dupilumab assay, sex, age, race, population (healthy
volunteers vs patients with AD), predicted creatinine
clearance, aspartate aminotransferase, alanine amino-
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Figure 1. Structural representation of model with parallel Michaelis-Menten and linear elimination of dupilumab. F, bioavailability;
IV, intravenous; kcp, central-to-peripheral rate; kpc, peripheral-to-central rate; ka, absorption rate; ke, elimination rate; Km, Michaelis–
Menten constant; SC, subcutaneous;Vc, central volume of distribution;Vm,maximum target-mediated rate of elimination;Vp,peripheral
volume.

transferase, alkaline phosphatase, albumin, antidrug
antibodies (ADAs) at any time, and Eczema Area
and Severity Index (EASI).29 The test of assay as a
covariate was a precautionary step, to confirm the re-
sults of the assay cross validation.

The objective function in the model is a mathe-
matical equation describing the model fit that requires
optimization. Under some conditions, an estimated ob-
jective function value (OFV) allows for testing the sta-
tistical significance of difference betweenmodels.When
a large variability in the OFV did not allow for sta-
tistical tests, the decision about statistical significance
wasmade using bootstrap confidence intervals (CIs) for
population PKparameters; the bootstrap approachwas
applied to test only for impact of the dupilumab func-
tional assay and population. The results of the Wald
test, which were also not affected by variability of OFV,
were used to confirm results of the statistical tests (log-
likelihood test and/or bootstrapping).

Response variables for the covariate analysis primar-
ily included Vc and ke. As phase 3 observations were
primarily at concentrations at which linear clearance
(CL) predominates, only the impact of population was
tested on the maximum target-mediated rate of elimi-
nation (Vm) using early-phase data and bootstrapping.

The stability of the base and covariate models was
evaluated based on comparison of the primary and sen-
sitivity analyses, random changes in initial parameters,
condition numbers, and bootstrap results.

The validation of the models was performed us-
ing different approaches, including the bootstrap
method, visual predictive checks, validation of early ex-
ploratory versions of themodel using later-stage data as
external data sets, and comparison of estimated PK pa-
rameters with those published for mAbs.28 In addition,
several sensitivity analyses were conducted. For exam-
ple, all early- and late-phase studies were combined in
the model, CL instead of elimination rate was tested as
a response variable, and/or excluded observations were
used in the model.

BLQ values were used in the analysis to better char-
acterize the nonlinear elimination phase.13 The most
frequently used Beal M3 method30 was used to in-
corporate BLQ observations in the objective function.
Stochastic approximation expectation–maximization
and importance sampling methods were used to esti-
mate PK parameters.

Results
An initial strategy for the primary base and covariate
models was to combine data from clinical trials with
both rich and sparse sampling and to estimate popu-
lation PK parameters. This led to several challenges.

First, it appeared that having a large portion of
sparse data (particularly in the presence of steep
target-mediated phase) adversely affected the estima-
tion of some PK parameters; central-to-peripheral rate
(kcp), peripheral-to-central rate (kpc), mean transit time
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(MTT), absorption rate (ka), and bioavailability (F)
could only be properly estimated using rich data or rich
data in combination with a small or moderate portion
of sparse data. The listed parameters had large stan-
dard errors or even became unstable when large sparse
data sets were added.

Second, predominantly trough levels in the beta
phase (when the nonlinear clearance was essentially sat-
urated) were available in phase 3 studies, suggesting that
only 1 compartment linear model can be properly iden-
tified if only phase 3 data are used in the analysis. As
the early clinical data clearly indicated the presence of
the peripheral compartment and target-mediated clear-
ance, such a model was inconsistent with known biol-
ogy and appeared to be inadequate to make meaningful
predictions. Therefore, using phase 3 data alone was not
a useful option.

Third, while parameters in some variants of the
model were stable (eg, Model 2), estimates of the OFV
had wide variability, making it impossible to obtain
meaningful P values based on the OFV (likelihood ra-
tio test). This increased variability was due to the use of
sparse data and the marked nonlinearity of the target-
mediated phase, with a terminal slope approaching mi-
nus infinity as concentrations approached the LLOQ.
As a result, small changes in PK parameters caused
large changes in ratios of observed to predicted values,
and consequently in the OFV.

Fourth, while the presence of BLQ values in the
analysis allowed for appropriate estimates of parame-
ters describing nonlinear kinetics and characterization
of target-mediated phase (nonlinear elimination rate of
dupilumab [Vm] and the concentration of dupilumab
[Km] that enables the achievement of half Vm), it also
led to an increase in OFV variability and affected the
stability of some parameters when large sparse data sets
were added.

To address the challenges listed above, the approach
of this analysis was first to estimate parameters us-
ing mainly rich data from early clinical trials with
BLQ values in the analysis, and subsequently to fix
some of these parameters in the analysis of phase 3
data. This approach allows for the use of OFV, and
consequently the likelihood-ratio test, to study covari-
ates. An alternative to the likelihood-ratio test while
testing covariates was the bootstrap CIs, but this was
not a computationally feasible approach to testing
all covariates. Another option was to exclude BLQ
values from an analysis of rich data (Model 1) and
use subsequent models predicting a less steep target-
mediated phase, with less physiologically meaningful
parameters characterizing the target-mediated phase,
and with pure predictions of frequency of BLQ obser-
vations and concentrations during the target-mediated
phase.

It appeared that the BLQ values used in the analysis
of dupilumab provided essential information about the
target-mediated phase. The BLQ observations were in-
formative, as few low quantifiable concentrations were
available to characterize the target-mediated phase.
Proper characterization of the target-mediated phase
using BLQ values can be essential for pharmacody-
namic (PD) modeling, as half-maximal effective con-
centration can occur during this phase. Also, BLQ
values during the absorption phase are essential to es-
timating MTT and subsequently obtaining better esti-
mates of intercompartmental rates (kcp and kpc) when
IV and SCdata are combined.Due to the large amounts
of sparse data integrated, the use of BLQ values in-
creased variability in the OFV. The large variability
in OFV can be explained as follows: due to the steep
target-mediated phase, the OFV was hypersensitive to
small changes in some PK parameters in some patients.
This happened because the target-mediated phase was a
close-to-vertical line, and small changes in time caused
extreme fold changes in predicted PK concentrations,
which consequently affected the OFV. Therefore, BLQ
values were used only when rich data, together with a
small proportion of sparse data, were analyzed; then,
some parameters were fixed and BLQs were excluded
when additional sparse data were integrated or when
only sparse data were analyzed. As parameters that can
be affected by exclusion of the BLQ values were fixed,
exclusion had no meaningful impact on the remaining
parameters.

Using BLQ values had 2 disadvantages. First, the
computational time of modeling and the complexity
of the model development increased. Second, a singu-
larity caused by the steep target-mediated phase be-
came apparent and influential, and had to be addressed.
This singularity did not reveal itself when BLQ values
were excluded from the analysis; rather, the model with-
out BLQ values predicted a less steep target-mediated
phase, increasing both Vm and Km. A less rigorous ap-
proach of excluding BLQ values can be used when the
task is limited to covariate model building. Neverthe-
less, as Vm can be affected by exclusion of the BLQs
from the data, this approach should be exercised care-
fully when a meaningful value of Vm is needed, when
covariates of Vm have to be identified, or when the PK
model is the basis for PK/PD analysis.

The final structural model is presented in Figure 1.
It is a 2-compartment PKmodel, implementing parallel
linear and Michaelis-Menten elimination and a transit
compartment model of lag time.

Estimates of population PK parameters are pre-
sented in Table 1 for 4 major steps of the modeling.
Covariates other thanweight are excluded fromTable 1,
as they are presented in Table 3. All PK parameters,
including standard deviations of characterizing
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Table 1. Population PK Parameters and Bootstrap Confidence Intervals for Initial Models Based on Rich and Sparse Data (Models 1
and 2)

Parameter Estimate (SE)

Parameter
Name

Model 1
Estimates All
Parameters

Model 2
Confirms Vm

Model 3
Base Model

Model 4
Covariate Model

PK parameter
Vc (L) 2.48 (0.0481) 2.54 (0.021) 2.76 (0.021) 2.74 (0.021)
ke (1/d) 0.0534

(0.000387)
0.0550

(0.000831)
0.0448 (0.000490) 0.0477 (0.00078)

kcp (1/d) 0.213 (0.0286) 0.211 (fixed) 0.211 (fixed) 0.211 (fixed)
kpc (1/d) ... 0.310 (fixed) 0.310 (fixed) 0.310 (fixed)
Mpc (1/d) 0.686 (0.00986) ... ... ...
ka (1/d) 0.256 (0.00696) 0.309 (0.00942) 0.306 (fixed) 0.306 (fixed)
MTT (d) 0.105 (0.0100) 0.105 (fixed) 0.105 (fixed) 0.105 (fixed)
Vm (mg/L/d) 1.07 (0.0279) 1.07 (0.0162) 1.07 (fixed) 1.07 (fixed)
Km (mg/L) 0.01 (fixed) 0.01 (fixed) 0.01 (fixed) 0.01 (fixed)
F (unitless) 0.643 (0.00914) 0.642 (fixed) 0.642 (fixed) 0.642 (fixed)

Impact of weight
Vc � weight 0.711 (0.0161) 0.803 (0.0322) 0.919 (0.027) 0.817 (0.031)

Derived PK parameters
CL (L/d) 0.132 0.140 0.124 0.131
kpc 0.310 ... ... ...

CL, clearance; F, bioavailability; ka, absorption rate; kcp, central-to-peripheral rate; ke, elimination rate; Km, Michaelis–Menten constant; kpc, peripheral-
to-central rate; MTT, mean transit time; PK, pharmacokinetics; SE, standard error; Vc, central volume of distribution; Vm, maximum target-mediated
rate of elimination.
Mpc is ratio of kcp and kpc (Mpc = kcp/kpc); parameterization of the model in terms of Mpc and kcp and in terms of kcp and kpc led to almost identical
results and the latter parameterization was used in the subsequent models.

Table 2. Population PK Parameters and Bootstrap Confidence Intervals for Covariate Coefficients (Model 2)

Covariate Name
Population Estimate of
Covariate Coefficient

Bootstrap Median
(90%CI)

Bootstrap Median
(95%CI)

Bootstrap Median
(99%CI)

Vm � population 0.967 0.972 (0.915, 1.02) 0.972 (0.896, 1.03) 0.972 (0.876, 1.05)
Vc � assay 0.964 0.960 (0.935, 0.990) 0.960 (0.931, 0.995) 0.960 (0.919, 1.01)

CI, confidence interval; PK, pharmacokinetics; Vc, central volume; Vm, maximum target-mediated rate of elimination.
Healthy volunteers were coded as 0 and AD patients as 1. The early and later versions of the functional dupilumab assay were coded as 0 and 1,
respectively.

between-subject variability in PK parameters and stan-
dard deviation of residual errors, as well as bootstrap
CIs, are presented in Tables S2 through S4. Abbre-
viations of PK parameters are defined in Figure 1,
Tables 1-3, and Tables S2-S4.

The number of fixed PK parameters changed from 1
inModel 1 to 5 inModel 2 (Table 1), and to 7 inModels
3 and 4 (Table 1). Model 1 was based on data from 4
phase 1 and 2 trials: 3 trials with rich data and 1 trial
with sparse data (sparse data were added to provide
additional information about the beta phase). Model 2
was based on 12 trials from phase 1 through phase 2b.
Models 3 and 4 were based on data from phase 3 stud-
ies only. Estimated PK parameters in all models were
similar. The structure of all models was the same. Beta
half-life, calculated using parameters of the covariate

model, was 25.4 days. The linear CL was calculated
as V2 × ke.

The transit compartments and removal of some
sparse data differentiate Model 1 from an earlier pub-
lished model.13 As removal of transit compartments
from the model led to biased estimates of kcp and
kpc upon comparison with estimates based on IV data
alone and with the biased estimate of ka, the transit
compartment model was needed to account for lag time
and ensure that these parameters have biologically in-
formative values. The number of transit compartments
was changed from 0 to 9. Based on the OFV, 3 transit
compartments were selected; fewer compartments led
to a large, statistically significant increase in OFV, and
there was no meaningful advantage in using additional
compartments.
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Table 3. Parameterizations of Covariate Model Using Clearance

Population Estimates

Model 4A
Parameterized Using Linear CL

Model 4
Parameterized Using ke

Parameters Estimate (SE) P Values Estimate (SE) P Values

PK parameter
Vc (L) 2.73 (0.022) ... 2.74 (0.021) ...
ke (1/d) 0.0476a ... 0.0477 (0.00078) ...
CL (L/d) 0.130 (0.002) ... 0.131a ...

Covariates
Vc � weight 0.811 (0.035) <10−10 0.817 (0.031) <10−10

Vc � albumin −0.550 (0.096) 10−8 −0.653 (0.072) <10−10

CL � weight 0.806 (0.074) <10−10 ... ...
CL � albumin −0.800 (0.110) <10−10 ... ...
CL � BMI 0.372 (0.086) 1.5 × 10−5 ... ...
CL � EASI 0.140 (0.021) <10−10 ... ...
CL � race (white) −0.118 (0.018) <10−10 ... ...
ke � BMI ... ... 0.368 (0.053) <10−10

ke � EASI ... ... 0.143 (0.021) <10−10

ke � race (white) ... ... −0.123 (0.018) <10−10

Information criteria
Bayesian information criteria 70 699.71 70 688.53

BMI, body mass index; CL, clearance; EASI, Eczema Area and Severity Index; ke, elimination rate; SE, standard error; Vc, central volume of distribution.
aThese parameters were derived using estimated population pharmacokinetic parameters.

Values for Km and σ add in Model 1 were fixed as de-
scribed elsewhere.13 Estimates of shrinkage in the SDof
random effects (etas or η) for Vc, ke, Vm, ka, and MTT,
were 10.4%, 25.2%, 22.9%, 23.2%, and 54.9% respec-
tively, demonstrating that the data were informative in
relation not only to population but also to individual
parameters.

InModel 2, we fixed kcp, kpc, F, andMTT in addition
to Km. BLQ values were excluded from the analysis to
reduce variability in the OFV, which increased due to
the addition of sparse AD data; this was permissible, as
parameters that can be affected by such exclusion were
fixed, and the exclusion had no meaningful impact on
the remaining parameters.

First, it was found in Model 2 that the addition of
large data sets with sparse samples increased variabil-
ity in the OFV, even when BLQ values were removed.
Based on 20 Monolix model runs of Model 2 using the
“convergence assessment” tool, the difference between
the highest and lowest OFV values was 14.9, which
was unsuitable for the calculation of P values. Keep-
ing the BLQ values in the analysis exacerbated the OFV
variability. Nevertheless, the model demonstrated very
stable convergence of population PK parameters to the
same values. Second, it was found that the parameters
estimated in the model (including Vm) were similar to
those estimated using mostly rich data. Third, the boot-
strap CIs decreased, indicating more precise estimates.

Overall, Model 2 replicated the estimates obtained with
Model 1 and demonstrated excellent stability. Thus, it
appeared proper to apply Model 2 to test covariates us-
ing bootstrapping CIs and/or standard errors of covari-
ate coefficients (Wald test).

The data in Model 2 included 2 populations (pa-
tients with AD and healthy volunteers) and were based
on 2 cross-validated versions of the dupilumab func-
tional assay. As combining rich data and phase 3 sparse
data led to a large variability in OFV and in Vm, and
phase 3 data alone included only AD population and
data generated from one assay, Model 2 was used to
test these 2 covariates. The results of the tests based
on 200 bootstraps, which were indifferent to the vari-
ability in the OFV when a model is stable, are pre-
sented in Table 2. In this table, CIs are presented at
significance levels of 0.1, 0.05, and 0.01. The median
bootstrap estimates were very similar to the popula-
tion estimates. Since the prespecified P value for inclu-
sion was 0.01, neither population nor assay entered the
model as a covariate. Healthy volunteers had slightly
higher Vm; the difference was not statistically signifi-
cant. For both covariates, the differences between the
subgroups were very small (0.967-fold and 0.964-fold
changes for population and assay, respectively). This
was consistent with the results of cross validation of
the dupilumab functional assays and with early clinical
findings, in which a model based only on the first-in-
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human study in healthy volunteers accurately predicted
dupilumab concentrations in studies of patients with
AD.13 The remaining covariates were evaluated using
covariate Model 4 applied to phase 3 data only.

Base Model 3 was developed to address the PK of
dupilumab only in patients in the phase 3 trials. The
following parameters were fixed: kcp, kpc, ka, MTT, Vm,
Km, and F (Table 3). Fixing these parameters ensured
the stability of the model and a low variability in OFV
and, therefore, allowed for conventional likelihood
ratio tests of covariates based on comparison of OFVs.
Interindividual variability was implemented in Vc and
ke. The results of Wald and log-likelihood tests were
consistent.

The primary basemodel (Model 3) demonstrated ex-
cellent stability. Shrinkage in SD of etas for ke and Vc

was 22% and 19%, respectively.
Covariate Model 4 was developed to explain sources

of variability in the PK of dupilumab only in patients
from the phase 3 studies. While ADA, albumin, race,
BMI, and EASI score were statistically significant co-
variates, only weight had a notable effect on the Vc,
explaining interindividual variability. Diagnostic plots
for Model 4 are provided in Figures 2 and 3 and show
a good model fit.

A sensitivity analysis inwhich linearCL instead of ke
is a response variable is presented in Table 3. The fixed
PK parameters are the same as in the base and covari-
ate models (Table 1) and are excluded from this table.
In this analysis, weight and albumin are significant co-
variates of not onlyVc but alsoCL, presumably because
CL= ke ×Vc. This analysis confirms the robustness of
results obtained with the primary covariate model. Pa-
rameterization of the covariate model in terms of rates
required fewer covariates (Tables 3 and S4) and yielded
higher Bayesian information criteria (BIC). BIC is a cri-
terion for model selection in which the model with the
lowest BIC is preferred.

In Figure 4, linear, nonlinear, and total clearance are
presented vs concentration of functional dupilumab.
An example of simulation-based predictions of treat-
ment with followingmaintenance therapies is presented
in Figure 5.

Discussion
The provided population PK analysis results were
used for exposure-response analysis and subsequently
for regulatory submissions and responses. The model
was also used to simulate exposure (area under the
plasma concentration–time curve, maximum concen-
tration, and trough concentration) after the first dose
and at steady state for regulatory responses. The simu-
lated exposuremetrics were further used as benchmarks

to select pediatric doses and ensure that pediatric expo-
sure did not exceed that in adults.

The BLQ values used in the analysis of phase 1 and
2 data provided essential information about the target-
mediated phase, allowing for proper estimation of the
nonlinear elimination rate of dupilumab (Vm) and
the concentration of dupilumab (Km) half that enables
the achievement of Vm. The stepwise approach to
covariate model building, with some parameters fixed,
was useful to account for the steep target-mediated
phase and avoid an adverse effect of sparse data on
PK parameters, which require rich sampling for proper
estimation. The reasons PK parameters rely on a small
and rich portion of the data to become unstable when
the ratio of subjects with rich data to subjects with
sparse data is very small are (1) the global minimum
in the OFV becomes less pronounced in relation to
parameters that rely on a small rich subsample; and (2)
variability in the OFV increases in the presence of a sin-
gularity introduced by the steep target-mediated clear-
ance, making it difficult or impossible to find the global
minimum for such parameters, while stability of the
parameters that can be estimated using large sparse
data is unaffected by this variability in the OFV.

It appears that the high variability of OFV can
be misinterpreted as instability in a model such as
Model 2. While instability of a model can lead to high
variability in the OFV, this variability does not neces-
sarily indicate instability. When an OFV has low or no
sensitivity to a PK parameter it leads to a high standard
error of the estimate or to instability of the model,
respectively. When the opposite happens (ie, an OFV is
hypersensitive to a PK parameter), a steep target-
mediated phase can lead to increased variability in the
OFV, even when the model is stable. The stability of
Model 2 with high variability in OFV was tested and
confirmed.

Due to substantially nonlinear kinetics, beta half-
life and linear clearance cannot be used to predict time
to a concentration of interest. Predictions based on
modeling should be used. As half-life substantially
changes over time during the terminal target-mediated
phase of elimination, no meaningful terminal half-life
can be calculated, and no such half-life was provided to
regulatory agencies. A plot of population-predicted in-
stantaneous half-life vs time is presented in Figure S1,
demonstrating the extent to which half-life changes
over time and eventually decreases to zero.

The impact of ADAs on ke was small and not clin-
ically significant; this was consistent with an observa-
tion of low frequency of ADAs and that ADAs are
mostly transient. A typical scenario was when ADAs
were observed at week 4 and then disappeared (data
not shown). As ADAs cannot be directly compared
across different products due to different procedures,
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Figure 2. Observed vs predicted dupilumab concentrations for primary covariate model (Model 4).Unit line and spline are provided
in the figure. qw, weekly; q2w, every 2 weeks.

Figure 3. Visual predictive check of dupilumab concentrations by study and treatment regimen—primary covariate model (Model
4). PI, predicted interval; qw, weekly; q2w, every 2 weeks.

chemicals, equipment, and assays, the impact of ADAs
is not presented.

When associations between both weight and BMI
with both Vc and ke were tested, only the associations
between weight and Vc and between BMI and ke
remained significant. It was hypothesized that the

association of BMI and ke may reflect an impact of
obesity and/or body composition on the catabolic
rate of mAbs, but this hypothesis requires additional
exploration.

While only accounting for the impact of weight on
Vc had a notable effect explaining interindividual vari-
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Figure 4. Plot of the dependence of clearance on serum dupilumab concentrations.

Figure 5. Median of simulated concentration of functional dupilumab over time by treatment. SC, subcutaneous; q1w, every week;
q2w, every 2 weeks; q4w, every 4 weeks; q8w, every 8 weeks.

ability in the data, this association did not warrant
a dose adjustment because the therapeutic index of
dupilumab is wide7,10,11 and variability in weight only
partially explains variability in the data.

The parameters of the model specified using CL in-
stead of ke were very similar to those of the primary
covariate model (Table 3); values of covariate parame-
ters, that reflect an association between linear CL and
covariates, were similar to those that reflect an associa-
tion between ke and corresponding covariates. The im-
pact of weight on CL was essentially the same as the
impact of weight on Vc. Nevertheless, when CL was
used in the model instead of ke, the number of co-
variates increased from 6 to 8, and BIC worsened from
70 688.53 to 70 699.71. For example, both weight and
BMI were covariates of CL, as CL is a product of Vc

and ke. BIC (which is a preferable criterion for model
selection under some broad conditions31) suggests su-
periority of the parameterization in terms of rates for

covariate exploration. If the model is further reparam-
eterized in terms of intercompartmental clearance (Q)
and peripheral volume (Vp) instead of kcp and kpc, co-
variates affecting Vc may also be associated with Q and
Vp. Therefore, the number of covariates may further
increase, which can complicate interpretation and ad-
versely affect the convergence, stability, and BIC of the
model. Parameterization of the model in terms of rates
allowed to obtain “clean”covariate analysis results with
all Wald P values for included covariates being below
10–10 (Table 3). Thus, the parameterization of covariate
model, in terms of rates, can potentially be a useful al-
ternative to the parameterization in terms of clearances
and Vp, as it reduces the number of covariates and may
allow for a more mechanistic interpretation of the co-
variate impact.

The developed Models 1, 2, and 3 can be used to
predict concentrations of dupilumab for new doses and
dosing regimens, design new studies, and extrapolate
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the impact of weight in different patient populations;
it appeared that these models provide very similar pre-
dictions. Model 1 was used to estimate PK parameters
that require rich data. Model 2 was used for population
PK/PDmodeling, with BLQ values added to the analy-
sis. Base Model 3 was a step toward developing covari-
ate Model 4. Finally, Model 4 was “fit for purpose” to
estimate the impact of covariates.

Maximal total clearance was substantially higher
than linear clearance, which explains the steep target-
mediated phase (Figure 4).

The simulation example in Figure 5 shows the me-
dian of simulated concentrations. The median in this
figure was close to population predictions, but deviated
from the means at low concentrations. For example, it
takes approximately 3 months longer to approach the
mean than the median LLOQ level in the 300 mg ev-
ery week treatment group; when median concentration
approaches the LLOQ, mean concentration is still ap-
proximately 10 mg/L. However, as dupilumab was well
tolerated, such differences may not be critical.

Conclusions
A 2-compartment PKmodel implementing parallel lin-
ear and Michaelis-Menten elimination and a transit
compartment model of absorption lag time adequately
described the PK of dupilumab in phase 3 clinical tri-
als. The BLQ values used in the analysis of phase
1 and 2 data provided essential information for proper
characterization of the target-mediated phase in phase
3 clinical trials. While ADAs, albumin, race, BMI, and
EASI score were statistically significant covariates, only
body weight had a notable effect on Vc, explaining in-
terindividual variability. The impact of weight on Vc

did not warrant a dose adjustment because the thera-
peutic index of dupilumab is wide,7,10,11 and variabil-
ity in weight only partially explains variability in the
data. A stepwise approach to model building with some
parameters estimated using mostly rich data and sub-
sequently fixed was used to account for a steep target-
mediated phase and avoid an adverse effect of large
sparse data sets on PK parameters, which require rich
sampling for proper estimation. Finally, the parameter-
ization of models in terms of rates can potentially be a
useful alternative to the parameterization in terms of
clearances, allowing for a reduced number of covari-
ates and more mechanistic interpretation of a covariate
impact.
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