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A B S T R A C T   

Shear and torsional load on soft solids such as brain white matter purportedly exhibits the 
Poynting Effect. It is a typical nonlinear phenomenon associated with soft materials whereby they 
tend to elongate (positive Poynting effect) or contract (negative Poynting effect) in a direction 
perpendicular to the shearing or twisting plane. In this research, a novel 3D micromechanical 
Finite Element Model (FEM) has been formulated to describe the Poynting effect in bi-phasic 
modeled brain white matter (BWM) representative volume element (RVE) with axons tracts 
embedded in surrounding extracellular matrix (ECM) for simulating brain matter’s response to 
pure and simple shear. In the presented BWM 3D FEM, nonlinear Ogden hyper-elastic material 
model is deployed to interpret axons and ECM material phases. The modeled bi-phasic RVEs have 
axons tied to the surrounding ECM. In this proof-of-concept (POC) FEM, three simple shear 
loading configurations and a pure shear case were analyzed. Root mean square deviation (RMSD) 
was calculated for stress and deformation response plots to understand the effect of axon-ECM 
orientations and loading conditions on the degree of Poynting behavior. Variations in normal 
stresses (S11, S22, or S33) perpendicular to the shear plane underscored the significance of axonal 
fiber-matrix interactions. From the simulated ensemble of cases, a transitional dominance trend 
was noticed, as simple sheared axons showed pronounced Poynting behavior, but shear defor
mation build-up in the purely sheared brain model exhibited the highest Poynting behavior at 
higher strain % limits. At lower strain limits, simple shear imparted across and perpendicular to 
axonal tract directions emerged as the dominant Poynting effect configurations. At high strains, 
the stress-strain% plots manifested mild strain stiffening effects and bending stresses in purely 
sheared axons, substantiated the strong non-linearity in brain tissues’ response.   

1. Introduction 

Mechanical response characterization and computational and mathematical modeling of brain tissues have gathered tremendous 
interest from researchers to comprehend the tissue’s involvement in physiological and pathological conditions such as brain devel
opment, brain injury, and surgical procedures [1]. Brain tissues are one of the most intricate and compliant tissues in the human body. 
They are heterogeneous and exhibit highly non-linear elastic behavior. Because of their ultrasoft nature, they are sensitive to spatial 
and temporal resolutions. They exhibit hysteresis and highly non-linear response even when subjected to quasit-static loads or rela
tively small strains, making their characterization challenging [2,3]. Brain tissues also manifest loading-mode-specificity, as reported 
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by several research groups [2–5] who conducted a series of uniaxial or combined load tests to characterize brain matter. It is primarily 
attributed to the biphasic/heterogeneous nature of the brain tissues [3]. 

1.1. Characterization & modeling of brain tissues 

Due to the above, acquiring consistent experimental data is challenging, therefore reliance on computational models for tissue 
characterization is of paramount importance. Regarding computational modeling of brain matter, parameter identification and choice 
of model non-linearity also play a crucial role in determining the degree of model congruence with experimental or actual biophysical 
phenomena. It was corroborated by findings from a viscoelastic parameter identification study from Budday et al. [6], in which they 
found that out of myriad loading scenarios, simple shear tests are apropos to describe the ultra-soft non-linear response of brain matter 
compared to pure tension or compression test setup. Their findings were in line with previous research from Destrade et al. [7] and 
Rashid et al. [8], who also observed that shear tests are promising compared to the other two modes since they are less susceptible to 
boundary effects and more resilient when subjected to large strains. This explains why there is a keen interest in the research com
munity to develop time-dependent (dynamic strain rate) or time-independent (quasi-static) simple and pure shear experiments to 
identify and fit brain material parameters to known constitutive material physics. While shear testing protocols have received less 
focus from brain matter researchers than tensile or compression tests. Elaborate simple shear tests could help depict brain matter’s 
incompressible isotropic and nonlinear elasticity. It could also aid visualize the underlying Poynting effect (Fig. 1(a)), a typical 
nonlinear phenomenon displayed by soft tissues such as brain white matter which is the primary phenomenon of focus in this 
proof-of-concept (POC) 3D FEM computational study. 

Research has shown that mechanics are important in modulating brain function and dysfunctionalities [10]. Yet, an accurate 
assessment of mechanobiological processes in the brain necessitates advanced computational models that encapsulate the intricate and 
distinctive features inherent in the ultrasoft and profoundly non-linear heterogeneous brain matter. Saccomandi et al. [1] point out that 
most proposed constitutive models lack consensus despite all the efforts in modeling brain white matter (BWM). While much research 
has been invested into the mechanical characterization of brain matter, a huge variance in reported results and conflicting experi
mental observations have impeded progress in attaining reliable brain models. It is extremely challenging because of brain tissues’ 
ultrasoft and heterogeneous nature, attributed to their distinctly nonlinear, rate-dependent, compression-tension asymmetric, and 
region-dependent behavior [4]. 

Fig. 1. (a) Simple shear testing of porcine brain matter. The top is fixed, and the bottom is mobile (adapted from Ref. [7]). (b) Schematics and 
experimental setup of the Poynting effect shown for the substantially large simple shear of porcine brain matter (19 × 19 × 3 mm). In the absence of 
platens, the sample expands in the 2-direction, as confirmed by drilling a hole in one platen and observing from the drilled platen that the exposed 
tissue area bulges out (adapted from Destrade et al. [7]). (c) Generate micro-mechanical FEMs to facilitate formulation of build-up (multi-scale) 
models incorporating brain white matter (BWM) axonal tract anisotropic properties to attain macro-scale high fidelity models (MRI voxels scale [9] 
RVEs) to simulate non-linear brain mechanics such as Poynting effect when subjected to shear. 
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1.2. Poynting effect and its practical implications 

Another factor adding to the complexity of soft tissue characterization lies in experimental setups, which are often designed to use 
simple homogenous deformations in specimens, such as tension or compression, shear, torsion, or bi-directional homogenous de
formations. Due to brain tissues’ fragility and tackiness the use of dog bone-shaped test specimens to realize homogenous deformations 
over a substantial strain range is unattainable. Destrade et al. [7] researched different characterization methods to overcome these 
limitations. They identified simple shear and torsion tests at quasi-static rates as suitable candidates to obtain linear shear-stress and 
shear-strain relationships over a significant range of shear (up to 60%) [11,12]. Similarly, torque-angular displacement linear re
lationships were discovered by Shuck and Advani [13] and later confirmed by Balbi [14] and Destrade [15]. At the same time, 
compression tests can achieve homogenous deformation of only up to 10% strain, after which the specimen bulges out. In contrast, 
simple shear tests have worked well up to 45◦ tilt angles, attaining more than 60% stretch. Similar success has been reported with 
torsion tests of brain white matter. 

The natural question arises as to why we are interested in simple shear and torsion tests. The reason is to examine the underlying 
Poynting effect, a typical nonlinear phenomenon exhibited by soft tissues such as brain white matter (Fig. 1(a and b)). When such 
materials are sheared or twisted, they dispose to either elongate (positive Poynting effect) or contract (negative Poynting effect [16] in 
a direction perpendicular to the shearing (rectangular specimen) or twisting plane (for cylindrical specimen) [17]. However, due to the 
lack of shearing devices capable of accurately quantifying and measuring these residual normal forces, further research is required to 
develop methodologies to help determine brain white matter properties. This is where the proposed research characterizes, and models 
brain white matter under shear loads. 

Understanding the extent of the Poynting effect and characterizing its response to different shear-loading scenarios have many 
useful, practical implications. For instance, the Poynting effect influences reaction force and torque under extension-torsion loads 
applied biological materials. Researchers customarily examine the existence of Poynting effect in tissues using biomaterial analogs, 
such as polymers and hydrogels. As an example, the Poynting effect observed in soft hydrogels, courtesy of transient chemo- 
mechanical behavior and very large deformations, aids in designing and engineering functional polymers, which can then be used 
as sensors or actuators for heart tissue. These hydrogels manifest non-linear Poynting behavior, and proper characterization analytical 
modeling can aid in developing improved soft tissue control devises [18,19]. Case in point, tailored metamaterials can replicate natural 
tissue mechanics, facilitating a supportive environment for cell growth and tissue regeneration. Ghorbani et al. [20] proposed a novel 
study on the inverted and programmable Poynting effect in meta-materials. Their research identifies new avenues of programming the 
nonlinear elastic moduli in engineered materials and adjusting the couplings between shear and normal responses through rational 
design methodologies. Such inverted and programmable Poynting effects in metamaterials could inspire myriad applications, from 
designing enhanced contrast agents and implantable devices to engineering biological tissues operating under compression and torsion 
loads. 

1.3. Research objectives of proposed Poynting 3D FEM 

Since it is heterogeneous, brain biomechanics is largely influenced by the ultra-softness and non-linearity properties of white 
matter and fiber-matrix interactions. The microstructures and porosity in the brain tissues also determine the resultant degree of 
stiffness in brain tissues, as proven by experimental research outlined in previous sections. The proposed research aims to characterize 
the Poynting effect and determine its dependencies on material definition, load, fiber volume fraction, and geometry. This study 
confirms several key findings observed in similar experimental or analytical/numerical models in the past, such as the microstructural 
model from Janmey et al. [16] and Rashid et al. [8]. As summarized in §3.5, axon-matrix interaction did influence the magnitude of the 
resultant Poynting effect [21] compared to myriad shear load scenarios. From a practical standpoint in brain studies, this paper’s 
findings suggest that the Poynting effect could be a vital physiological control mechanism [22], which could find many useful ap
plications in surgical simulations or functional bio-polymer actuated sensor research and development. By adopting the Ogden 
hyper-elastic constitutive material modeling technique, comparative analyses (§3.1 to §3.5) of experimental slopes of resultant normal 
stress profiles proved that brain matter is extremely non-linear and resultant Poynting behavior is also non-linear when analyzed at 
quasi-static speeds. By proving the non-linear response of brain white matter to shear loads (observed positive Poynting effect), the 
current research also corroborated findings from Destrade et al. [7]. Our work supports Destrade’s group claim that brain matter does 
not belong to the so-called “generalized neo-Hookean class,” as Ogden model could effectively simulate non-linear shear response up to 
100% simple and 60% pure shear in cubic bi-phasic modeled brain matter [7]. Directionality (positive or negative) and directional 
dominancy of the Poynting effect concerning shear load configurations have been major research topics. In this proposed POC 3D FEM, 
results indicated similar trends qualitatively in terms of robustness of Poynting effect, i.e. positive Poynting behavior was noticed for 
defined hyper-elastically modeled brain in all four evaluated shear configurations as elucidated in §3 [23]. 

1.4. What is the significance of micro-mechanical FEM studies for the Poynting effect? 

For this research, a micro-mechanical FE model has been formulated to analyze the Poynting effect in brain matter soft tissues when 
subjected to an ensemble of shear loads (simple and pure shear). As discussed previously, the characterization of brain matter is 
extremely challenging due to its inherent heterogeneity and high non-linearities. So, the choice of micro-scale FEM is to realize a long- 
term goal of attaining high-fidelity multi-scale computational models which could capture the anisotropic behavior of brain white 
matter (axons) from the micro and mesoscale FEMs/computational models and leverage these model outputs (stress and stiffness 
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response) for macroscopic voxels studies (i.e., at scales of MRE/MRI imaging technologies). A typical MRE/MRI voxel could encompass 
several axonal fiber tracts per voxel. Hence, an elaborate multi-scale hierarchical modeling approach would offer reliable and 
congruent analytics to surgeons and medical professionals in evaluating brain response custom to specific patients when subjected to 
traumatic brain injuries or other brain pathologies (acute or chronic) such as diffusional axonal injuries (DAI), impact or gradual aging- 
related tissue damage. As a succession study, scalable models with repeating blocks of micro-scale RVEs will be developed to realize 
this overarching goal (Fig. 1(c)). The proposed model would pave the way as a foundational study for depicting brain matter mechanics 
at the micro-scale, which are hard to characterize otherwise experimentally at the singular axonal level. 

In this paper, a novel 3D micromechanical Finite Element Model (FEM) has been formulated in-house to simulate the Poynting 
effect in the bi-phasic Representative volume element (RVE). Previous research was utilized to determine the suitable volume fraction 
(VF) of axonal tracts embedded in the extracellular matrix (ECM) in white matter to model the bi-phasic RVEs for simulating the 
mechanical response under simple shear loads. Studies indicate that Ogden and Mooney-Rivlin models [8,24] have shown good 
agreement between experimental and numerical results to estimate normal forces (N) to depict the Poynting effect in soft solids. In this 
research, a nonlinear Ogden hyper-elastic constitutive material model has been deployed to characterize the bi-phasic RVE in 3D FEM. 
The brain’s central nervous system (CNS) comprises white and gray matter. White matter comprises myelin-coated axons. Axons are 
long, slender projections of neurons that relay information to other neurons, muscles, and glands [25,26]. These axons are embedded 
in an extracellular matrix (ECM). In the proposed 3D FEM, axon-ECM comprises the bi-phasic constituents. For this proof-of-concept 
(POC) 3D RVE model, axon-ECM has been assumed to have pure affine boundary condition (i.e., the axon is tied down to the ECM) to 
capture axon-ECM interaction effects [27] on resultant Poynting behavior. 

In total, three different simple shear cases: 1) shear along axon length, 2) shear perpendicular to axon fiber, and 3) shear across 
axon fibers were simulated to quantify the degree of Poynting behavior. A pure-shear RVE model was also analyzed to understand the 
role of fiber-matrix interactions on the brain’s mechanical response to shear (Fig. 2(a–d)). Root mean square deviation (RMSD) was 
computed between normal stress-strain response plots for the ensemble in different simple shear configurations to depict axon-ECM 
orientations trends’ role on dominant Poynting effect directions and resultant normal displacement (U). Variations in the degree of 
normal stresses (S11, S22, or S33) perpendicular to the shear plane in the analyzed three simple shear cases emphasized the role of 
fiber-matrix interactions and VFs (fiber dispersion) on PE [21]. At high strains, strain-stiffening effects were also evaluated from the 
stress-strain plots for the Ogden-modeled bi-phasic RVEs [11]. 

2. Materials and methods 

2.1. Micromechanical finite element model 

The microscale 3D FEM is developed in-house using Abaqus 2020 and Python scripting. Representative Volume Elements (RVEs) 
are formulated in single RVE units and compounded configurations to simulate simple shear in various configurations. In the current 
FEM, the average axonal diameter is modeled to be at 0.4395 μm (see Fig. 3(a and b)). 

In the proposed 3D FEM, the axons and the ECM material characterizations are described by a non-linear Ogden hyper-elastic 
constitutive material model. The Ogden hyper-elastic model was motivated by its capability to accurately simulate large quasi- 
static strains (up to 100%) in very soft rubber-like materials. 

Fig. 2. Schematics of (a) longitudinal shear (along axon fiber axis), (b) shear across fiber (transverse shear), (c) shear perpendicular to axon fibers, 
and (d) pure shear strain case where shear strain is applied across both opposing axonal fiber faces. The dark green lines represent the axon fibers in 
(a) and (c), while the dark green circles depict the axon fiber cross-sections in (b) and (d). 
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2.2. Hyper-elastic (HE) material model component 

Nonlinear hyper-elastic materials models have been conventionally preferred for simulating soft biological tissues [28–32]. This 
research uses the Ogden hyper-elastic (HE) material model to depict the ECM and the axon phases [33]. This is because of their efficacy 
in accurately depicting nonlinear responses in neural tissue characterization at large deformations and strains by capturing the 
rate-dependent behavior (if modeled as Hyper-viscoelastic material) for dynamic strain rate scenarios. In the current study, the applied 
shear is quasi-static strain rates, and hence no rate-dependent behavior is applicable in this POC single RVE FEM study. The Ogden 
hyper-elastic model relies on three principal stretches, λ1, λ2, λ3, and 2 N material constants. This study specifically examines an 
incompressible, single-parameter Ogden hyperelastic material. The formulation of the strain energy density function, W, for the 
incompressible or nearly-incompressible Ogden constitutive (Equation (1)) in Abaqus is described as [33,34]: 

W =
∑N

1

2μi

α2
i

(
λαi

1 + λαi
2 + λαi

3 − 3
)
+
∑N

1

1
Di
(Jel − 1)2i (1)  

where λi = J− 1
3 λi and λ1λ2λ3 = 1. Here, J denotes a local volume change and relates to the determinant of the deformation gradient 

tensor, via the right Cauchy-Green tensor (C= FTF) as J2 = det (F)2, μi Represents shear moduli. Meanwhile, αi (stiffening parameter) 
and Di are material parameters. In Equation (1), Jel signifies elastic volume ratio. The first and the second terms signify the deviatoric 
and hydrostatic strain energy function components, respectively. The parameter Di = 2

K0
, allows for the inclusion of compressibility 

where K0 is the initial bulk modulus. The same single parameter Ogden hyper-elastic material is also used in this research [35]. 
Therefore, N = 1. Incompressibility implies that Jel = 1 and is specified by setting D1 = 0 in Abaqus. Abaqus removes the hydrostatic 
term, and the equation reduces to (Eq. (2)): 

W =
∑N

1

2μi

α2
i

(
λαi

1 + λαi
2 + λαi

3 − 3
)

(2) 

In the Ogden HE models, three principal Cauchy stress values are obtained by differentiating W with respect to λ. If an incom
pressible material is supposed to be subjected to uniaxial tension (σy = σz = 0). Then, the resultant hyper-elastic constitutive model 
principal stress σuniaxial, can then be expressed as Equation (3): 

σuniaxial =
2μ
α

[

λα −

(
1
̅̅̅
λ

√

)α]

(3) 

In this paper, as a POC FEM, axons are modeled as straight fibers and subjected to various shear modes. The constitutive equations 
describing resultant normal and shear stresses are explained in §2.3. 

For the proposed FEM, the data for the axon and glia properties are taken from previous published work and literature [25,26,29, 

Fig. 3. (a) Single RVE FE Model of the ECM and axon bi-phasic assembly packing two axon fibers, volume fraction = 0.3. The ECM (light beige) and 
the axon fibers (dark green). (b) Boundary conditions for single RVE. The opposite surface is encountered (fixed) for simple shear, while the sheared 
face has the strain applied (along the axon fiber shown here). Contact between axons and ECM is defined to be fixed (tied) for this proof-of-concept 
(POC) FEM. 
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30,36]. The values for shear modulus for the axons and ECM are derived from research by Wu et al. [37], α is obtained on the model 
proposed by Meaney [28]. The shear modulus of the ECM is specified relative to the axonal shear modulus, assuming that axons are 
three times stiffer than ECM, as described by Arborgast and Marguile’s [38]. Model incompressibility for the HE material modeling 
component has been deployed the same as in Refs. [33,35]. Table 1 Summary of material properties μ, D and a, and element definition 
used in the simulation of single RVE- HE FEM. 

2.3. Analytical modeling Poynting effect 

Analytical modeling for describing the Poynting effect has been attempted using various constitutive models such as Neo-Hookean, 
Mooney-Rivlin, Blatz-Ko, St Venant-Kirchhoff, exponential, polynomial, Ogden, and some even utilized linear elastic material 
(generalized Hooke’s Law) to describe Poynting effect [39]. This study will use the Ogden material model to derive constitutive re
lationships to analyze Poynting behavior in brain white matter. The formulations described only focus on highlighting key relation
ships, and the in-depth continuum mechanical model is out of the scope of this paper. Research from Misra et al. [39], Rashid et al. [8], 
and a textbook from Gurtin [40] can be referenced for a more elaborate discussion. 

For a simple shear case (Fig. 4(a and b)), let us assume that κ is the amount of shear and γ is the shear angle. Thus, shear strain κ =

tan(γ). Let y represent the deformed configuration of the brain white matter RVE, which is initially positioned at X. Thus, the simple 
shear equation can be written as: 

y=(X1 + κX2)e1 +X2e2 + X3e3 (4) 

In Equation (4), {e1, e2, e3} denote the rectangular cartesian coordinate system basis vectors. This equation signifies the shear 
displacement boundary condition while inhibiting displacement in the normal direction. The resultant deformation gradient tensor, F, 
can be computed as (Equation (5)): 

F =
∂y
∂X

=

⎡

⎣
1 κ 0
0 1 0
0 0 1

⎤

⎦ (5) 

For soft tissues undergoing very large strains, nonlinear elastic models (such as hyperelastic (HE) constitutive models) adequately 
describe the resultant deformation mechanism. For HE materials, the Cauchy stress tensor (Equation (11)) is derived as discussed in 
§2.2 

C=FT F =

⎡

⎣
1 κ 0
κ 1 + κ2 0
0 0 1

⎤

⎦ (6) 

In general, Ogden hyper-elastically modeled soft tissues’ strain energy density function W is a function of two principal invariants 
only W = W(I1, I2), where I1 = tr(C), I2 = 1

2 ( I1
2 − tr(C2)). But for simple shear case, I1 = I2 = 3+ κ2. C is derived as shown in 

Equation (6). The shear component of the Cauchy stress tensor is described as (Equation (7) [41]): 

σ12 = 2κ
(

∂W
∂I1

+
∂W
∂I2

)

(7) 

Thus, W = W(3+κ2, 3+κ2) ≡ Ŵ(κ) refer to Rashid et al. [8] for more details on the constitutive derivations. Soft tissues are often 
characterized well by Ogden model formulation, and a lot of mechanical test data for brain white matter tissues fits the Ogden hy
perplastic (HE) function, hence backing its selection as a constitutive model for this research. The one-term Ogden HE functions is 
given by (Equation (8)): 

W =
2μ
α2

(
λα

1 + λα
2 + λα

3 − 3
)

(8) 

In Equation (8), λi are the principal stretch ratios (the square roots of the eigenvalues of C). In simple shear models, the principal 
stretch ratios can be computed as follows: 

λ1 =
κ
2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
κ2

4

√

, λ2 = λ1
− 1 = −

κ
2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
κ2

4

√

, λ3 = 1 (9) 

Using Equation (9) in Equation (8), we get the resultant expressions for W and σ12 as depicted in Equation (10) and Equation 

Table 1 
HE material properties summary of single-RVE FEM [28,37].  

Material 
Component 

μ D α Element Type 

MPa 1/MPa 

Axon 2.15E-03 0 6.19 C3D8RH 
ECM 8.5 E− 04 0 6.19 C3D8RH  
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(12). 

Ŵ (κ)=
2μ
α2

[(
κ
2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
κ2

4

√ )α

+

(

−
κ
2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
κ2

4

√ )α

− 2

]

(10) 

In the generalized Cauchy Stress tensor formula for isotropic homogenous hyperelastic materials of the Ogden form (see Equation 
(11)), the normal and shear stress components can be represented as shown in Equations (12)–(14). In Equation (11), p represents 
the Lagrange multiplier introduced by the constraint of incompressibility (described in §2.2). 

σij = − pδij + λi
∂W
∂λj

(11) 

As noted in Equation (11), the Cauchy stress tensor is typically comprised of normal and shear components with respect to the 
defined coordinate system. The normal stress component (σij) in the j-th principal direction is associated (i.e., i = j, σjj: normal stress 
terms) with the hydrostatic pressure term ( − pδij). The hydrostatic pressure acts equally in all directions and is responsible for the 
normal stress term. The second term of Equation (11) signifies the shear stress acting on a plane with the normal in the i-th direction 
and tangent in the j-th direction (i.e., σij: shear stress terms). Mathematically, shear stress components can be expressed as τij = σij. 

The σ22 term in Equation (14) is non-zero. The presence of this non-zero normal stress (σ22), and the inequality σ11 ∕= σ22 is an 
exhibition of the Poynting effect and is an outcome of material non-linearities in hyperelastically modeled brain white matter soft 
tissues [39]. 

σ12 = Ŵ′(κ)=
μ
α

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

(
κ2

4

)√

[(
κ
2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
κ2

4

√ )α

−

(

−
κ
2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
κ2

4

√ )α]

(12)  

σ11 =
2μ
α

[(
κ
2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
κ2

4

√ )α

− 1

]

(13)  

σ22 =T22 =
2μ
α

[(
κ
2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
κ2

4

√ )− α

− 1

]

(14) 

In their study on the one-term isotropic Ogden model for soft tissues [29], Horgan and Murphy share insights on nonlinear elastic 
materials and the gap between current analytical models and actual physical realization by considering three boundary condition 
scenarios. They point out that extra Ogden invariants could help attain a more rational and reliable prediction of the Poynting effect for 
complex geometries and boundary conditions. In their analytical model, they derive an expression for traction (T) and shear forces (S)
That arises on the inclined faces to maintain the state of simple shear. Their analysis revealed that a theoretical optimal value of α = 6 
(in Equation (8)) could negate the need to impose any normal traction forces (N) on the inclined faces to analytically realize simple 
shear for one-term Ogden hyperelastic soft tissues. Such a configuration would manifest a moderate tensile hydrostatic stress (H) and 
moderate positive normal stress (T22) (same as σ22 in this paper) for moderate amounts of shear, it also proved the computational 
feasibility of the shear strain limits explored in the POC FEM model described in later sections. 

Fig. 4. (a) Schematic diagram analytically representing simple shear; the shear strain is denoted as κ along X1 direction. (b) Simple shear defor
mation. Here, dotted lines: represent sample in the undeformed configuration; solid lines: deformed sample [7]. 
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T33 = σ33 =
2μ
α

(
(λα − 1)

(
λ6− α − 1

)

1 + λ6

)

(15)  

H =
2μ
α

(

1+
λα+6 − 2λα + λ− α − 2λ6− α

1 + λ6

)

(16) 

Following the case of zero normal traction on the inclined faces from Horgan’s research [42,43], out-of-plane stress (T22). For the 
Ogden modeled HE brain soft tissues, resultant out-of-plane stress (T33) and the hydrostatic stress (H) are obtained as depicted in 
Equation (15) and Equation (16) (Note: notations T33 signify σ33 in this paper). For convenience, let us set λ1 ≡ λ and λ2 = 1 / λ1. 
While exact congruence between analytical models and computational results is difficult, the proposed Ogden model for simulating 
Poynting effect can perform reasonably well to yield reasonable stress profiles. 

One should note that, a computational framework perspective, in numerical tools such as Abaqus (General, explicit) solver, these 
constitutive equations should not be misinterpreted as homogenized representations for entire RVEs. Instead, the constitutive Equa
tions (4)–(16) are computed for both axon and ECM phase elements (using corresponding material parameters – Table 1). Then, the FE 
solver returns the max. Nodal computed values representing output parameters such as the normal stress, displacement, and von Mises 
stress. These are then plotted in subsequent sections to describe the resultant Poynting effect. Thus, to eliminate redundancies, all 
constitutive equations are described without any material phase subscripts (Waxon or WECM). However, it is implied that the solver 
numerically performs these computations for axons and ECM mesh elements. Hence, analytical model equations are discussed for 
simplicity without material phase subscripts. 

2.4. Finite element model 

In the current study, as a POC for realizing the Poynting effect in brain white matter, a micromechanical scale Representative 
volume element (RVE) geometry of unit dimensions (1 μm × 1 μm x 1 μm), packing two axons in ECM material is designed to set up a 
finite element method (FEM) model to depict Poynting effect in various simple shear configurations. In the proposed FEM, axons are 
tied to the surrounding ECM. 

Axon fibers are modeled as straight cylindrical fibers with an average diameter of 0.44 μm. Proposed RVEs have two effective axons 
packed with a volume fraction of VF = 0.3 to analyze for Poynting behavior. Refer to Fig. 5(a–d) for FEM geometrical setup details. The 
FEM used a mesh of 81,520 elements. Hybrid hexahedral elements (C3D8RH: An 8-node linear brick, hybrid, constant pressure, 
reduced integration, hourglass control). All elements required a linear hybrid formulation due to the hyperelastic material assignment 
to reproduce exact incompressibility. To model the axon and ECM material phases, the Ogden HE material model was deployed as 
discussed in §2.2 and §2.3 to account for hyper-elasticity. 

FE Model Boundary Conditions: To simulate a simple shear scenario, one face is fixed (encastered) to depict the face of a tissue 
sample fixed on a platform. The surface to be sheared in a given direction is pinned in the other two directions to maintain a state of 
simple shear. A strain value is specified for the corresponding shear model in the ensemble of cases discussed here. A reference point 

Fig. 5. (a) FEM describing simple shear along axon fiber (longitudinal shear) for a single RVE FEM, with the back face fixed and a shear stretch 
applied on the front face. (b) FEM for the simple shear across axonal fibers. (c) FEM setup for simple shear perpendicular to fiber (along the y-axis). 
(d) Pure shear FEM B.C. setup with shear applied across the axon axis on two RVE faces. 
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(RP) was defined at the center of the face. The surface subjected to simple shear has the RP that is kinematically coupled to all the 
points on the edge nodes of the RVE face. The linear shear strain value is defined and solved to 100% shear strain. The field output 
values of particular interest are stress (S) and displacement (U) field variables. 

3. Results and discussion 

In this paper, the developed micromechanical FEM is subjected to three simple shear scenarios. These cases are: 1. Simple shear 
along the axon (shear along z-direction), 2. Simple shear across the axon fiber tracks (i.e., shear along X-direction) and 3. Simple shear 
perpendicular to the axon fibers (i.e., shear along Y-direction). A fourth case of pure shear is also experimented with to investigate the 
extent of Poynting behavior. As a representative case, the FEM contour plot for single-RVE shear along axon fiber and ECM material 
combination is shown for the Static, General FE simulation step case. The shear moduli for axon and ECM are derived from Table 1, as 
discussed in §2. Fig. 7(a–d) shows the pure shear FEM contour plots for stress distribution for 20% shear strain applied. The difference 
in stiffness between axon and ECM phases and the inherent nonlinear hyperelastic material characteristics lead to the manifestation of 
Poynting behavior. 

Comparing normal stress and deformation profiles revealed that Poynting behavior was predominant for simple shear cases along 
axon fibers at lower strain limits. At 20% strain, the pure shear RVE model yielded normal shear at 36.2% and 19.6% of Von-mises (S) 
and total deformation (U), indicating some Poynting behavior. The difference in the shear moduli of the axon and ECM phases 
contributed to the degree of deformation, leading to the Poynting effect in the bi-phasic model (see Fig. 6(a–d)). 

3.1. Simple shear along fiber – RVE FEM model 

For simple shear along the axon fiber axis (Case I) RVE configuration, Fig. 8 shows the stress vs. strain profiles. This model is based 
on the boundary conditions described in §2.4 (see Fig. 5(a)). Simple shear is applied on the XZ surface. The stress is normal to the 
direction of shearing (S11) and is monitored to describe Poynting behavior. At 100% strain (i.e., 45 deg simple shear strain) [44], the 
maximum value of the positive normal stress S11 is 34.5% of the max. Von-mises stress (S) and max. directional deformation normal to 
the shear direction (U1) is 10.5% of the max. total deformation (U), indicating modest (see Fig. 9) Poynting behavior when sheared 
longitudinally along the axon fiber axis (along the z-axis). In each of the analyzed RVE cases, RMSD analysis is conducted to calculate 
the variation in stress profile, von Mises vs. normal stress component, perpendicular to shear planes in all four shear RVE models. 

Root-Mean-Square Deviation (RMSD) is defined as: 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (f(xi)− g(xi))

2

N

√

for curves f(x), g(x) and N being number of points xi at which curves 

Fig. 6. (a) Von Mises stress contour (S) for the axons and the ECM at 20 percent applied stretch for single RVE FEM (shear along axon fiber axis – 
longitudinal shear). (b) The normal stress (S11) component is perpendicular to the direction of applied shear (along the z-axis). (c) Total defor
mation (U) plot at 20% applied shear strain. (d) U1 is normal to the applied shear strain plane, depicting positive Poynting behavior. 
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are compared. RMSD between von-Mises (S) and normal stress (S11) for Case 1 (simple shear along axon fibers, x-dir.) is found to be 
0.03022. Meanwhile, RMSD between S11 and S22 (y-dir.) curves (Fig. 8) are calculated as 0.00384, showing that in both transverse 
directions to shear planes, the normal stress profiles are similar in magnitude. 

RMSD analysis between the deformation plots U3 (shear direction) and U1 (direction normal to shear) is 0.7535. Similarly, RMSD 
between U1 and U2 were calculated to be 0.0355, indicating that a similar degree of normal deformation was observed in both 
transverse directions to shear planes. With increasing simple shear strains, the normal deformation component remained fairly con
stant (as shown in Fig. 9), denoting mild Poynting behavior in longitudinal shear configuration. 

3.2. Simple shear across fiber – RVE HE model 

As in case II, simple shear is applied to the single-RVE FEM across the fiber axis (i.e., the simple shear strain applied along the x- 
direction on the XY surface), Fig. 10 shows the stress vs. strain profiles. The boundary conditions are described in §2.4 (see Fig. 5(b)). 

Fig. 7. (a) Von Mises stress (S) for axons and ECM at 20 percent applied stretch for single RVE FEM (pure shear). (b) The normal stress (S33) 
component is perpendicular to the direction of applied shear on the pair of opposite faces across axon fibers. (c) Total deformation (U) plot at 20% 
applied pure shear strain. (d) U3 is normal to applied pure shear strain planes, depicting the modest positive Poynting effect. 

Fig. 8. Stress (σ) versus strain (ε) % plot single-RVE FEM for simple longitudinal shear (along z-dir.) depicting the impact of axonal direction on the 
resultant Poynting Effect (PE) (Case I). RMSD between S (von-Misses) and S11 (x-dir.) is 0.03022 and between S11 and S22 (y-dir.) is 0.00384. 
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Fig. 9. Deformation (U, U1, U2, U3) versus shear strain (ε) % plot single-RVE FEM for simple longitudinal shear (along z-dir.) depicting impact of 
axonal direction on the resultant (PE) (Case I). RMSD between U3 (shear direction, z-dir.) and U1 (along x-dir.) is 0.7535 and between U1 and U2 (y- 
dir.) is 0.0355. 

Fig. 10. Stress (σ) versus strain (ε) % plot single-RVE FEM for simple transverse shear (Case II), across axon fibers (along x-dir.). RMSD analysis 
showed a more even distribution between normal stress profiles vs. von Mises stress and greater PE behavior compared to Case I. RMSD between S 
(von-Misses) and S22 (y-dir.) is 0.01227 and between S22 and S33 (z-dir.) is 0.00522. 

Fig. 11. Deformation (U, U1, U2, U3) versus shear strain (ε) % plot single-RVE FEM for transverse simple shear (along x-dir.) depicting impact of 
axonal direction on the resultant (PE) (Case II). RMSD between U1 (shear direction, x-dir.) and U2 (along y-dir.) is 0.6264 and between U3 and U2 
(y-dir.) is 0.1543. 
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The S22 stress component is normal to the direction of shearing and indicates the extent of PE. At 100% strain, max. S22 is 59.6% of the 
max. Von-mises stress (S) and max. Positive directional deformation (U2), which is normal to the direction of simple shear (along the x- 
axis), is 20.6%, verifying the presence of Poynting behavior (Fig. 11). The second simple shear configuration described greater 
Poynting behavior than Case 1 (§3.1). This may be attributed to the fact that fibers in this simple shear are also subjected to some 
degree of stretching in the transverse direction, and hence, a greater magnitude of normal stress would be necessary to retain the state 
of simple shear experimentally. This is in line with the findings of Destrade et al. [22], who posited that soft tissues could have a 
dominant directional Poynting behavior. 

RMSD between von Mises (S) and normal stress (S22) for Case II is found to be 0.01227. This is less than the RMSD obtained in Case 
I, demonstrating comparatively greater Poynting behavior. Meanwhile, RMSD between S22 and S33 curves (Fig. 10) are calculated as 
0.00522, implying that normal stresses in the transverse direction to shear planes are similar in magnitude. 

RMSD between deformation plots U1 (shear direction) and U2 (direction normal to shear) are 0.6264 (Fig. 11). The decreasing 
RMSD value clearly describes the greater relative positive Poynting effect (compared to Case I). RMSD between U3 and U2, calculated to 
be 0.1543, verified that transverse shear led to a dominant stretching across axonal fibers (along the y-axis) and, hence, more obvious 
positive directional deformation (PE). 

3.3. Simple shear perpendicular to fiber – HE model 

For the final simple shear model (Case III), simple shear is applied to the single-RVE FEM perpendicular to the fiber axis (i.e., the 
simple shear strain applied along the y-direction on the YZ surface), Fig. 12 plots the stress vs. strain trends. In this FEM, as per the 
boundary conditions defined in §2.4 (see Fig. 5(c)). The S33 stress component is normal to the direction of shearing and indicates the 
extent of Poynting behavior. At 100% strain, max. S33 is calculated to be 43.95% of the max and observed von Mises Stress (S). A more 
evenly distributed stress profile is observed along all axes in this configuration. The S22 curve (red curve in Fig. 12) also proved the 
existence of directional stretch in axonal fibers when sheared perpendicularly to the fiber axes. This corroborates with the theoretical 
models put forward by Destrade et al. [22], which underscores the directional dependence of the Poynting effect in sheared brain white 
tissues. 

RMSD between von Mises (S) and normal stress (S33) for Case III is found to be 0.01206. It is less than the RMSDs obtained in Case I 
& II (stress profiles), demonstrating the greatest Poynting behavior amongst three simple shear models. It was also validated by 
comparing max. Normal stress values were 8.64% higher in Case III than in Case II. RMSD between S11 and S33 curves (Fig. 12) is 
calculated as 0.00673, verifying that the y-axis is the prominent transverse direction exhibiting the Poynting effect [21,39]. 

RMSD between deformation plots U2 (shear direction) and U3 (direction normal to shear) is 0.7556. There is a slightly higher 
RMSD value between deformation curves than in Case II. The positive Poynting effect is still exhibited in Cases I & and II. Deformation 
analysis (Fig. 13) revealed that the normal deformation component (U3) is 9.55% of the max. deformation (along the y-axis) in Case III. 
Thus, describing a modest Poynting effect. Although, RMSD between U1 and U3 were determined to be 0.05323, suggesting that 
contribution from higher order invariants by incorporating other material models (such as transverse isotropic or anisotropic 
hyperelastic) can be explored to determine more perceptible positive Poynting behavior in Case III configuration [22]. Such models 
would require traction forces to be applied on the side faces to maintain simple shear; hence, more pronounced directional positive or 
negative deformation depicting Poynting behavior could come to light [17]. Nevertheless, the proposed P.O.C. FEM stress profiles 
confirm Poynting behavior in Case III. 

3.4. Pure shear model – HE model 

While many research studies have delved into the Poynting effect for the twisting of cylindrical white matter tissues, few numerical 

Fig. 12. Stress (σ) versus strain (ε) % plot single-RVE FEM for simple perpendicular shear (Case III), normal to axon fibers axes (along y-dir.). Axonal 
fiber stretching contributed to significantly higher normal stresses. Perpendicular stresses (S33, along z-dir.) normal to the shear plane (green curve) 
also suggest greater PE behavior than Case I. RMSD between S (von-Misses) and S33 (z-dir.) is 0.01206 and between S11 and S33 (z-dir.) is 0.00673. 
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models have explored the numerical realization of pure-sheared rectangular brain matter specimens for the Poynting effect. In this 
regard, a fourth case was analyzed to model single-RVE subjected to pure shear boundary conditions (B.C.). In this FEM setup, shear 
strains are applied along x- and y-directions on the YZ and XZ surfaces) respectively. Fig. 5(d) depicts the FEM B.C. for pure shear RVE 
analysis. Fig. 14 plots the stress vs. strain trends. For the pure shear model, at strains close to 60%, the stress profiles increase 
dramatically, and this could be attributed to stress concentrations on the stretched axonal fibers when subjected to pure shears. This 
exponential rise can also be due to numerical factors whereby the maximum von-mises for axonal node elements act as stress con
centration zones due to some degree of bending that occurs in the fibers. 

When analyzed for strains beyond 60%, the single-RVE pure shear FEM model suffered convergence issues due to excessive dis
tortions in the hybridized FEM elements. However, as past analytical models from literature and experimental studies hypothesized, 
solving for strain up to 60% did imply that the proposed model with linearized hybrid elements could computationally depict pre
viously attained extension limits [8] on brain tissues to describe the Poynting effect. In the future, the present single-term Ogden model 
can be expanded to include the high-order invariants, and computationally high-order (quadratic hybrid FEM elements) may be 
explored to check model efficacies for extreme pure shear strain limits. 

From Fig. 14, the max. stress analysis revealed that the normal stress component (S33) to planes of pure shear was 13% of the max. 
recorded von Mises stress. The high RMSD between the von Mises and normal stress curves is due to the high shear stress terms 
contributing to the overall von Mises magnitude. Tensile directional deformation (U3) revealed 26% of the total deformation (U) 
(Fig. 15) and confirmed the presence of positive Poynting behavior in pure shear RVEs. RMSD between von Mises (S) and normal stress 
(S33) for Case IV (pure shear model) is found to be 0.15631 (Refer Fig. 14). It is the highest RMSDs obtained for stress profiles, which 
could be mainly due to computational reasons on excessively distorted hybrid pure-sheared elements. RMSD between S11 and S33 
were observed to be 0.03394, underscoring that when subjected to pure shear fiber, it also experiences stretching, and there is still a 
consequent normal stress (S33) normal to pure shear planes describing net positive Poynting behavior. 

RMSD between total deformation (U) and U3 curves (refer Fig. 15) are calculated as 0.42967, the least RMSD among all four 
analyzed configurations, indicating the greatest relative Poynting behavior at higher strains up to 60% due to stress concentrations 
arising in bending axons subjected to pure shear. It is also supported by a lower RMSD value (0.26345) between pure shear and normal 
deformation (U3), verifying enhanced resistance to shear in pure shear conditions. 

3.5. Comparison of Poynting behavior (all cases) 

Manifestation of the Poynting effect in nonlinear materials depends on geometrical factors and material parameters and is also 
highly influenced by the nature of the shear or twist applied [14]. Hence, a comparative numerical analysis is merited to understanding 
how the Poynting effect varies with different shear load cases when analyzed using a single-RVE FEM setup. This section compares all 
four previously discussed cases to quantitatively describe variation in the Poynting effect in the bi-phasic brain white matter FE model. 
For this, the RMSD analyses are performed to determine variations in Poynting behavior in terms of normal stress and normal 
deformation components. 

The Poynting behavior in nonlinear models is often characterized or modeled by two major parameters. One of the metrics is the 
presence of stresses normal to the direction of applied shear; another is positive or negative deformation normal to the shear direction. 
RMSD analysis for the stress profiles for all four analyzed cases yielded that in terms of stress, Poynting behavior increased as follows: 
Case II < Case III < Case I < Case IV (pure shear) FEM model. RMSD between Case I and Case III, 0.00184 < Case I and Case III, 
0.00297< Case I and Case IV, 0.01887 (refer Fig. 16). Hence, all simple shear models show a similar degree of Poynting behavior. 
However, excessive bending and shear distortions build-up in the pure shear model meant that Case IV requires a much higher 
amplitude of normal stress component to maintain a state of pure shear in brain white matter, i.e., indicating the greatest degree of 

Fig. 13. Deformation (U, U1, U2, U3) versus shear strain (ε) % plot single-RVE FEM for perpendicular simple shear (along y-dir.) depicting impact of 
axonal direction on the resultant (PE) (Case III). RMSD analysis was done on the deformation results (U3) vs U to quantify variations in resultant PE 
behavior with increasing shear strain RMSD between U2 (shear direction, y-dir.) and U3 (along z-dir.) is 0.7556 and between U1 and U3 (z-dir.) 
is 0.05323. 
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Fig. 14. Stress (σ) versus strain (ε) % plot single-RVE FEM for pure shear (strain on pair of faces across fibers - Case IV). Some degree of axonal 
bending contributed to an exponential rise in normal stresses. Perpendicular stresses (S33) normal to shear planes proved the existence of positive 
Poynting behavior in pure-sheared brain matter. RMSD between S (von-Misses) and S33 (z-dir.) is 0.15631 and between S11 and S33 (z-dir.) is 
0.0339, underscoring that when subjected to pure shear fiber, it also experiences stretching, and there is still a consequent normal stress (S33) 
normal to pure shear planes describing net positive Poynting behavior. 

Fig. 15. Deformation (U, U1, U2, U3) versus shear strain (ε) % plot single-RVE FEM for pure shear strained (Case IV). RMSD analysis was done on 
the deformation results (U3) vs. U to quantify variations in resultant PE behavior with increasing shear strain. RMSD between U and U3 is 0.42967 
and between pure shear and U3 (z-dir.) is 0.26345. 

Fig. 16. Stress (σ) versus shear strain (ε) % plots of single-RVE FEM comparing the extent of demonstrated PE in all four configurations (Case I -IV). 
Excessive distortions led to high stress concentration in the pure shear model (black curve). All four models verified the existence of positive 
Poynting behavior. 
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Poynting effect among all analyzed models. 
RMSD analysis for the deformation plots showed a transitional behavior in the degree of the Poynting effect. In Fig. 17, RMSD 

between Case I (black curve) and Case III (green curve) is 0.0054 < RMSD between Case I and Case II (red), 0.0412 < RMSD between 
Case I and Case IV/pure shear model (pink), 0. 04437. It is clear to see that at lower strain limits, simple shear applied across fiber and 
perpendicular to axonal fibers showed a dominant Poynting effect, but as the strains were increased to 60%, excessive shear de
formations in pure shear RVE model led to a pronounced positive Poynting displacements along the z-axis (U3, as discussed in §3.4). 

3.6. FE model verification and validation 

As discussed in §1.3 and §1.4, the proposed micro-mechanical 3D FEM corroborated with several key findings from previous 
research, such as the role of axonal fiber-matrix interactions on the resultant Poynting effect [21]. While many researchers simulated 
shear tests at varying strain rates, the non-linear resultant Poynting behavior is also evident for quasi-statically modeled hyper-elastic 
(HE-defined) brain white matter. Dominant Poynting effect in certain loading scenarios was also observed in the proposed bi-phasic 3D 
FEM, as illustrated in §3.5. The resultant stress and displacement plots also showed similar qualitative trends by consistently mani
festing positive Poynting behavior [23] in all four evaluated shear configurations, as discussed in §3. Similarly, comparing the normal 
stress trends with results from Rashid et al. [8], it is observed that Ogden-modeled brain matter in the current study corroborates with 
the non-linear trend seen in their one-term Ogden non-linear shear model subjected to simple shear at varying strain rates. However, 
such validation is qualitative only since their model was at a different scale (mm) and defined with their own obtained material 
properties. Nevertheless, similarity in non-linear trends strongly suggests scalability in non-linear stress build-up in brain white matter. 
Accurate experimental characterization of brain white matter at micro-scale is extremely difficult and mechanical test at axonal tract 
level is not feasible due to technological limitations. Hence, one-on-one experimental validation of proposed POC micro-mechanical 
Poynting 3D FEM is not feasible due to challenges in extracting brain matter properties at the micro-scale when singular axons are 
subjected to shear. The qualitative congruency in §3 for respective shear ensemble cases and key research outcomes discussed in §1.3 
provide sufficient qualitative evidence and promise in directional dominance and confirm the effects of RVE geometric factors on 
resultant Poynting effect in brain white matter. 

4. Conclusion 

Shearing of nonlinear tissues is not a simple phenomenon; it is often accompanied by normal forces resulting from material non- 
linearities. This coupling of normal and shear tractions for brain white matter (axon and glial tissues) leads to the Poynting effect. From 
a physiological and biomedical standpoint, numerical modeling of the PE in nonlinearly behaving soft tissues has found application in 
surgical planning and tissue-surgical tool interaction simulations [39]. 

A series of simulations are carried out for three simple shear FE models, and a fourth pure-shear model is analyzed to depict the 
Poynting effect using a Steady state (general, static) setup in Abaqus. For simple shear models, Ogden HE modeled brain white matter 
showed evidence of the Poynting effect in all analyzed configurations. A positive Poynting effect (tissue expanding in the direction 
normal to shear direction) was observed for single-RVE FEM. At lower strains, longitudinally sheared axons (Case I) showed greater 
Poynting behavior, but as strain limits were gradually increased, shear deformation build-up in the pure shear model (Case IV) 
exhibited the highest directional deformation normal to shear planes. FEM results also proved that loading configuration does affect 
the degree of Poynting effect as in Case II and Case III, axonal fibers undergo some degree of stretching and hence greater Positive 
Poynting behavior (Fig. 17). In all analyzed cases, numerical results suggested that specimen thickness was seen to have no influence 
on shear stresses for an isotropic Ogden HE-modeled brain white matter RVE. However, if more RVEs are joined, stresses are expected 
to scale up. This aligns with numerical studies conducted by Rashid et al. [8], who observed similar thickness independence for ho
mogenized brain matter models subjected to shear loads. 

Fig. 17. Deformation (U, U1, U2, U3) versus shear strain (ε) % plots for all four single-RVE FEM (Case I-IV). RMSD analysis revealed a transitional 
trend in the extent of positive Poynting behavior, with a pure shear model due to bending stresses in axons at higher strains. 
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The proposed proof-of-concept micromechanical FEM has potential limitations. First, the model approximates tie-contact between 
axon and ECM phases, although physiologically, they exhibit more transitional kinematics [26,32,36]. FE models with surface traction 
interactions defined between axon and ECM are being developed and could yield models with greater fidelity [21]. In this model, only 
one single-RVE FEM was presented as POC; in the future scalable RVE models will be examined to analyze shear stress build-up. In the 
future, more 3D RVE models with built-in axonal tortuosity will be developed to determine its effect on Poynting behavior. This model 
would help evaluate cerebral damage mechanics and its dependence on axonal geometry, varying brain mass, and shear loading 
magnitude. 

Fiber packing will be parameterized in future test cases to understand stress build-up in densely packed RVEs. Also, the authors 
propose that aging in brain matter can be computationally characterized by tuning the volume fractions (VF) for myelinated axons to 
analyze the effect of shear loads on hyper-elastically defined decaying or injured brain matter [25,45]. This would enhance our un
derstanding of stress relaxation and tissue softening behavior in an aging brain. It would also aid investigate how alterations in the 
brain’s microstructure, mechanical properties, and overall shape, as modeled, impact the biomechanics of brain tissue. The authors 
posit that the proposed POC micromechanical models could translate processes at the microscopic scale into the evolution of me
chanical properties and brain shape on the macroscopic scale. It would help facilitate the overarching goal of modeling the lifecycle of 
the brain and further refine existing modeling approaches to model brain injury, brain damage, and brain protection to shear or other 
load case scenarios [46]. While many previous studies have proposed mathematical or macroscopic (homogenized) computational 
modeling of Poynting behavior, this study is a novel attempt to help bridge the gap between macro-scale and microscale shear me
chanics and pave the way for transitional multi-scale characterization of Poynting effect in scalable brain tissue FEM. Computationally 
feasible and elaborate 3D FEM explicit dynamics model with time-domain hyper-viscoelastic models could offer tremendous insights 
into damage initiation and bending stress in RVEs with tortuous axonal tracks. A recent study that used ultrasound shear waves 
elastography, showed that brain stiffness reduced with increasing temperature. It would be intriguing to explore such temperature 
effects by developing coupled field models to simulate brain tissue simple/pure shear states to determine variation in Poynting 
behavior with respect to temperature and surrounding conditions [47]. Two or three-term Ogden HE material models could be 
explored to simulate numerically the contributions of high-order invariants to validate dominant positive or negative Poynting 
behavior numerically [22] of different soft tissues. 
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Nomenclature 

α alpha 
μ shear moduli (hyper-elastic: Ogden model) 
λ principal stretches 
σ principal stress 
τ shear stress 
W Ogden strain-energy density function 
F Deformation gradient tensor 
C Cauchy-Green deformation tensor (right) 
MRE Magnetic Resonance Elastography 
MRI Magnetic Resonance Imaging 

M. Agarwal and A.A. Pelegri                                                                                                                                                                                        



Heliyon 10 (2024) e25379

17

References 

[1] G. Saccomandi, L. Vergori, Generalised Mooney–Rivlin models for brain tissue: a theoretical perspective, Int. J. Non Lin. Mech. 109 (2019) 9–14, 0020-7462. 
[2] K. Miller, K. Chinzei, Mechanical properties of brain tissue in tension, J. Biomech. 35 (4) (2002) 483–490, 0021-9290. 
[3] S. Budday, G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck, J. Kohnert, M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, Mechanical characterization of human 

brain tissue, Acta Biomater. 48 (2017) 319–340, 1742-7061. 
[4] S. Budday, G. Sommer, F. Paulsen, G. Holzapfel, P. Steinmann, E. Kuhl, Region-and loading-specific finite viscoelasticity of human brain tissue, Pamm 18 (1) 

(2018) e201800169, 1617-7061. 
[5] X. Jin, F. Zhu, H. Mao, M. Shen, K.H. Yang, A comprehensive experimental study on material properties of human brain tissue, J. Biomech. 46 (16) (2013) 

2795–2801, 0021-9290. 
[6] S. Budday, G. Sommer, G. Holzapfel, P. Steinmann, E. Kuhl, Viscoelastic parameter identification of human brain tissue, J. Mech. Behav. Biomed. Mater. 74 

(2017) 463–476, 1751-6161. 
[7] M. Destrade, M.D. Gilchrist, J.G. Murphy, B. Rashid, G. Saccomandi, Extreme softness of brain matter in simple shear, Extreme Mech. Lett. 75 (2015) 54–58, 

0020-7462. 
[8] B. Rashid, M. Destrade, M.D. Gilchrist, Mechanical characterization of brain tissue in simple shear at dynamic strain rates, J. Mech. Behav. Biomed. Mater. 28 

(2013) 71–85, 1751-6161. 
[9] T.D. Wager, M.A. Lindquist, Principles of fMRI, Leanpub, New York, 2015. 

[10] S. Budday, T.C. Ovaert, G.A. Holzapfel, P. Steinmann, E. Kuhl, Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue, Arch. 
Comput. Methods Eng. 27 (2020) 1187–1230, 1134-3060. 

[11] B. Donnelly, J. Medige, Shear Properties of Human Brain Tissue, 1997, pp. 148–731. 
[12] M. Hrapko, J. Van Dommelen, G. Peters, J. Wismans, The mechanical behaviour of brain tissue: large strain response and constitutive modelling, Biorheology 43 

(5) (2006) 623–636, 0006-355X. 
[13] L. Shuck, S. Advani, Rheological response of human brain tissue in shear, 1972, 21-9223. 
[14] V. Balbi, A. Trotta, M. Destrade, A.N. Annaidh, Poynting effect of brain matter in torsion, Soft Matter 15 (25) (2019) 5147–5153. 
[15] R. Mangan, M. Destrade, G. Saccomandi, Strain energy function for isotropic non-linear elastic incompressible solids with linear finite strain response in shear 

and torsion, Extreme Mech. Lett. 9 (2016) 204–206, 2352-4316. 
[16] P.A. Janmey, M.E. McCormick, S. Rammensee, J.L. Leight, P.C. Georges, F.C. MacKintosh, Negative normal stress in semiflexible biopolymer gels, Nat. Mater. 6 

(1) (2007) 48–51, 1476-1122. 
[17] L.A. Mihai, A. Goriely, Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials, Proc. Royal Soc. A: Math. Phys. Eng. 

Sci. 467 (2136) (2011) 3633–3646, 1364-5021. 
[18] M. Askari-Sedeh, M. Baghani, Coupled chemo-mechanical swelling behavior of PH-sensitive hollow cylinder hydrogels under extension–torsion and internal 

pressure: analytical and 3D FEM solutions, Int. J. Appl. Mech. 15 (4) (2023) 1758–8251, 2350030. 
[19] S. Niroumandi, M. Shojaeifard, M. Baghani, Finite deformation of swollen pH-sensitive hydrogel cylinder under extension and torsion and its Poynting effect: 

analytical solution and numerical verification, Int. J. Appl. Mech. 13 (6) (2021) 1758–8251, 2150071. 
[20] A. Ghorbani, D. Dykstra, C. Coulais, D. Bonn, E. van der Linden, M. Habibi, Inverted and programmable Poynting effects in metamaterials, Adv. Sci. 8 (20) 

(2021) 2198–3844, 2102279. 
[21] C. Horgan, J. Murphy, The effect of fiber-matrix interaction on the Poynting effect for torsion of fibrous soft biomaterials, J. Mech. Behav. Biomed. Mater. 118 

(2021) 1751–6161, 104410. 
[22] M. Destrade, C. Horgan, J. Murphy, Dominant negative Poynting effect in simple shearing of soft tissues, J. Eng. Math. 95 (2015) 87–98, 0022-0833. 
[23] L.A. Mihai, A. Goriely, Numerical simulation of shear and the Poynting effects by the finite element method: an application of the generalised empirical 

inequalities in non-linear elasticity, Int. J. Non Lin. Mech. 49 (0020-7462) (2013) 1–14. 
[24] M. Destrade, R.W. Ogden, Surface waves in a stretched and sheared incompressible elastic material, Int. J. Non Lin. Mech. 40 (2-3) (2005) 241–253, 0020-7462. 
[25] M. Agarwal, P. Pasupathy, R. De Simone, A.A. Pelegri, Oligodendrocyte tethering effect on hyperelastic 3D response of injured axons in brain white matter, in: 

ASME International Mechanical Engineering Congress and Exposition vol. 85598, American Society of Mechanical Engineers, 2021. V005T005A050. 
[26] M. Agarwal, A.A. Pelegri, Hyper-viscoelastic 3D response of axons subjected to repeated tensile loads in brain white matter, in: ASME 2022 International 

Mechanical Engineering Congress and Exposition. Volume 4: Biomedical and Biotechnology; Design, Systems, and Complexity, 2022. V004T05A046. 
[27] C.O. Horgan, J.G. Murphy, The effect of fiber-matrix interaction on the kinking instability arising in the torsion of stretched fibrous biofilaments, J. Mech. 

Behav. Biomed. Mater. 124 (2021) 1751–6161, 104782. 
[28] D.F. Meaney, Relationship between structural modeling and hyperelastic material behavior: application to CNS white matter, Biomech. Model. Mechanobiol. 1 

(4) (2003) 279–293. 
[29] Y. Pan, D. Sullivan, D.I. Shreiber, A.A. Pelegri, Finite element modeling of CNS white matter kinematics: use of a 3D RVE to determine material properties, 

Front. Bioeng. Biotechnol. 1 (2013) 2296–4185, 19. 
[30] Y. Pan, D.I. Shreiber, A.A. Pelegri, A transition model for finite element simulation of kinematics of central nervous system white matter, IEEE Trans. Biomed. 

Eng. 58 (12) (2011) 3443–3446, 0018-9294. 
[31] T. Brooks, J.E. Choi, M. Garnich, N. Hammer, J.N. Waddell, W. Duncan, M. Jermy, Finite element models and material data for analysis of infant head impacts, 

Heliyon 4 (12) (2018) e01010, 2405-8440. 
[32] S. Singh, A.A. Pelegri, D.I. Shreiber, Characterization of the three-dimensional kinematic behavior of axons in central nervous system white matter, Biomech. 

Model. Mechanobiol. 14 (6) (2015) 1303–1315, 1617-7940. 
[33] P. Pasupathy, R. De Simone, A.A. Pelegri, Numerical simulation of stress states in white matter via a continuum model of 3D axons tethered to glia, in: ASME 

2020 International Mechanical Engineering Congress and Exposition, ASME, Portland, OR, USA, 2020. Volume 5: Biomedical and Biotechnology, 
V005T05A038. 

[34] Abaqus, U.m.M., Standard, 2005, "Hibbitt, Karlsson, and Sorensen", 8,. 
[35] M. Agarwal, P. Pasupathy, R. De Simone, A.A. Pelegri, Oligodendrocyte tethering effect on hyperelastic 3D response of injured axons in brain white matter, in: 

ASME 2021 International Mechanical Engineering Congress and Exposition, 2021. Volume 5: Biomedical and Biotechnology, V005T05A050. 
[36] M. Agarwal, P. Pasupathy, A.A. Pelegri, Oligodendrocyte tethering effect on hyperelastic 3D response of axons in white matter, J. Mech. Behav. Biomed. Mater. 

134 (2022) 1751–6161, 105394. 
[37] X. Wu, J.G. Georgiadis, A.A. Pelegri, Brain white matter model of orthotropic viscoelastic properties in frequency domain, in: ASME International Mechanical 

Engineering Congress and Exposition vol. 59407, American Society of Mechanical Engineers, 2019. V003T004A024. 
[38] K.B. Arbogast, S.S. Margulies, Material characterization of the brainstem from oscillatory shear tests, J. Biomech. 31 (9) (1998) 801–807, 0021-9290. 
[39] S. Misra, K. Ramesh, A.M. Okamura, Modelling of non-linear elastic tissues for surgical simulation, Comput. Methods Biomech. Biomed. Eng. 13 (6) (2010) 

811–818, 1025-5842. 
[40] M.E. Gurtin, An Introduction to Continuum Mechanics, Academic Press, 1982. 
[41] R.W. Ogden, Non-linear Elastic Deformations, Courier Corporation, 1997. 
[42] C.O. Horgan, J.G. Murphy, Exponents of the one-term Ogden model: insights from simple shear, Philosoph. Trans. Royal Soc. A 380 (2234) (2022), 1364-503X, 

p. 20210328. 
[43] C.O. Horgan, J.G. Murphy, On the normal stresses in simple shearing of fiber-reinforced nonlinearly elastic materials, J. Elasticity 104 (2011) 343–355, 0374- 

3535. 
[44] M. Destrade, J.G. Murphy, G. Saccomandi, Simple shear is not so simple, Int. J. Non Lin. Mech. 47 (2) (2012) 210–214, 0020-7462. 

M. Agarwal and A.A. Pelegri                                                                                                                                                                                        

http://refhub.elsevier.com/S2405-8440(24)01410-5/sref1
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref2
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref3
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref3
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref4
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref4
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref5
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref5
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref6
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref6
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref7
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref7
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref8
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref8
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref9
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref10
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref10
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref11
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref12
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref12
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref13
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref14
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref15
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref15
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref16
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref16
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref17
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref17
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref18
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref18
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref19
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref19
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref20
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref20
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref21
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref21
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref22
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref23
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref23
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref24
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref25
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref25
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref26
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref26
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref27
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref27
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref28
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref28
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref29
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref29
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref30
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref30
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref31
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref31
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref32
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref32
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref33
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref33
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref33
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref35
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref35
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref36
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref36
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref37
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref37
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref38
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref39
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref39
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref40
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref41
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref42
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref42
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref43
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref43
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref44


Heliyon 10 (2024) e25379

18

[45] D.I. Shreiber, H. Hao, R.A. Elias, Probing the influence of myelin and glia on the tensile properties of the spinal cord, Biomech. Model. Mechanobiol. 8 (2009) 
311–321, 1617-7959. 

[46] S. Budday, E. Kuhl, Modeling the life cycle of the human brain, Curr. Opin. Biomed. Eng. 15 (2020) 16–25, 2468-4511. 
[47] Y.-L. Liu, G.-Y. Li, P. He, Z.-Q. Mao, Y. Cao, Temperature-dependent elastic properties of brain tissues measured with the shear wave elastography method, 

J. Mech. Behav. Biomed. Mater. 65 (2017) 652–656, 1751-6161. 

M. Agarwal and A.A. Pelegri                                                                                                                                                                                        

http://refhub.elsevier.com/S2405-8440(24)01410-5/sref45
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref45
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref46
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref47
http://refhub.elsevier.com/S2405-8440(24)01410-5/sref47

	An Ogden hyperelastic 3D micromechanical model to depict Poynting effect in brain white matter
	1 Introduction
	1.1 Characterization & modeling of brain tissues
	1.2 Poynting effect and its practical implications
	1.3 Research objectives of proposed Poynting 3D FEM
	1.4 What is the significance of micro-mechanical FEM studies for the Poynting effect?

	2 Materials and methods
	2.1 Micromechanical finite element model
	2.2 Hyper-elastic (HE) material model component
	2.3 Analytical modeling Poynting effect
	2.4 Finite element model

	3 Results and discussion
	3.1 Simple shear along fiber – RVE FEM model
	3.2 Simple shear across fiber – RVE HE model
	3.3 Simple shear perpendicular to fiber – HE model
	3.4 Pure shear model – HE model
	3.5 Comparison of Poynting behavior (all cases)
	3.6 FE model verification and validation

	4 Conclusion
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Nomenclature
	References


