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Abstract The appearance of single cell microorganisms on
earth dates back to more than 3.5 billion years ago, ultimately
leading to the development of multicellular organisms approx-
imately 3 billion years later. The evolutionary burst of species
diversity and the Bstruggle for existence^, as proposed by
Darwin, generated a complex host defense system. Host sur-
vival during infection in vital organs, such as the lung, requires
a delicate balance between host defense, which is essential for
the detection and elimination of pathogens and host tolerance,
which is critical for minimizing collateral tissue damage.
Whereas the cellular and molecular mechanisms of host de-
fense against many invading pathogens have been extensively
studied, our understanding of host tolerance as a key mecha-
nism in maintaining host fitness is extremely limited. This may
also explain why current therapeutic and preventive approaches
targeting only host defense mechanisms have failed to provide
full protection against severe infectious diseases, including pul-
monary influenza virus andMycobacterium tuberculosis infec-
tions. In this review, we aim to outline various host strategies of
resistance and tolerance for effective protection against acute or
chronic pulmonary infections.
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Nothing in biology makes sense except in the light of
evolution.
Theodosius Dobzhnansky

Introduction

For a long time, immunologists considered host defense as the
hallmark of immunity, through the detection and destruction
of pathogens. However, we now recognize that the host may
also provide protection against infections by tolerating them
and controlling tissue damage caused either directly via
pathogen-derived toxins or indirectly by the immune re-
sponse. Host tolerance was initially studied in plants (Kover
and Schaal 2002; Ayres and Schneider 2012) and then in
Drosophila (Ayres et al. 2008; Ayres and Schneider 2008,
2009) and the concept has recently been introduced in animals
(Raberg et al. 2007; Read et al. 2008; Schneider and Ayres
2008; Raberg et al. 2009; Medzhitov et al. 2012; Fig. 1).

During an infection, the host protects itself by two
major mechanisms, namely resistance and tolerance and these
mechanisms are not mutually exclusive. Resistance mecha-
nisms are typically associated with a decrease in microbial
burden through innatemechanisms, including pathogen detec-
tion by various sensors, such as Toll-like receptors (TLR),
NOD-like receptors and C-type lectins, or phagocytosis and
neutralization by macrophages and adaptive mechanisms via
the killing of infected cells by T cell-mediated immunity.
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Although the host’s resistance response is essential in control-
ling the infection and preventing further dissemination, it is
frequently associated with significant fitness costs, as it also
induces tissue damage. For instance, lung infections often re-
sult in mucus production, increased airway permeability, alter-
ations in vascular function, and thereby, impaired lung func-
tion. Therefore, a balance between decreasing the microbial
burden and restricting tissue damage is required. In this vein,
the collateral damage caused by the resistive immune response
can be dampened by host tolerance. Disease tolerance is de-
fined as the mechanisms that Bdecrease host susceptibility to
tissue damage, or other fitness costs caused by pathogens or by
the immune response^ (Medzhitov et al. 2012). Common tol-
erance mechanisms include the activation of the stress re-
sponse to eliminate reactive oxygen species (ROS) and the
secretion of anti-inflammatory cytokines such as interleukin-
10 (IL-10) and transforming growth factor-β (TGF-β). An
additional major tolerance mechanism is the tissue repair re-
sponse, which has been classically associated with the produc-
tion of type 2 cytokines (e.g., IL-4 and IL-13) that share a

STAT6-dependent signaling pathway (Martinez et al. 2009)
and the induction of alternatively activated macrophages
(AAMφ).

Pulmonary infections are usually associatedwith alterations in
vascular function and increased permeability of the airways,
which lead to lung dysfunction. For example, influenza A virus
(IAV) induces type 2 cytokines such as IL-33, IL-4 and IL-13
early during infection, driving goblet cell hyperplasia, mucus
production and airway hyperreactivity (Chang et al. 2011).
However, production of these cytokines upon viral clearance is
associated with the restoration of lung function and tissue remod-
eling (Monticelli et al. 2011). Alternatively, slow growing path-
ogens such as Mycobacterium tuberculosis (Mtb) may exploit
type 2 cytokine production for its own benefit to favor the inva-
sion of the lungs and to establish a chronic infection (Heitmann
et al. 2014). Mechanistically, IL-4 and IL-13 have been shown to
stimulate macrophage fusion and giant cell formation (Helming
and Gordon 2007), leading to granulomas, a hallmark of chronic
tuberculosis (TB) and an important mechanism of immune eva-
sion and chronicity. Pairing the formation of granulomaswith the

Fig. 1 Three-dimensional representation of host resistance and host
tolerance and their beneficial impact on the organism. Each dot
represents a major type of immune response in its general placement
between host resistance and host tolerance and its contribution to the

host benefit. Contribution to the host benefit can vary because of host
and pathogen factors. The different placements are not mutually
exclusive and the transition is fluid
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increased lifespan of AAMφmay provide an important reservoir
for Mtb to facilitate bacterial persistence. Although some groups
have found that the inhibition of type 2 cytokine production via
antibody blockade or deletion of the IL-4/13 signaling pathway
confers enhanced resistance to Mtb infection (Buccheri et al.
2007; Roy et al. 2008), this topic remains controversial (Jung
et al. 2002). Undoubtedly though, during pulmonary infection,
both resistance to the pathogen, by mounting an effective im-
mune response and tolerance of its presence to control immuno-
pathology have a direct impact on host protection and fitness. In
this review, we explore the cost-benefit trade-offs of the immune
response and immune-mediated pathology with a particular fo-
cus on respiratory infections.

Host resistance in pulmonary infections

Most acute infections in the lungs cause excessive tissue dam-
age that needs to be rapidly controlled and repaired for host
survival. During an acute pulmonary infection, the pathogen
burden and the magnitude of the immune response that will
ultimately determine the extent of the tissue damage are di-
rectly correlated. Thus, the extent of the initial resistance
mechanisms is an important determinant of host tolerance to
infection.

Both pulmonary epithelial and immune cells express a
wide range pattern-recognition receptors (PRRs) that iden-
tify pathogen-associated molecular patterns (PAMPs) origi-
nating from the invading pathogen and of damage-associated
molecular patterns (DAMPs) released from infected cells
(Holt et al. 2008; Takeuchi and Akira 2009; Braciale et al.
2012). In 1989, Charles Janeway brilliantly predicted the im-
portance of PRRs in the recognition of pathogens by macro-
phages and their potential link to adaptive immunity (Janeway
1989). This hypothesis led to an explosion of research in the
field of innate immunity, beginning with the discovery of the
Toll pathway in anti-microbial defense in the plant (Whitham
et al. 1994) and the fruit fly (Drosophila melanogaster;
Lemaitre et al. 1996). This work was followed by
Medzhitov and Janeway describing the first mammalian
Toll-like receptor (TLR4; Medzhitov et al. 1997) that recog-
nizes lipopolysaccharide (LPS) on gram-negative bacteria
(Poltorak et al. 1998). In the last 15 years, more than 13
TLR family members have been discovered that localize to
the cell surface or endosome and that recognize diverse bac-
terial or viral components. Whereas several TLRs detect con-
served PAMPs present on bacteria (e.g., LPS, flagellin, or
peptidoglycans), a PRR that directly recognizes viruses has
yet to be identified. As most structural components of viruses
are derived from the host, recognition is necessarily limited to
viral nucleic acids. Thus, TLRs involved in sensing viruses are
unsurprisingly localized to the endosome and detect extracel-
lular viral particles by stripping and exposing their genome

(RNA/DNA) via endosomal acidification. In addition to TLR
family members that have evolved to recognize microbial
components in the extracellular microenvironment, there are
also cytosolic PRRs including Nod-like receptors (NLRs),
retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)
and others that play a crucial role in recognition of PAMPs
within infected cells (Kumar et al. 2011). The evolution of this
second layer of PRRs is essential for host survival as the role
of TLRs in host defense against intracellular pathogens is less
pronounced. Indeed, NLRs are highly conserved (Rast et al.
2006) and crucial in the recognition of various intracellular
bacteria including Mtb (Guirado et al. 2013). For example,
NOD2 is an NLR family member that recognizes the bacterial
peptidoglycan fragment muramyl dipeptide (MDP) and acti-
vates nuclear factor kappa B (NF-κB) and mitogen-activated
protein kinase (MAPK) signaling pathways (Inohara et al.
2005). Macrophages from NOD2-deficient mice or humans
are impaired in cytokine production (e.g., TNF-α and IL-12)
following Mtb infection (Ferwerda et al. 2005; Divangahi
et al. 2008). In addition, NOD2-deficient mice are more sus-
ceptible to the late stages of Mtb infection (Gandotra et al.
2007; Divangahi et al. 2008) emphasizing a potential role
for NOD2 in adaptive immunity (Divangahi et al. 2008;
Philpott et al. 2014). Whereas most bacteria express an N-
acetylated form of MDP, mycobacteria produce an N-
glycolylated form, converted via N-acetyl muramic acid hy-
droxylase activity. N-glycolylated MDP is more potent in in-
ducing NOD2-mediated innate and adaptive immune re-
sponses (Coulombe et al. 2009; Behr and Divangahi 2015).
Thus, PAMP localization and post-transcriptional modifica-
tions can diversify the outcome of the immune response.

Particularly relevant to anti-viral immunity are RLRs, such
as RIG-I and melanoma differentiated-associated gene 5
(MDA5), which detect viral single-stranded RNA/short
double-stranded RNA (<300 bp) and long double-stranded
RNA (>1000 bp), respectively, in infected cells (Iwasaki and
Pillai 2014). Additionally, mitochondrial antiviral signaling
protein (MAVS), an essential adaptor protein downstream of
RIG-I/MDA5, activates NF-κB and interferon (IFN) regulato-
ry factor 3 (IRF3)-dependent signaling pathways and is local-
ized to the mitochondrial outer membrane (Seth et al. 2005).
Recognition of a virus by these sensors potently induces type I
IFN. Type I IFN is a critical mediator of host resistance to viral
infection, as it rapidly induces more than 300 known IFN-
stimulated genes (ISG) within infected and neighboring cells
rapidly to restrict viral replication (Doly et al. 1998; Schneider
et al. 2014). Viruses have also evolved several mechanisms to
inhibit RIG-I/MDA5 signaling and to paralyze antiviral re-
sponses. For instance, the NS1 protein expressed by IAV in-
hibits RIG-I signaling, hinting at the crucial role of RLRs in
innate immunity to viral infections. Furthermore, type I
IFN also promotes the cytotoxic activity of CD8+ T
cells by inducing granzyme B expression (Kohlmeier et al.
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2010), highlighting a role for type I IFN in orchestrating adap-
tive immunity. Apart from type I IFN, type II IFN (IFN-γ) and
type III IFN (IFN-λ) have also been shown to induce overlap-
ping sets of ISG, which promote viral clearance (Der et al.
1998). Interestingly, influenza PB1-F2 is encoded by an alter-
nate reading frame within the viral polymerase PB1 gene seg-
ment and selectively targets the mitochondria of macrophages
but not epithelial cells, to inhibit type I IFN production and
induce apoptosis, enhancing IAV virulence in mice (Chen
et al. 2001; McAuley et al. 2007). Moreover, non-
pathogenic influenza viruses engineered to express the PB1
gene from virulent H5N1 or 1918 pandemic influenza strains
become highly pathogenic in mice (McAuley et al. 2007,
2010). Mechanistically, PB1-F2 interacts with the permeabil-
ity transition pore (PTP) complex, containing the adenine nu-
cleotide translocator 3 (ANT3) and voltage-dependent anion
channel 1 (VDAC1), both of which have been implicated in
mitochondrial-dependent apoptosis (Varga et al. 2011).
Recently, we have shown that NLR-family member NLRX1
interacts with PB1-F2 in the mitochondria to disarm its pro-
apoptotic effect and to promote the capacity of macrophages
to produce type I IFN (Jaworska et al. 2014). It will be inter-
esting to discover other viral or bacterial proteins with similar
functions. In this regard, part of the Mtb genome called
Region of Difference 1 (RD1), which encompasses a system
essential for the secretion of bacterial proteins including Early
Secretory Antigenic Target 6 (ESAT6), has the ability to target
mitochondria in macrophages and to induce mitochondrial
inner membrane potential dissipation, leading to necrosis
(Welin et al. 2011) and increased bacterial invasiveness (Hsu
et al. 2003). However, the role of NLRX1 inMtb infection and
its potential interaction with ESAT6 remains to be determined.

Host tolerance in acute pulmonary infection

Although immune cells are the critical component of host
resistance to infection, the integrity of structural cells (e.g.,
lung parenchymal epithelial cells) is essential in mitigating
tissue damage and promoting host tolerance. While a ro-
bust host resistance may result in the complete elimination
of the pathogen, collateral tissue damage caused by such a
response must be controlled in order to avoid jeopardizing
host survival. Several mechanisms contribute to host
tolerance:

(1) PRRs: Because the cost of tissue damage is high andmay
result in the permanent loss of physiological function,
repair mechanisms must be initiated from the onset of
the infection. Interestingly, the overall effects of single
nucleotide polymorphisms in genes encoding TLRs or
their signaling components appear to have only a modest
effect on host resistance to infectious diseases, thus

suggesting a potentially important role in host tolerance
(Neagos et al. 2015). Matzinger (2002) initially sug-
gested that the activation of TLRs via DAMPs would
serve as an early Balarm signal^ of tissue damage for
the initiation of the repair process. For example, during
Pseudomonas aeruginosa infection, high-mobility
group box 1 (HMGB1) has been demonstrated to con-
tribute to the inflammation in the lungs of patients suf-
fering from cystic fibrosis (CF) through recognition by
TLR2 and TLR4. Indeed, the neutralization of HMGB1
in a mouse model of Pseudomonas aeruginosa infection
dampens lung inflammation (Entezari et al. 2012).
Furthermore, C-type lectin receptors (CLRs) can func-
tion as PPRs by recognizing glycan structures expressed
by various pathogens (Davicino et al. 2011). For in-
stance, in macrophages, galactose-type lectin-1 recog-
nizes galactose and/or its monosaccharide derivative on
Klebsiella pneumonia and orchestrates the immune re-
sponse in the lungs by triggering the recruitment of neu-
trophils (Jondle et al. 2016). However, conversely,
HMGB1 recognition through TLR4 and the receptor
for advanced glycated end products (RAGE) on bronchi-
al epithelial cells promotes extracellular matrix synthesis
and wound repair (Ojo et al. 2015). Thus, the initial rec-
ognition of PAMPs via PRRs in immune cells initiates
host resistance, whereas the recognition of DAMPs via
PRRs in structural cells may potentially initiate host tol-
erance by activating tissue repair mechanisms at a very
early stage of infection.

(2) Stress response: The cellular stress response has evolved
to provide rapid metabolic adaptation to environmental
changes including oxygen, glucose, cellular redox, or
local ADP/ATP concentrations. This adaptation is re-
quired for the maintenance of tissue integrity and for
functionality during infection (Soares et al. 2014).
During pulmonary infection with IAVor respiratory syn-
cytial virus (RSV), large amounts of ROS are produced
by neutrophils and macrophages; this creates oxidative
stress in the surrounding tissue. The actin-anchored pro-
tein Keap-1 senses the oxidative stress and liberates the
transcription factor Nrf2 to induce multiple proteins to
scavenge free radicals, eliminate damaged proteins, me-
tabolize oxidized membrane lipids, and repair damaged
DNA (Thimmulappa et al. 2006; Kensler et al. 2007;
Garofalo et al. 2013). Stress response pathways are com-
plex and have been extensively reviewed with regard to
disease tolerance elsewhere (Soares et al. 2014).

(3) Th2 response: Type 2 immunity has been extensively
studied in the context of host resistance to metazoan
parasites and a remarkable overlap occurs between path-
ways regulating host resistance to parasites and tissue
repair (Allen and Maizels 2011). Type 2 immunity is
characterized by Th2 cells secreting IL-4, IL-5, IL-10
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and IL-13 and host Th2 immunity has been proposed to
have evolved mainly to control tissue damage in the host
resulting from parasitic infections (e.g. worms; Allen and
Sutherland 2014). Additionally, type 2 cytokines, includ-
ing IL-10, are produced by regulatory T cells (Treg) and
effector CD4+ or CD8+ T cells in the lungs of humans
and mice following infection with IAVor RSV (Sun et al.
2009, 2011; Palmer et al. 2010). Blockade of IL-10 sig-
naling by using an IL-10R neutralizing antibody during
sublethal IAV infection results in increased morbidity
and mortality in mice. Similarly, IL-10-deficient mice
are more susceptible to Th17-mediated immunopatholo-
gy following a challenge with a lethal dose of IAV
(McKinstry et al. 2009). However, the role of IL-10 dur-
ing RSV infection is less clear. Although some studies
have demonstrated that IL-10 reduces immunopathology
by decreasing Tcell responses inmice, other groups have
observed that the overexpression of IL-10 augments pa-
thology (Loebbermann et al. 2012; Sun et al. 2013).
TGF-β is another important cytokine whose role in re-
sistance versus tolerance has been evaluated in a mouse
model of acute IAV infection. TGF-β is expressed in an
inactive form by most cell types and needs to be cleaved
to become activated (Khalil 1999). Interestingly, IAV
neuraminidase can also cleave TGF-β into its active
form during infection (Schultz-Cherry and Hinshaw
1996). Whereas some groups have demonstrated that
an in vivo blockade of TGF-β increases the mortality
of mice infected with the 2009 H1N1 or H5N1 IAV
without affecting viral titres, others have observed that
the overexpression of the protein by the injection of plas-
mid DNA reduces inflammation but impairs viral clear-
ance of a H3N1 virus (Williams et al. 2005; Carlson et al.
2010). Collectively, these studies highlight the impor-
tance of a balance between host resistance and tolerance
mechanisms in a pathogen-specific manner.

(4) Efferocytosis: Considering the high turnover of cells in
our body under physiological conditions (∼ one million
cells die/second), the removal of this cumbersome num-
ber of dying cells is essential for host survival. Recent
studies have identified efferocytosis (from the Latin Bto
bury^) as a critical mechanism for the disposal of cell
corpses, a mechanism that differs from classical phago-
cytosis (Ravichandran 2010). Interestingly, this disposal
is mandatory in both host resistance and tolerance to
infection. For instance, during Mtb infection,
efferocytosis is a crucial promoter of macrophage bacte-
ricidal activity following the engulfment of Mtb-infected
apoptotic cells (Martin et al. 2012). We have also recent-
ly demonstrated that efferocytosis by dendritic cells is
required for cross-presentation to enhance adaptive im-
munity during Mtb infection (Tzelepis et al. 2015).
TGF-β, together with IL-10 and prostaglandins, have

furthermore been shown to be produced by dendritic
cells following the efferocytosis of apoptotic cells in or-
der to decrease lung inflammation (Voll et al. 1997;
Fadok et al. 1998; Huynh et al. 2002). During IAV infec-
tion, alveolar macrophages (aMφ) are critical for the
clearance of apoptotic bodies during the resolution phase
of infection and thereby contribute importantly to the
resolution of inflammation (Kosmider et al. 2012;
Nelson et al. 2014). Similarly, the depletion of aMφ
during Streptococcus pneumoniae infection is associated
with a poor outcome, because of impaired apoptotic cell
clearance (Knapp et al. 2003). The removal of these ap-
optotic bodies by aMφ has been shown to limit the re-
lease of cellular content that may further enhance the
inflammation. This anti-inflammatory effect is mediated
by the activation of the peroxisome proliferator-activated
receptor γ (PPARγ) following the interaction of apopto-
tic cells with aMφ. It consequently contributes to the
AAMφ macrophage phenotype to foster wound healing
and the resolution of inflammation (Sica and Mantovani
2012; Mantovani et al. 2013; Novak and Koh 2013; von
Knethen et al. 2013).

(5) CD200 signaling pathway: Another mechanism promot-
ing tolerance in the lungs is mediated by CD200R, which
is expressed by aMφ and dampens their inflammatory
state following the interaction with CD200 expressed by
epithelial cells. Studies in CD200-null or CD200R−/−

mice have demonstrated that the absence of this signal-
ing pathway leads to the delayed resolution of inflamma-
tion and subsequently enhances host morbidity and mor-
tality after IAV infection. The absence of CD200R-
CD200 signaling has also been associated with the en-
hanced influx of both CD4+ and CD8+ T cells in the
lungs, further augmenting lung immunopathology
(Snelgrove et al. 2008; Rygiel et al. 2009). Whether this
interesting lung tolerance strategy is relevant to other
infections remains to be determined.

(6) Innate lymphoid cells (ILCs): ILCs represent a family of
cells that are of lymphoid origin and that do not express
traditional lineage markers (e.g., CD3, CD19, CD11b).
Based on the expression of cell surface markers and tran-
scription factors, they are divided into three major sub-
sets (ILC1-3), each with unique functions (Saenz et al.
2010; Spits and Di Santo 2011). During IAV infection,
epithelial cells produce IL-33 to induce the secretion of
amphiregulin by ILC2 to promote tissue repair mecha-
nisms. Although the depletion of ILC2 does not impair
host resistance to IAV, it significantly affects host toler-
ance as determined by the loss of airway epithelial integ-
rity, decreased lung function, and impaired restoration of
airway homeostasis and repair (Monticelli et al. 2011;
Zaiss et al. 2015). In addition, a recent study demon-
strated that multiple pathogenic strains of RSV induce
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the production of IL-13 (downstream of IL-33) by ILC2
in mice (Stier et al. 2016). Conversely, rhinovirus-
infected epithelial cells have been shown to produce
IL-33 to trigger the production of type 2 cytokines by
ILC2, which subsequently promotes airway inflamma-
tion and exacerbates asthma (Jackson et al. 2014), sug-
gesting a potentially dichotomous role for ILC2 in im-
munity to acute viral infections.

Although host tolerance is essential during primary infec-
tion, it may increase susceptibility to other pathogens. For
example, the induction of a tolerant state in the lungs follow-
ing IAV infection elevates vulnerability to subsequent bacte-
rial infections (Didierlaurent et al. 2008). IAV infection has
been shown to desensitize aMφ, rendering them irresponsive
to subsequent TLR stimulation by inhibiting the nuclear trans-
location of NF-κB-p65 (Didierlaurent et al. 2008). This im-
paired TLR signaling allows invading bacteria to remain un-
detected by the innate immune response, promoting pathoge-
nicity. Moreover, the induction of pulmonary tolerance
through the CD200-CD200R axis has also been associated
with increased susceptibility to secondary bacterial infections
(Goulding et al. 2011). Similarly, infection with rhinovirus
predisposes mice for subsequent infection with the bacterium
Haemophilus influenzae by desensitizing aMφ and bronchial
epithelial cells to TLR stimuli (Unger et al. 2012).
Furthermore, mice stimulated intranasally with the TLR3 ag-
onist poly I:C also exhibit more severe prognosis to secondary
infection (Tian et al. 2012). Interestingly, in the case of IAV
infection, this susceptibility appears to be mediated by type I
IFN (Tian et al. 2012). Although the anti-viral role of type I
IFN is well defined, its role in promoting secondary bacterial
infections is less clear. However, the increase in host suscep-
tibility to primary bacterial infections including Francisella
tularensis (Freudenberg et al. 2002), Listeria monocytogenes
(Fehr et al. 1997) and Mtb (Manca et al. 2005) via type I IFN
induction is well documented, signifying a permissive role of
type I IFN in secondary bacterial infection. We have previous-
ly reviewed this concept (Divangahi et al. 2015).

Inefficiency of host tolerance mechanisms in vital organs is
catastrophic and often leads to mortality. The consequences of
the replication of the pathogen and a robust immune response
in the lungs are severe epithelial loss, increased airway resis-
tance, diminished gas exchange and ultimately, respiratory
failure. Highly pathogenic strains of IAV (e.g., 1918 Spanish
H1N1 or H5N1), severe acute respiratory syndrome (SARS),
or hantavirus infections can induce considerable inflammation
in the lungs resulting in death (de Jong et al. 2006; Macneil
et al. 2011; Gralinski and Baric 2015). The sequential events
and factors contributing to such exacerbated immune re-
sponses and the breakdown of host tolerance processes are
still not well understood. However, both host and pathogen
factors have been shown to contribute to this effect. Indeed,

pathogen-intrinsic characteristics, such as the expression of
virulence factors, replication rate and tissue tropism, markedly
affect the host response. Additionally, the host itself can ex-
press genes that will either favor resistance and survival to
infection or predispose it to severe immunopathology
(Keynan et al. 2013; Arcanjo et al. 2014; Charbonnel et al.
2014). For instance, IL-17A, IL-17F and TNF-α are rapidly
secreted following IAV infection and animals deficient in
these cytokines show reduced morbidity compared with
wild-type animals (Szretter et al. 2007; Crowe et al. 2009).
Interestingly, others have observed that TNF-α deficiency
during IAV infection leads to increased immunopathology
characterized by elevated cellular infiltration and cytokine
production in the airways. Thus, depending on the phase of
infection, TNF-α may play a dual role by also acting as a
negative regulator of inflammatory responses to control im-
munopathology (Damjanovic et al. 2011). A delay in type I
IFN production during SARS infection promotes the accumu-
lation of inflammatory monocytes-macrophages in the lungs,
which in turn leads to elevated cytokine and chemokine levels
(cytokine storm), increased vascular leakage and decreased
survival (Channappanavar et al. 2016). Thus, an understand-
ing of the underlying cellular and molecular mechanisms in-
volved in the induction and maintenance of host tolerance
during pulmonary viral infection may provide new avenues
for developing therapeutic approaches.

Host tolerance in chronic pulmonary infection

Although host tolerance aims to reduce or control tissue dam-
age inflicted by acute infection, it may also be a powerful
defense strategy for host survival in chronic infections. This
adaptation strategy is a reflection of the co-evolutionary dy-
namics of host–pathogen interactions (Best et al. 2014). The
best example of this unique interaction between a pathogen
and human is perhaps Mtb, as humans are the only reservoir
for this bacterium (Comas et al. 2010). Exposure to Mtb leads
to two broad outcomes: elimination of the bacteria or its per-
sistence. It has long been recognized that, even among close
household contacts of TB cases and despite ample exposure,
nearly half of the exposed individuals are negative for the
tuberculin skin test (TST), which demonstrates that they are
disease-free (Morrison et al. 2008). This finding indicates that
some people are naturally resistant to Mtb, because of an
efficient immune response (Cobat et al. 2009). However, if
Mtb is not eliminated, the pathogen can persist in a quiescent
or latent state and typically, the individual develops latent
tuberculosis infection (LTBI). Although one third of the world
population is infected with Mtb and approximately
1.5 million people die from this pathogen each year (Barry
et al. 2009), only 5–15% of individuals with LTBI progress
(over months to years) to act ive TB (Vynnycky
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and Fine 1997). The specific mechanisms leading to this pro-
tection are still elusive in the vast majority of Mtb-infected
people but several experimental studies in small mammals
(mice, guinea pigs, rabbits) and non-human primates have
significantly contributed to identifying the importance of ear-
ly, probably innate, immune events during primary infection
(Orme et al. 2015).

The importance of innate immune mechanisms is reflected
by its remarkable existence and diversity at almost every level of
the evolutionary tree of life. Macrophages are a particularly
ancient cellular compartment of innate immunity and are the
dominant cell type that Mtb infects. The route of entry of Mtb
is mainly via the respiratory tract through the inhalation of bac-
teria and it passages to the lower respiratory tract, where it en-
counters aMφ. Mtb is internalized by macrophages via a vacu-
olar structure called a phagosome. Unlike organisms that are
destroyed when the phagosome fuses with the lysosome, Mtb
actively blocks phagosomal maturation, ensuring its survival in
the phagocytic compartment (Podinovskaia et al. 2013). Next,
through an ESX-1 mediated process, Mtb disrupts the
phagosomal membrane and translocates into the cytosol
(Houben et al. 2012). The advantages for the bacterium being
delivered into the cytosol are a matter of ongoing investigation
but one possibility is that the activation of the cytosolic surveil-
lance pathway results in the induction of type I IFN, which is
beneficial for Mtb (Pandey et al. 2009; Manzanillo et al. 2012).
Although type I IFN is a major component of antiviral host
defense mechanisms (Coulombe et al. 2014) and most viruses
contain genes to block the type I IFN pathway, Mtb expresses
genes (Stanley et al. 2007) to activate the type I IFN pathway to
promote bacterial growth (Manca et al. 2001; Mayer-Barber
et al. 2014). Importantly, a type I IFN gene signature has been
directly linked to active human TB (Berry et al. 2010). Thus,
Mtb has evolved into a parasite of the intracellular milieu of
macrophages, where it not only survives but replicates in a nat-
urally hostile environment. This allows Mtb access to the lung
interstitium to initiate granuloma formation, which is the early
stage of chronic infection. However, how Mtb is translocated
from the airways into the parenchyma for the progression of
infection is unknown. Do Mtb-infected macrophages migrate
through pneumocytes? Or alternatively, do free bacteria directly
infect pneumocytes and reach the lung interstitial tissue where
they are phagocytosed by interstitial macrophages? As the suc-
cess of Mtb in establishing chronic infection is dictated by the
initial actions of pulmonary macrophages, early inhibition of
macrophage activation and eventually cell death are critical for
Mtb survival and replication. Experimental studies of a variety
of pathogens have shown that the fate of pulmonary macro-
phages (i.e., the type of cell death) is critical not only for the
innate response to infection (Divangahi et al. 2009; Singh et al.
2012) but also for the ensuing adaptive immune response toMtb
infection (Schaible et al. 2003; Behar et al. 2010; Divangahi
et al. 2010, 2015; Coulombe et al. 2014; Tzelepis et al. 2015).

Once the primary infection is established, inflammatory
monocytes transport Mtb to pulmonary lymph nodes and
transfer Mtb antigens to classic dendritic cells for T cell prim-
ing (Samstein et al. 2013). T cell responses are essential in
immunity to Mtb infection by restricting bacterial growth.
Conversely, through various mechanisms, Mtb actively delays
initial T cell priming and their trafficking into the lung
(Chackerian et al. 2002; Wolf et al. 2008). HIV infection is a
clear risk factor for the progression from Mtb infection to
disease, because of the significant reduction of CD4+ T cells.
However, for the purposes of vaccination, whether increased
T cell responses above the population norm provide better
protection is unclear. Indeed, recent studies in the experimen-
tal murine model of TB have shown that unleashing CD4+ T
cell responses in a PD1-dependent manner leads to reduced
protection and enhanced mortality (Aubert et al. 2011; Barber
et al. 2011). Thus, an understanding of the regulatory mecha-
nisms involved in immunity to TB is fundamental for gener-
ating a strong host defense to hinder bacterial growth, while
maintaining host tolerance.

One can hypothesize that, during Mtb infection, the ini-
tiation of granuloma formation represents the transition of
host defense mechanisms from resistance to tolerance.
Granulomas have long been thought of as a critical com-
ponent of host protective immunity to Mtb infection (Davis
et al. 2002). However, they have recently been shown also
to be beneficial to pathogens (Kaplan et al. 2003; Hunter
2011; Davis and Ramakrishnan 2009; Cronan et al. 2016).
For instance, Mtb requires complex granuloma formation
at various stages of disease progression for a more efficient
spread within individuals (Hunter 2011). The extracellular
location of bacteria in chronic granulomas is associated
with highly elevated replication rates (Kaplan et al.
2003). In contrast, immunocompromised individuals usu-
ally only display poorly formed granulomas and have low-
er extracellular bacterial burdens (Hunter 2011).
Interestingly, a recent study demonstrated that immune re-
sponses are geographically segregated, with the center of
the granuloma being pro-inflammatory, while the sur-
rounding tissue is anti-inflammatory (Marakalala et al.
2016). In addition, Mtb can initiate a type I IFN response,
which has been directly linked to the recruitment of a
unique myeloid population (CD11b+F4/80+Gr1int) to the
nascent granuloma; this population is highly permissive
for Mtb infection (Antonelli et al. 2010).

Similar to monocytes and macrophages, the protective role
of T cells during Mtb infection has recently been scrutinized.
Conventionally, the identification of immunodominant Mtb
antigens for the generation of a repertoire of Mtb-specific T
cells was thought to be the foundation for T cell-mediated
protective immunity and, hence, an effective vaccine-based
strategy against TB. However, despite inducing enhanced T-
cell-mediated responses, one such vaccine has failed to
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improve protection in a human trial (Tameris et al. 2013).
After more than half a century of BCG vaccination, we still
do not know the precise way in which BCG provides protec-
tion in children and to what extent this protection is mediated
via CD4+ T cells. An emerging hypothesis is that BCG pro-
tection is mainly mediated through innate immune pathways,
as reviewed elsewhere (Blankley et al. 2014). In addition, the
finding that Mtb genes involved in the production of
immunodominant CD4+ T cell antigens are hyper-conserved
suggests that Mtb may paradoxically benefit from antigen-
specific CD4+ T cell activation in humans (Comas et al.
2010). This theory derives further indirect support from the
HIV-TB syndemic: whereas HIV is clearly a risk factor for
individual progression from Mtb infection to disease, HIV/
AIDS is negatively associated with contagion (Corbett et al.
2006). Furthermore, the risk of active TB is enhanced during
the early stage of HIV infection, when the number of CD4+ T
cells is still in the normal range (Sonnenberg et al. 2005).
Together, these observations argue that Mtb depends on the
elaboration of a T-cell-mediated immune response for the de-
velopment of pathology that enables it to be transmitted to
other humans.

Concluding remarks

Whereas the concept of host tolerance has been well
established in plant biology, an appreciation of this phenome-
non in the animal kingdom is just emerging. This delay is
mainly attributable to the dominant conventional concept of
host resistance to infectious diseases. The cellular and regula-
tory mechanisms of host tolerance appear to be pathogen-spe-
cific, which is mainly reflected by the mode of pathogen trans-
mission. For instance, during an IAV pandemic (e.g., with the
1918 Spanish strain), the success of the influenza virus de-
pends on rapid replication and early transmission. This kinetic
of infection ultimately generates a dysregulated immune re-
sponse, in terms of both the intensity and the duration, which
leads to a breakdown of host tolerance. Although this massive
immune response completely eliminates the pathogen, host
survival will still be significantly compromised in the absence
of tolerance. In sharp contrast to the influenza virus, Mtb
survival depends on host tolerance. Death from tuberculosis
was initially known as Bconsumption^ as this chronic infec-
tion causes dramatic cachexia (wasting). Interestingly, a study
examining Mycobacterium marinum infection in the fruit fly
Drosophila melanogaster showed that the increased mortality
is independent of bacterial load and ismediated by altered host
metabolism and increased body wasting (Lazzaro and Galac
2006). This result indicates that, in the absence of tolerance,
host resistance is not sufficient to control the infection.
Therefore, when human resistance mechanisms fail to reduce
the fitness ofMtb and to eliminate the bacteria during the early

phase of infection, the host alters its defense strategy from
antagonism to symbiosis, which leads to tolerance of the bac-
teria and chronic, if not lifelong, infection. However,
unraveling the cellular and molecular mechanisms involved
in the regulation of host tolerance is essential for a better
understanding of the pathogenesis of any infectious disease.
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