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Combinations of intense non-pharmaceutical interventions
(lockdowns) were introduced worldwide to reduce SARS-
CoV-2 transmission. Many governments have begun to
implement exit strategies that relax restrictions while
attempting to control the risk of a surge in cases. Mathemat-
ical modelling has played a central role in guiding
interventions, but the challenge of designing optimal exit
strategies in the face of ongoing transmission is unprece-
dented. Here, we report discussions from the Isaac
Newton Institute ‘Models for an exit strategy’ workshop
(11–15 May 2020). A diverse community of modellers who
are providing evidence to governments worldwide were
asked to identify the main questions that, if answered,
would allow for more accurate predictions of the effects of
different exit strategies. Based on these questions, we pro-
pose a roadmap to facilitate the development of reliable
models to guide exit strategies. This roadmap requires a
global collaborative effort from the scientific community
and policymakers, and has three parts: (i) improve esti-
mation of key epidemiological parameters; (ii) understand
sources of heterogeneity in populations; and (iii) focus on
requirements for data collection, particularly in low-to-
middle-income countries. This will provide important infor-
mation for planning exit strategies that balance socio-
economic benefits with public health.
1. Introduction
As of 3 August 2020, the coronavirus disease 2019 (COVID-19)
pandemic has been responsible for more than 18 million
reported cases worldwide, including over 692 000 deaths.
Mathematical modelling is playing an important role in
guiding interventions to reduce the spread of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Although
the impact of the virus has varied significantly across the
world, and different countries have taken different approaches
to counter the pandemic, many national governments intro-
duced packages of intense non-pharmaceutical interventions
(NPIs), informally known as ‘lockdowns’. Although the
socio-economic costs (e.g. job losses and long-term mental
health effects) are yet to be assessed fully, public health
measures have led to substantial reductions in transmission
[1–3]. Data from countries such as Sweden and Japan,
where epidemic waves peaked without strict lockdowns,
will be useful for comparing approaches and conducting
retrospective cost–benefit analyses.

As case numbers have either stabilized or declined
in many countries, attention has turned to strategies that
allow restrictions to be lifted [4,5] in order to alleviate the
economic, social and other health costs of lockdowns. How-
ever, in countries with active transmission still occurring,
daily disease incidence could increase again quickly, while
countries that have suppressed community transmission
face the risk of transmission reestablishing due to reintroduc-
tions. In the absence of a vaccine or sufficient herd immunity
to reduce transmission substantially, COVID-19 exit strategies
pose unprecedented challenges to policymakers and the
scientific community. Given our limited knowledge, and
the fact that entire packages of interventions were often
introduced in quick succession as case numbers increa-
sed, it is challenging to estimate the effects of removing
individual measures directly and modelling remains of
paramount importance.

We report discussions from the ‘Models for an exit strategy’
workshop (11–15May 2020) that took place online as part of the
Isaac Newton Institute’s ‘Infectious Dynamics of Pandemics’
programme. We outline progress to date and open questions
in modelling exit strategies that arose during discussions at
the workshop. Most participants were working actively on
COVID-19 at the time of the workshop, often with the
aim of providing evidence to governments, public health auth-
orities and the general public to support the pandemic
response. After four months of intense model development
and data analysis, the workshop gave participants a chance to
take stock and openly share their views of the main challenges
they are facing. A range of countrieswas represented, providing
a unique forum to discuss the different epidemic dynamics and
policies around theworld. Although themain focuswas on epi-
demiological models, the interplay with other disciplines
formed an integral part of the discussion. The purpose of this
article is twofold: to highlight key knowledge gaps hindering
current predictions and projections, and to provide a roadmap
for modellers and other scientists towards solutions.

Given that SARS-CoV-2 is a newly discovered virus, the
evidence base is changing rapidly. To conduct a systematic
review, we asked the large group of researchers at the
workshop for their expert opinions on the most important
open questions, and relevant literature, that will enable exit
strategies to be planned with more precision. By inviting con-
tributions from representatives of different countries and
areas of expertise (including social scientists, immunologists,
epidemic modellers and others), and discussing the expert
views raised at the workshop in detail, we sought to reduce
geographical and disciplinary biases. All evidence is summar-
ized here in a policy-neutral manner.

The questions in this article have been grouped as follows.
First, we discuss outstanding questions formodelling exit strat-
egies that are related to key epidemiological quantities, such as
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Figure 1. Research roadmap to facilitate the development of reliable models to guide exit strategies. Three key steps are required: (i) improve estimates of epi-
demiological parameters (such as the reproduction number and herd immunity fraction) using data from different countries (§2a–d); (ii) understand heterogeneities
within and between populations that affect virus transmission and interventions (§3a–d); and (iii) focus on data requirements for predicting the effects of individual
interventions, particularly—but not exclusively—in data-limited settings such as LMICs (§4a–c). Work in these areas must be conducted concurrently; feedback will
arise from the results of the proposed research that will be useful for shaping next steps across the different topics. (Online version in colour.)
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the reproduction number and herd immunity fraction.We then
identify different sources of heterogeneity underlying SARS-
CoV-2 transmission and control, and consider how differences
between hosts and populations across the world should be
included in models. Finally, we discuss current challenges
relating to data requirements, focusing on the data that are
needed to resolve current knowledge gaps and how uncer-
tainty in modelling outputs can be communicated to
policymakers and the wider public. In each case, we outline
the most relevant issues, summarize expert knowledge and
propose specific steps towards the development of evidence-
based exit strategies. This leads to a roadmap for future
research (figure 1) made up of three key steps: (i) improve esti-
mation of epidemiological parameters using outbreak data
from different countries; (ii) understand heterogeneities
within and between populations that affect virus transmission
and interventions; and (iii) focus on data needs, particularly
data collection and methods for planning exit strategies in
low-to-middle-income countries (LMICs) where data are
often lacking. This roadmap is not a linear process: improved
understanding of each aspect will help to inform other
requirements. For example, a clearer understanding of the
model resolution required for accurate forecasting (§3a) will
inform the data that need to be collected (§4), and vice
versa. If this roadmap can be followed, it will be possible
to predict the likely effects of different potential exit strategies
with increased precision. This is of clear benefit to global
health, allowing exit strategies to be chosen that permit
interventions to be relaxedwhile limiting the risk of substantial
further transmission.
2. Key epidemiological quantities
(a) How can viral transmissibility be assessed more

accurately?
The time-dependent reproduction number, R(t) or Rt, has
emerged as the main quantity used to assess the transmissi-
bility of SARS-CoV-2 in real time [6–10]. In a population
with active virus transmission, the value of R(t) represents
the expected number of secondary cases generated by some-
one infected at time t. If this quantity is, and remains below,
one, then an ongoing outbreak will eventually fade out.
Although easy to understand intuitively, estimating R(t)
from case reports (as opposed to, for example, observing
R(t) in known or inferred transmission trees [11]) requires
the use of mathematical models. As factors such as contact
rates between infectious and susceptible individuals change
during an outbreak in response to public health advice or
movement restrictions, the value of R(t) has been found to
respond rapidly. For example, across the UK, country-wide
and regional estimates of R(t) dropped from approximately
2.5–4 in mid-March [7,12] to below one after lockdown
was introduced [12,13]. One of the criteria for relaxing the
lockdown was for the reproduction number to decrease to
‘manageable levels’ [14]. Monitoring R(t), as well as case
numbers, as individual components of the lockdown are
relaxed is critical for understanding whether or not the
outbreak remains under control [15].

Severalmathematical and statisticalmethods for estimating
temporal changes in the reproduction number have been pro-
posed. Two popular approaches are the Wallinga–Teunis
method [16] and the Cori method [17,18]. These methods use
case notification data along with an estimate of the serial inter-
val distribution (the times between successive cases in a
transmission chain) to infer the value of R(t). Other approaches
exist (e.g. based on compartmental epidemiological models
[19]), including those that can be used alongside different
data (e.g. time series of deaths [7,12,20] or phylogenetic data
[21–24]).

Despite this extensive theoretical framework, practical
challenges remain. Reproduction number estimates often rely
on case notification data that are subject to delays between
case onset and being recorded. Available data, therefore, do
not include up-to-date knowledge of current numbers of infec-
tions, an issue that can be addressed using ‘nowcasting’
models [8,12,25]. The serial interval represents the period
between symptom onset times in a transmission chain, rather
than between times at which cases are recorded. Time series
of symptom onset dates, or even infection dates (to be used
with estimates of the generation interval when inferring R(t)),
can be estimated from case notification data using latent vari-
able methods [8,26] or methods such as the Richardson–Lucy
deconvolution technique [27,28]. The Richardson–Lucy
approach has previously been applied to infer incidence
curves from time series of deaths [29]. These methods, as
well as others that account for reporting delays [30], provide
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useful avenues to improve the practical estimation of R(t).
Further, changes in testing practice (or capacity to conduct
tests) lead to temporal changes in case numbers that
cannot be distinguished easily from changes in transmission.
Understanding how accurately and how quickly changes
in R(t) can be inferred in real time given these challenges
is crucial.

Another way to assess temporal changes in R(t), without
requiring nowcasting, is by observing people’s transmission-
relevant behaviour directly, e.g. through contact surveys
or mobility data [31]. These methods come with their own
limitations: because these surveys do not usually collect
data on infections, care must be taken in using them to under-
stand and predict ongoing changes in transmission.

Other outstanding challenges in assessing variations inR(t)
include the decrease in accuracy when case numbers are low,
and the requirement to account for temporal changes in the
serial interval or generation time distribution of the disease
[32,33]. When there are few cases (such as in the ‘tail’ of an epi-
demic—§2d), there is little information with which to assess
virus transmissibility. Methods for estimating R(t) based on
the assumption that transmissibility is constant within fixed
time periods can be applied with windows of long duration
(thereby including more case notification data with which to
estimate R(t)) [34,35]. However, this comes at the cost of a
loss of sensitivity to temporal variations in transmissibility.
Consequently, when case numbers are low, the methods
described above for tracking transmission-relevant behaviour
directly are particularly useful. In those scenarios, the ‘trans-
mission potential’ might be more important than realized
transmission [36].

The effect of population heterogeneity on reproduction
number estimates requires further investigation, as current
estimates of R(t) tend to be calculated for whole populations
(e.g. countries or regions). Understanding the characteristics
of constituent groups contributing to this value is important
to target interventions effectively [37,38]. For this, data on infec-
tions within and between different subpopulations (e.g.
infections in care homes and in the wider population) are
needed. Aswell as between subpopulations, it is also necessary
to ensure that estimates of R(t) account for heterogeneity in
transmission between different infectious hosts. Such hetero-
geneity alters the effectiveness of different control measures,
and, therefore, the predicted disease dynamics when interven-
tions are relaxed. For a range of diseases, a rule of thumb that
around 20% of infected individuals are the sources of 80% of
infections has been proposed [38,39]. This is supported by
recent evidence for COVID-19, which suggests significant
individual-level variation in SARS-CoV-2 transmission [40]
with some transmission events leading to large numbers of
new infections.

Finally, it is well documented that presymptomatic
individuals (and, to a lesser extent, asymptomatic infected indi-
viduals—i.e. thosewho never develop symptoms) can transmit
SARS-CoV-2 [41,42]. For that reason, negative serial intervals
may occur when an infected host displays COVID-19 symp-
toms before the person who infected them [43,44]. Although
methods for estimating R(t) with negative serial intervals
exist [44,45], their inclusion in publicly available software for
estimating R(t) should be a priority. Increasing the accuracy
of estimates of R(t), and supplementing these estimates with
other quantities (e.g. estimated epidemic growth rates [46]), is
of clear importance. As lockdowns are relaxed, this will
permit a fast determination of whether or not removed
interventions are leading to a surge in cases.
(b) What is the herd immunity threshold and when
might we reach it?

Herd immunity refers to the accumulation of sufficient immu-
nity in a population through infection and/or vaccination
to prevent further substantial outbreaks. It is a major factor
in determining exit strategies, but data are still very limited.
Dynamically, the threshold at which herd immunity is
achieved is the point at which R(t) (§2a) falls below one for
an otherwise uncontrolled epidemic, resulting in a negative
epidemic growth rate. However, reaching the herd immunity
threshold does not mean that the epidemic is over or that
there is no risk of further infections. Great care must be taken
in communicating this concept to the public, to ensure contin-
ued adherence to public health measures. Crucially, whether
immunity is gained naturally through infection or through
random or targeted vaccination affects the herd immunity
threshold, which also depends critically on the immunological
characteristics of the pathogen. Since SARS-CoV-2 is a new
virus, its immunological characteristics—notably the duration
and extent to which prior infection confers protection against
future infection, and how these vary across the population—
are currently unknown [47]. Lockdown measures have
impacted contact structures and hence the accumulation of
immunity in the population, and are likely to have led to sig-
nificant heterogeneity in acquired immunity (e.g. by age,
location, workplace). Knowing the extent and distribution of
immunity in the population will help guide exit strategies.

As interventions are lifted, whether or not R(t) remains
below one depends on the current level of immunity in the
population as well as the specific exit strategy followed.
A simple illustration is to treat R(t) as a deflation of the original
(basic) reproduction number (R0, which is assumed to be
greater than one):

R(t) ¼ (1� i(t)) (1� p(t)) R0,

where i(t) is the immunity level in the community at time t and
p(t) is the overall reduction factor from the control measures
that are in place. If i(t) . 1� 1=R0, then R(t) remains below
one even when all interventions are lifted: herd immunity
is achieved. However, recent results [48,49] show that, for
heterogeneous populations, herd immunity occurs at a lower
immunity level than 1� 1=R0. The threshold 1� 1=R0 assumes
random vaccination, with immunity distributed uniformly in
the community. When immunity is obtained from disease
exposure, the more socially active individuals in the popula-
tion are over-represented in cases from the early stages
of the epidemic. As a result, the virus preferentially infects
individuals with higher numbers of contacts, thereby
acting like a well-targeted vaccine. This reduces the herd
immunity threshold. However, the extent to which heterogen-
eity in behaviour lowers the threshold for COVID-19 is
currently unknown.

We highlight three key challenges for determining the herd
immunity threshold for COVID-19, and hence for understand-
ing the impact of implementing or lifting control measures in
different populations. First, most of the quantities for calculat-
ing the threshold are not known precisely and require careful
investigation. For example, determining the immunity level
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in a community is far from trivial for a number of reasons: anti-
body tests may have variable sensitivity and specificity; it is
currently unclear whether or not individuals with mild or no
symptoms acquire immunity or test seropositive; the duration
of immunity is unknown. Second, estimation of R0, despite
receiving significant attention at the start of the pandemic,
still needs to be refined within and between countries as
issues with early case reports come to light. Third, as
discussed in §3, SARS-CoV-2 does not spread uniformly
through populations [50]. An improved understanding of the
main transmission routes, and which communities are most
influential, will help to determine how much lower disease-
induced herd immunity is compared to the classical threshold
(1− 1/R0).

To summarize, it is vital to obtain more accurate estimates
of the current immunity levels in different countries and
regions, and to understand how population heterogeneity
affects transmission and the accumulation of immunity.

(c) Can seroprevalence surveys provide insight into
transmission dynamics and herd immunity?

Quantitative information about current and past infections
are key inputs to formulate exit strategies, monitor the pro-
gression of epidemics and identify social and demographic
sources of transmission heterogeneities. Seroprevalence sur-
veys provide a direct way to estimate the fraction of the
population that has been exposed to the virus but has not
been detected by regular surveillance mechanisms [51].
Given the possibility of mild or asymptomatic infections,
which are not typically included in laboratory-confirmed
cases, seroprevalence surveys could be particularly useful
for tracking the COVID-19 pandemic [52].

Contacts between pathogens and hosts that elicit an
immune response can be revealed by the presence of anti-
bodies. Typically, a rising concentration of immunoglobulin
M (IgM) precedes an increase in the concentration of
immunoglobulin G (IgG). However, for infections by SARS-
CoV-2, there is increasing evidence that IgG and IgM
appear concurrently [53]. Most serological assays used for
understanding viral transmission measure IgG. Interpretation
of a positive result depends on detailed knowledge of
immune response dynamics and its epidemiological corre-
spondence to the developmental stage of the pathogen, for
example, the presence of virus shedding [54,55]. Serological
surveys are common practice in infectious disease epidemiol-
ogy and have been used to estimate the prevalence of carriers
of antibodies, force of infection and reproduction numbers
[56], and in certain circumstances (e.g. for measles) to infer
population immunity to a pathogen [57]. Unfortunately, a
single serological survey only provides information about
the number of individuals who are seropositive at the time
of the survey (as well as information about the individuals
tested, such as their ages [58]). Although information about
temporal changes in infections can be obtained by conduct-
ing multiple surveys longitudinally [47,59], the precise
timings of infections remain unknown.

Available tests vary in sensitivity and specificity, which
can impact the accuracy of model predictions if seropositivity
is used to assess the proportion of individuals protected from
infection or disease. Propagation of uncertainty due to the
sensitivity and specificity of the testing procedures and epi-
demiological interpretation of the immune response are
areas that require attention. The possible presence of immu-
nologically silent individuals, as implied by studies of
COVID-19 showing that 10–20% of symptomatically infected
people have few or no detectable antibodies [60], adds to the
known sources of uncertainty.

Many compartmental modelling studies have used data
on deaths as the main reliable dataset for model fitting.
The extent to which seroprevalence data could provide an
additional useful input for model calibration, and help in for-
mulating exit strategies, has yet to be ascertained. With the
caveats above, one-off or regular assessments of population
seroprevalence could be helpful in understanding
SARS-CoV-2 transmission in different locations.

(d) Is global eradication of SARS-CoV-2 a realistic
possibility?

When R0 is greater than one, an emerging outbreak will either
grow to infect a substantial proportion of the population or
become extinct before it is able to do so [61–65]. If instead R0

is less than one, the outbreak will almost certainly become
extinct before a substantial proportion of the population is
infected. If new susceptible individuals are introduced into
the population (for example, new susceptible individuals are
born), it is possible that the disease will persist after its first
wave and become endemic [66]. These theoretical results can
be extended to populationswith household and network struc-
ture [67,68] and scenarios in which R0 is very close to one [69].

Epidemiological theory and data from different diseases
indicate that extinction can be a slow process, often involving
a long ‘tail’ of cases with significant random fluctuations (elec-
tronic supplementary material, figure S1). Long epidemic tails
can be driven by spatial heterogeneities, such as differences in
weather in different countries (potentially allowing an out-
break to persist by surviving in different locations at different
times of year) and varying access to treatment in different
locations. Regions or countries that eradicate SARS-CoV-2 suc-
cessfully might experience reimportations from elsewhere
[70,71], for example, the reimportation of the virus to New
Zealand from the UK in June 2020.

At the global scale, smallpox is the only previously endemic
human disease to have been eradicated, and extinction took
many decades of vaccination. The prevalence and incidence
of polio and measles have been reduced substantially through
vaccination but both diseases persist. The 2001 foot and
mouth disease outbreak in the UK and the 2003 SARS pan-
demic were new epidemics that were driven extinct without
vaccination before they became endemic, but both exhibited
long tails before eradication was achieved. The 2014–16 Ebola
epidemic in West Africa was eliminated (with vaccination at
the end of the epidemic [72]), but eradication took some time
with flare ups occurring in different countries [73,74].

Past experience, therefore, raises the possibility that
SARS-CoV-2 may not be driven to complete extinction in
the near future, even if a vaccine is developed and
vaccination campaigns are implemented. As exemplified by
the Ebola outbreak in the Democratic Republic of the
Congo that has only recently been declared over [75], there
is an additional challenge of assessing whether the virus
really is extinct rather than persisting in individuals who
do not report disease [73]. SARS-CoV-2 could become ende-
mic, persisting in populations with limited access to
healthcare or circulating in seasonal outbreaks. Appropriate
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communication of these scenarios to the public and
policymakers—particularly the possibility that SARS-CoV-2
may never be eradicated—is essential.
 lsocietypublishing.org/journal/rspb
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3. Heterogeneities in transmission
(a) How much resolution is needed when modelling

human heterogeneities?
A common challenge faced by epidemic modellers is the ten-
sion between making models more complex (and possibly,
therefore, seeming more realistic to stakeholders) and main-
taining simplicity (for scientific parsimony when data are
sparse and for expediency when predictions are required at
short notice) [76]. How to strike the correct balance is not a
settled question, especially given the increasing amount of
available data on human demography and behaviour.
Indeed, outputs of multiple models with different levels of
complexity can provide useful and complementary infor-
mation. Many sources of heterogeneity between individuals
(and between populations) exist, including the strong skew
of severe COVID-19 outcomes towards the elderly and
individuals from specific groups. We focus on two sources
of heterogeneity in human populations that must be con-
sidered when modelling exit strategies: spatial contact
structure and health vulnerabilities.

There has been considerable success in modelling local
contact structure, both in terms of spatial heterogeneity (dis-
tinguishing local and long-distance contacts) and in local
mixing structures such as households and workplaces. How-
ever, challenges include tracking transmission and assessing
changes when contact networks are altered. In spatial
models with only a small number of near-neighbour contacts,
the number of new infections grows slowly; each generation
of infected individuals is only slightly larger than the pre-
vious one. As a result, in those models, R(t) cannot
significantly exceed its threshold value of one [77]. By con-
trast, models accounting for transmission within closely
interacting groups explicitly contain a mechanism that has a
multiplier effect on the value of R(t) [67]. Another challenge
is the spatio-temporal structure of human populations: the
spatial distribution of individuals is important, but long-
distance contacts make populations more connected than in
simple percolation-type spatial models [77]. Clustering and
pair approximation models can capture some aspects of
spatial heterogeneities [78], which can result in exponential
rather than linear growth in case numbers [79].

While models can include almost any kind of spatial
stratification, ensuring that model outputs are meaningful
for exit strategy planning relies on calibration with data.
This brings in challenges of merging multiple data types
with different stratification levels. For example, case notifica-
tion data may be aggregated at a regional level within a
country, while mobility data from past surveys might be
available at finer scales within regions. Another challenge is
to determine the appropriate scale at which to introduce or
lift interventions. Although measures are usually directed at
whole populations within relevant administrative units
(country-wide or smaller), more effective interventions and
exit strategies may target specific parts of the population
[80]. Here, modelling can be helpful to account for
operational costs and imperfect implementation that will
offset expected epidemiological gains.

The structure of host vulnerability to disease is generally
reported via risk factors, including age, sex and ethnicity
[81,82]. From a modelling perspective, a number of open
questions exist. To what extent does heterogeneous vulner-
ability at an individual level affect the impact of exit
strategies beyond the reporting of potential outcomes?
Where host vulnerability is an issue, is it necessary to account
for considerations other than reported risk factors, as these
may be proxies for underlying causes? Once communicated
to the public, modelling results could create behavioural
feedback that might help or hinder exit strategies; some sen-
sitivity analyses would be useful. As with the questions
around spatial heterogeneity, modelling variations in host
vulnerability could improve proposed exit strategies, and
modelling can be used to explore how these are targeted
and communicated [5]. Finally, heterogeneities in space and
vulnerabilities may interact; modelling these may reveal
surprises that can be explored further.

(b) What are the roles of networks and households in
SARS-CoV-2 transmission?

NPIs reduce the opportunity for transmission by breaking up
contact networks (closing workplaces and schools, preventing
large gatherings), reducing the chance of transmission where
links cannot be broken (wearing masks, sneeze barriers) and
identifying infected individuals (temperature checks [83],
diagnostic testing [84]). Network models [85,86] aim to
split pathogen transmission into opportunity (number of con-
tacts) and transmission probability, using data that can be
measured directly (through devices such as mobility tracking
and contact diaries) and indirectly (through traffic flow and
co-occurrence studies). This brings new issues: for example,
are observed networks missing key transmission routes,
such as indirect contact via contaminated surfaces, or including
contacts that are low risk [87]? How we measure and
interpret contact networks depends on the geographical
and social scales of interest (e.g. wider community spread or
closed populations such as prisons and care homes; or sub-
populations such as workplaces and schools) and the
timescales over which the networks are used to understand
or predict transmission.

In reality, individuals belong to households, children attend
schools and adults mix in workplaces as well as in social con-
texts. This has led to the development of household models
[67,88–91], multilayer networks [92], bipartite networks
[93,94] and networks that are geographically and socially
embedded to reflect location and travel habits [95]. These
tools can play a key role in understanding and monitoring
transmission, and exploring scenarios, at the point of exiting a
lockdown: in particular, they can inform whether or not, and
how quickly, households or local networks merge to form
larger and possibly denser contact networks in which local out-
breaks can emerge. Regional variations and socio-economic
factors can also be explored.

Contact tracing, followed by isolation or treatment of
infected contacts, is a well-established method of disease con-
trol. The structure of the contact network is important in
determining whether or not contact tracing will be successful.
For example, contact tracing in clustered networks is known
to be most effective [96,97], since an infected contact can be
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traced from multiple different sources. Knowledge of the con-
tact network enhances understanding of the correlation
structure that emerges as a result of the epidemic. The first
wave of an epidemic will typically infect many of the
highly connected nodes and will move slowly to less con-
nected parts of the network, leaving behind islands of
susceptible and recovered individuals. This can lead to a cor-
related structure of susceptible and recovered nodes that may
make the networks less vulnerable to later epidemic waves
[98], and has implications for herd immunity (§2b).

In heterogeneous populations, relatively few very well-
connected people can be major hubs for transmission. Such
individuals are often referred to as super-spreaders [99,100]
and some theoretical approaches to controlling epidemics
are based on targeting them [101]. However, particularly
for respiratory diseases, whether specific individuals can be
classified as potential super-spreaders, or instead whether
any infected individual has the potential to generate
super-spreading events, is debated [38,102,103].

As control policies are gradually lifted, the disrupted con-
tact network will start to form again. Understanding how
proxies for social networks (which can be measured in near
real time using mobility data, electronic sensors or trackers)
relate to transmission requires careful consideration. Using
observed contacts to predict virus spread might be successful
if these quantities are heavily correlated, but one aim of NPIs
should be at least a partial decoupling of the two, so that
society can reopen but transmission remains controlled.
Currently, a key empirical and theoretical challenge is to
understand how households are connected and how this is
affected by school opening (§3c). An important area for
further research is to improve our understanding of the role
of within-household transmission in the COVID-19 pandemic.
In particular, do sustained infection chains within households
lead to amplification of infection rates between households
despite lockdowns aimed at minimizing between-household
transmission?

Even for well-studied household models, development of
methods accommodating time-varying parameters such as
variable adherence to household-based policies and/or com-
pensatory behaviour would be valuable. It would be useful
to compare interventions and de-escalation procedures in
different countries to gain insight into: regional variations
in contact and transmission networks; the role of different
household structures in transmission and the severity of out-
comes (accounting for different household sizes and age-
structures); the cost-effectiveness of different policies, such
as household-based isolation and quarantine in the UK com-
pared to out-of-household quarantine in Australia and Hong
Kong. First Few X (FFX) studies [104,105], now adopted in
several countries, provide the opportunity not only to
improve our understanding of critical epidemiological
characteristics (such as incubation periods, generation inter-
vals and the roles of asymptomatic and presymptomatic
transmission) but also to make many of these comparisons.

(c) What is the role of children in SARS-CoV-2
transmission?

A widely implemented early intervention was school closure,
which is frequently used during influenza pandemics
[106,107]. Further, playgrounds were closed and social distan-
cing has kept children separated. However, the role of children
in SARS-CoV-2 transmission is unclear. Early signs from
Wuhan (China), echoed elsewhere, showed many fewer cases
in under 20s than expected. There are three aspects of the
role of children in transmission: (i) susceptibility; (ii) infectious-
ness once infected; and (iii) propensity to develop disease if
infected [108,109]. Evidence for age-dependent susceptibility
and infectiousness is mixed, with infectiousness the more diffi-
cult to quantify. However, evidence is emerging of lower
susceptibility to infection in children compared to adults
[110], although the mechanism underlying this is unknown
and it may not be generalizable to all settings. Once infected,
children appear to have a milder course of infection, and it
has been suggested that children have a higher probability of
a fully subclinical course of infection.

Reopening schools is of clear importance both in ensuring
equal access to education and enabling carers to return to
work. However, the transmission risk within schools and
the potential impact on community transmission needs to
be understood so that policymakers can balance the potential
benefits and harms. As schools begin to reopen, there are
major knowledge gaps that prevent clear answers. The most
pressing question is the extent to which school restarting
will affect population-level transmission, characterized by
R(t) (§2a). Clearer quantification of the role of children
could have come from analysing the effects of school closures
in different countries in February and March, but closures
generally coincided with other interventions and so it
has proved difficult to unpick the effects of individual
measures [7]. Almost all schools in Sweden stayed open to
under-16s (with the exception of one school that closed for
two weeks [111]), and schools in some other countries are
beginning to reopen with social distancing measures in
place, providing a potential opportunity to understand
within-school transmission more clearly. Models can also
inform the design of studies to generate the data required
to answer key questions.

The effect of opening schools on R(t) also depends on
other changes in the community. Children, teachers and sup-
port staff are members of households; lifting restrictions may
affect all members. Modelling school reopening must account
for all changes in contacts of household members [112],
noting that the impact on R(t) may depend on the other inter-
ventions in place at that time. The relative risk of restarting
different school years (or universities) does not affect the
population R(t) straightforwardly, since older children tend
to live with adults who are older (compared to younger
children), and households with older individuals are at
greater risk of severe outcomes. Thus, decisions about
which age groups return to school first and how they are
grouped at school must balance the risks of transmission
between children, transmission to and between their teachers,
and transmission to and within the households of the
children and teachers.

Return to school affects the number of physical contacts
of teachers and support staff. Schools will not be the same
environments as prior to lockdown, since physical distancing
measures will be in place. These include smaller classes and
changes in layout, plus increased hygiene measures. Some
children and teachers may be less likely to return to school
because of underlying health conditions and if there is
transmission within schools, there may be absenteeism follow-
ing infection. Models must, therefore, consider the different
effects on transmission of pre- and post-lockdown school
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environments. Post-lockdown, with social distancing in
place in the wider community, reopening schools could link
subcommunities of the population together, and models
can be used to estimate the wider effects on population trans-
mission as well as within schools. These estimates are likely to
play a central role in decisions surrounding when and how to
reopen schools.
ing.org/journal/rspb
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(d) The pandemic is social: how can we model that?
While the effects of population structure and heterogeneities
can be approximated in standard compartmental epidemio-
logical models [2,73,113], such models can become highly
complex and cumbersome to specify and solve as more het-
erogeneities are introduced. An alternative approach is
agent-based modelling. Agent-based models (ABM) allow
complex systems such as societies to be represented, using
virtual agents programmed to have behavioural and individ-
ual characteristics (age, sex, ethnicity, income, employment
status, etc.) as well as the capacity to interact with other
agents [114]. In addition, ABM can include societal-level fac-
tors such as the influence of social media, regulations and
laws, and community norms. In more sophisticated ABM,
agents can anticipate and react to scenarios, and learn
by trial and error or by imitation. ABM can represent
systems in which there are feedbacks, tipping points, the
emergence of higher-level properties from the actions
of individual agents, adaptation and multiple scales of organ-
ization—all features of the COVID-19 pandemic and societal
reactions to it.

While ABM arise from a different tradition, they can incor-
porate the insights of compartmental models; for example,
agents must transition through disease states (or compart-
ments) such that the mean transition rates correspond to
those in compartmental models. However, building an ABM
that represents a population on a national scale is a huge chal-
lenge and is unlikely be accomplished in a timescale useful
for the current pandemic. ABMoften includemanyparameters,
leading to challenges of model parametrization and a require-
ment for careful uncertainty quantification and sensitivity
analyses to different inputs. On the other hand, useful ABM
do not have to be all-encompassing. There are already several
models that illustrate the effects of policies such as social distan-
cing on small simulated populations. These models can be very
helpful as ‘thought experiments’ to identify the potential effects
of candidate policies such as school re-opening and restrictions
on long-distance travel, as well as the consequences of
non-compliance with government edicts.

There are two areas where long-term action should be
taken. First, more data about people’s ordinary behaviour
are required: what individuals do each day (through time-
use diaries), whom they meet (possibly through mobile
phone data, if consent can be obtained) and how they under-
stand and act on government regulation, social media
influences and broadcast information [115]. Second, a large,
modular ABM should be built that represents heterogeneities
in populations and that is properly calibrated as a social ‘digi-
tal twin’ of our own society, with which we can carry out
virtual policy experiments. Had these developments occurred
before, they would have been useful currently. As a result, if
these are addressed now, they will aid the planning of future
exit strategies.
4. Data needs and communicating uncertainty
(a) What are the additional challenges of data-limited

settings?
In most countries, criteria for ending COVID-19 lockdowns
rely on tracking trends in numbers of confirmed cases and
deaths, and assessments of transmissibility (§2a). This
section focuses on the relaxation of interventions in LMICs,
although many issues apply everywhere. Perhaps surpris-
ingly, concerns relating to data availability and reliability
(e.g. lack of clarity about sampling frames) remain world-
wide. Other difficulties have also been experienced in many
countries throughout the pandemic (e.g. shortages of vital
supplies, perhaps due in developed countries to previous
emphasis on healthcare system efficiency rather than
pandemic preparedness [116]).

Data about the COVID-19 pandemic and about the general
population and context can be unreliable or lacking globally.
However, due to limited healthcare access and utilization,
there can be fewer opportunities for diagnosis and subsequent
confirmation of cases in LMICs compared to other settings,
unless there are active programmes [117]. Distrust can make
monitoring programmes difficult, and complicate control
activities like test–trace–isolate campaigns [118,119]. Other
options for monitoring—such as assessing excess disease
from general reporting of acute respiratory infections or influ-
enza-like illness—require historical baselines that may not
exist [120,121]. In general, while many LMICs will have a
well-served fraction of the population, dense peri-urban and
informal settlements are typically outside that population and
may rapidly become a primary concern for transmission
[122]. Since confirmed case numbers in these populations are
unlikely to provide an accurate representation of the underlying
epidemic, reliance on alternative data such as clinically diag-
nosed cases may be necessary to understand the epidemic
trajectory. Some tools for rapid assessment of mortality in
countries where the numbers of COVID-19-related deaths are
hard to track are starting to become available [123].

In settings where additional data collection is not afford-
able, models may provide a clearer picture by incorporating
available metadata, such as testing and reporting rates through
time, sample backlogs and suspected COVID-19 cases based
on syndromic surveillance. By identifying themost informative
data, modelling could encourage countries to share available
data more widely. For example, burial reports and death certi-
ficates may be available, and these data can provide
information on the demographics that influence the infection
fatality rate. These can in turn reveal potential COVID-19
deaths classified as other causes and hence missing from
COVID-19 attributed death notifications.

In addition to the challenges in understanding the pan-
demic in these settings, metrics on health system capacity
(including resources such as beds and ventilators), as needed
to set targets for control, are often poorly documented [124].
Furthermore, the economic hardships and competing health
priorities in low-resource settings change the objectives of lift-
ing restrictions—for example, hunger due to loss of jobs and
changes in access to routine healthcare (e.g. HIV services and
childhood vaccinations) as a result of lockdown have the
potential to cost many lives in themselves, both in the short
and long term [125,126]. This must be accounted for when
deciding how to relax COVID-19 interventions.
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We have identified three key challenges for epidemic
modellers to help guide exit strategies in data-limited settings:
(i) explore policy responses that are robust to missing
information; (ii) conduct value-of-information analyses to
prioritize additional data collection; and (iii) develop methods
that use metadata to interpret epidemiological patterns.

In general, supporting LMICs calls for creativity in
the data that are used to parametrize models and in the
response activities that are undertaken. Some LMICs have
managed the COVID-19 pandemic successfully so far
(e.g. Vietnam, as well as Trinidad and Tobago [127]). How-
ever, additional support in LMICs is required and warrants
special attention. If interventions are relaxed too soon, fragile
healthcare systems may be overwhelmed. If instead they
are relaxed too late, socio-economic consequences can be
particularly severe.

(b) Which data should be collected as countries emerge
from lockdown, and why?

Identifying the effects of the different components of lock-
down is important to understand how—and in which
order—interventions should be released. The impact of pre-
vious measures must be understood both to inform policy
in real time and to ensure that lessons can be learnt.

All models require information to make their predictions
relevant. Data from PCR tests for the presence of active virus
and serological tests for antibodies, together with data on
COVID-19-related deaths, are freely available via a number
of internet sites (e.g. [128]). However, metadata associated
with testing protocols (e.g. reason for testing, type of test,
breakdowns by age and underlying health conditions) and
the definition of COVID-19-related death, which are needed
to quantify sources of potential bias and parametrize models
correctly, are often unavailable. Data from individuals likely
to have been exposed to the virus (e.g. within households of
known infected individuals), but who may or may not have
contracted it themselves, are also useful formodel parametriza-
tion [129]. New sources of data range from tracking data from
mobile phones [130] to social media surveys [131] and details
of interactions with public health providers [132]. Although
potentially valuable, these data sources bring with them
biases that are not always understood. These types of data
are also often subject to data protection and/or costly fees,
meaning that they are not readily available to all scientists.
Mixing patterns by age were reasonably well-characterized
before the current pandemic [133,134] (particularly for adults
of different ages) and have been used extensively in existing
models. However, there are gaps in these data and uncertainty
in the impacts that different interventions have had on mixing.
Predictive models for policy tend to make broad assumptions
about the effects of elements of social distancing [135],
although results of studies that attempt to estimate effects in
a more data-driven way are beginning to emerge [136]. The
future success of modelling to understand when controls
should be relaxed or tightened depends critically on whether,
and how accurately as well as how quickly, the effects of
different elements of lockdown can be parametrized.

Given the many differences in lockdown implementation
between countries, cross-country comparisons offer an
opportunity to estimate the effects on transmission of each
component of lockdown [7]. However, there are many
challenges in comparing SARS-CoV-2 dynamics in different
countries. Alongside variability in the timing, type and
impact of interventions, the numbers of importations from else-
where will vary [70,137]. Underlying differences in mixing,
behavioural changes in response to the pandemic, household
structures, occupations and distributions of ages and co-
morbidities are likely to be important but uncertain drivers
of transmission patterns. A current research target is to
understand the role of weather and climate in SARS-CoV-2
transmission and severity [138]. Many analyses across and
within countries highlight potential correlations between
environmental variables and transmission [139–144], although
sometimes by applying ecological niche modelling frame-
works that may be ill-suited for modelling a rapidly
spreading pathogen [145–147]. Assessments of the interactions
betweenweather and viral transmissibility are facilitated by the
availability of extensive datasets describing weather patterns,
such as the European Centre for Medium-RangeWeather Fore-
casts ERA5 dataset [148] and simulations of the Community
Earth SystemModel that can be used to estimate the past, pre-
sent and future values of meteorological variables worldwide
[149]. Temperature, humidity and precipitation are likely to
affect the survival of SARS-CoV-2 outside the body, and pre-
vailing weather conditions could, in theory, tip R(t) above or
below one. However, the effects of these factors on trans-
mission have not been established conclusively, and the
impact of seasonality on short- or long-term SARS-CoV-2
dynamics is likely to depend on other factors including the
timing and impact of interventions, and the dynamics of
immunity [47,150]. It is hard to separate the effect of the
weather on virus survival from other factors including behav-
ioural changes in different seasons [151]. The challenge of
disentangling the impact of variations in weather on trans-
mission from other epidemiological drivers in different
locations is, therefore, a complex open problem.

In seeking to understand and compare COVID-19 data from
different countries, there is a need to coordinate the design of
epidemiological studies, involving longitudinal data collection
and case–control studies. This will help enable models to
track the progress of the epidemic and the impacts of control
policies internationally. It will also allow more refined
conclusions than those that follow from population data
alone. Countries with substantial epidemiological modelling
expertise should support epidemiologists elsewhere with stan-
dardized protocols for collecting data and using models to
inform policy. There is a need to share models to be used ‘in
the field’. Collectively, these efforts will ensure that models
are parametrized as realistically as possible for particular set-
tings. In turn, as interventions are relaxed, this will allow us
to detect the earliest possible reliable signatures of a resurgence
in cases, leading to an unambiguous characterization ofwhen it
is necessary for interventions to be reintroduced.

(c) How should model and parameter uncertainty be
communicated?

SARS-CoV-2 transmission models have played a crucial role in
shaping policies in different countries, and their predictions
have been a regular feature of media coverage of the pandemic
[135,152]. Understandably, both policymakers and journalists
generally prefer single ‘best guess’ figures from models,
rather than a range of plausible values. However, the ranges
of outputs that modellers provide include important infor-
mation about the variety of possible scenarios and guard
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against over-interpretation of model results. Not displaying
information about uncertainty can convey a false confidence
in predictions. It is critical that modellers present uncertainty
in a way that is understandable and useful for policymakers
and the public [76].

There are numerous and often inextricable ways in
which uncertainty enters the modelling process. Model
assumptions inevitably vary according to judgements regard-
ing which features are included [1,95] and which datasets are
used to inform the model [153]. Within any model, ranges of
parameter values can be considered to allow for uncertainty
about clinical characteristics of COVID-19 (e.g. the infectious
period and case fatality rate) [154]. Alternative initial con-
ditions (e.g. numbers and locations of imported cases
seeding national outbreaks, or levels of population suscepti-
bility) can be considered. In modelling exit strategies, when
surges in cases starting from small numbers may occur and
where predictions will depend on characterizing epidemiolo-
gical parameters as accurately as possible, stochastic models
may be of particular importance. Not all the uncertainty aris-
ing from such stochasticity will be reduced by collecting more
data; it is inherent to the process.

Where models have been developed for similar purposes,
formal methods of comparison can be applied, but in epide-
miological modelling, models often have been developed to
address different questions, possibly involving ‘what-if?’ scen-
arios, in which case only qualitative comparisons can bemade.
The ideal outcome is when different models generate similar
conclusions, demonstrating robustness to the detailed assump-
tions. Where there is a narrowly defined requirement, such as
short-term predictions of cases and deaths, more tractable
tools for comparing the outputs from different models in real
time would be valuable. One possible approach is to assess
the models’ past predictive performance [33,155]. Ensemble
estimates, most commonly applied for forecasting disease tra-
jectories, allow multiple models’ predictions to be combined
[156,157]. The assessment of past performance can then be
used to weight models in the ensemble. Such approaches typi-
cally lead to improved point and variance estimates.

To deal with parameter uncertainty, a common approach
is to perform sensitivity analyses in which model parameters
are repeatedly sampled from a range of plausible values,
and the resulting model predictions compared; both classical
and Bayesian statistical approaches can be employed
[158–160]. Methods of uncertainty quantification provide a
framework in which uncertainties in model structure, epide-
miological parameters and data can be considered together.
In practice, there is usually only a limited number of policies
that can be implemented. An important question is often
whether or not the optimal policy can be identified given
the uncertainties we have described, and decision analyses
can be helpful for this [161,162].

In summary, communication of uncertainty to policy-
makers and the general public is challenging. Different
levels of detail may be required for different audiences.
There are many subtleties: for instance, almost any epidemic
model can provide an acceptable fit to data in the early phase
of an outbreak, since most models predict exponential
growth. This can induce an artificial belief that the model
must be based on sensible underlying assumptions, and the
true uncertainty about such assumptions has vanished.
Clear presentation of data is critical. It is important not
simply to present data on the numbers of cases, but also on
the numbers of individuals who have been tested. Clear
statements of the individual values used to calculate
quantities such as the case fatality rate are vital, so that
studies can be interpreted and compared correctly
[163,164]. Going forwards, improved communication of
uncertainty is essential as models are used to predict the
effects of different exit strategies.
5. Summary and discussion
We have highlighted ongoing challenges in modelling the
COVID-19 pandemic, and uncertainties faced devising lock-
down exit strategies. It is important, however, to put these
issues into context: at the start of 2020, SARS-CoV-2 was
unknown, and its pandemic potential only became apparent
at the end of January. The speed with which the scientific
and public health communities came together and the open-
ness in sharing data, methods and analyses are
unprecedented. At very short notice, epidemic modellers
mobilized a substantial workforce—mostly on a voluntary
basis—and state-of-the-art computational models. Far from
the rough-and-ready tools sometimes depicted in the media,
the modelling effort deployed since January is a collective
and multi-pronged effort benefitting from years of experience
of epidemic modelling, combined with long-term engagement
with public health agencies and policymakers.

Drawing on this collective expertise, the virtual workshop
convened in mid-May by the Isaac Newton Institute gener-
ated a clear overview of the steps needed to improve and
validate the scientific advice to guide lockdown exit strat-
egies. Importantly, the roadmap outlined in this paper is
meant to be feasible within the lifetime of the pandemic.
Infectious disease epidemiology does not have the luxury
of waiting for all data to become available before models
must be developed. As discussed here, the solution lies in
using diverse and flexible modelling frameworks that can
be revised and improved iteratively as more data become
available. Equally important is the ability to assess the data
critically and bring together evidence from multiple fields:
numbers of cases and deaths reported by regional or national
authorities only represent a single source of data, and expert
knowledge is even required to interpret these data correctly.

In this spirit, our first recommendation is to improve esti-
mates of key epidemiological parameters. This requires close
collaboration between modellers and the individuals and
organizations that collect epidemic data, so that the caveats
and assumptions on each side are clearly presented and under-
stood. That is a key message from the first section of this study,
in which the relevance of theoretical concepts and model
parameters in the realworldwas demonstrated: far from ignor-
ing the complexity of the pandemic, models draw from
different sources of expertise to make sense of imperfect obser-
vations. By acknowledging the simplifying assumptions of
models, we can assess the models’ relative impacts and
validate or replace them as new evidence becomes available.

Our second recommendation is to seek to understand
important sources of heterogeneity that appear to be driving
the pandemic and its response to interventions. Agent-based
modelling represents one possible framework for modelling
complex dynamics, but standard epidemic models can also
be extended to include age groups or any other relevant
strata in the population as well as spatial structure. Network
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models provide computationally efficient approaches to cap-
ture different types of epidemiological and social interactions.
Importantly, many modelling frameworks provide avenues
for collaboration with other fields, such as the social sciences.

Our third and final recommendation regards the need
to focus on data requirements, particularly (although not
exclusively) in resource-limited settings such as LMICs.Under-
standing the data required for accurate predictions in different
countries requires close communication between modellers
and governments, public health authorities and the general
public. While this pandemic casts a light on social inequalities
between and within countries, modellers have a crucial role to
play in sharing knowledge and expertise with those who need
it most. During the pandemic so far, countries that might be
considered similar in many respects have often differed in
their policies; either in the choice or the timing of restrictions
imposed on their respective populations.Models are important
for drawing reliable inferences from global comparisons of the
relative impacts of different interventions. All too often,
national death tolls have been used for political purposes in
the media, attributing the apparent success or failure of
particular countries to specific policies without presenting
any convincing evidence. Modellers must work closely with
policymakers, journalists and social scientists to improve the
communication of rapidly changing scientific knowledge
while conveying the multiple sources of uncertainty in a
meaningful way.

We are now moving into a stage of the COVID-19 pan-
demic in which data collection and novel research to inform
the modelling issues discussed here are both possible and
essential for global health. These are international challenges
that require an international collaborative response from
diverse scientific communities, which we hope that this
article will stimulate. This is of critical importance, not only
to tackle this pandemic but also to improve the response to
future epidemics of emerging infectious diseases.
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