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Abstract
Background: Kidney renal clear cell carcinoma (KIRC) is the most common sub-
type of renal tumor. However, the molecular mechanisms of KIRC pathogenesis re-
main little known. The purpose of our study was to identify potential key genes 
related to the occurrence and prognosis of KIRC, which could serve as novel diag-
nostic and prognostic biomarkers for KIRC.
Methods: Three gene expression profiles from gene expression omnibus database 
were integrated to identify differential expressed genes (DEGs) using limma package. 
Enrichment analysis and PPI construction for these DEGs were performed by bioin-
formatics tools. We used Gene Expression Profiling Interactive Analysis (GEPIA) 
database to further analyze the expression and prognostic values of hub genes.
The GEPIA database was used to further validate the bioinformatics results. The 
Connectivity Map was used to identify candidate small molecules that could reverse 
the gene expression of KIRC.
Results: A total of 503 DEGs were obtained. The PPI network with 417 nodes and 
1912 interactions was constructed. Go and KEGG pathway analysis revealed that 
these DEGs were most significantly enriched in excretion and valine, leucine, and 
isoleucine degradation, respectively. Six DEGs with high degree of connectivity 
(ACAA1, ACADSB, ALDH6A1, AUH, HADH, and PCCA) were selected as hub 
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1 |  INTRODUCTION

Renal cell carcinoma (RCC), also known as renal cell adeno-
carcinoma, accounts for more than 90% of primary renal neo-
plasms and pelvic cancer and ranks among the top 10 malignant 
tumors in both men and women. The incidence and mortality 
of RCC have been increasing over the past two decades. (Bray 
et al., 2018; Escudier et al., 2016; Hsieh, Le, Cao, Cheng, & 
Creighton, 2018; Srigley et al., 2013) Kidney renal clear cell 
carcinoma (KIRC) is the most common subtype of RCC (70%–
75%) and represents one of the most malignant genitourinary 
cancers. Nearly a quarter of patients were diagnosed with distal 
metastasis and advanced regional disease. Although a major 
breakthrough has been made in the molecular mechanisms and 
therapeutic strategies for KIRC, the long‐term overall survival 
of patients has not been significantly improved, especially in 
patients with metastatic disease, with 5‐year survival <32%.
(Linehan, 2012; Shuch et al., 2015) Therefore, identifying the 
promising novel diagnostic and prognostic biomarkers is ur-
gently demanded, which will contribute to enhance our under-
standing of KIRC initiation and progression and promote early 
detection of KIRC. A previous study showed that Polybromo‐1 
plays an important role in the proliferation and metastasis of 
KIRC by regulating multiple metabolic pathways including 
PI3K signaling pathway, glucose uptake pathway, and hypoxia 
response genes.(Chowdhury et al., 2016) In the past decade, 
with the rapid development of microarray and RNA‐sequenc-
ing technology, more and more biomarkers of tumor initiation, 
progression, and prognosis have been identified using bioin-
formatics analysis.(Sun et al., 2019; Yan et al., 2019) In this 
study, we integrated three microarray datasets from gene ex-
pression omnibus (GEO) database (GSE781, GSE6344, and 
GSE100666) to identify the differentially expressed genes 
(DEGs) between KIRC and adjacent normal tissues, aiming to 
explore and determine the promising novel biomarkers asso-
ciated with pathogenesis and prognosis of KIRC. Meanwhile, 
we revealed some candidate small molecule drugs that could 
reverse the gene expression of KIRC based on the CMap da-
tabase. The present study uncovered six novel biomarkers that 

were of great value in the diagnosis and prognosis of KIRC pa-
tients, which may contribute in revealing the molecular mech-
anisms of KIRC occurrence and progression. Figure 1 showed 
the workflow of our study.

2 |  MATERIALS AND METHODS

2.1 | Data resources
We conducted a systematic search of GEO database for relevant 
microarray datasets in order to investigate the differential gene 
expression between KIRC and normal samples. GEO database 
(http://www.ncbi.nlm.nih.gov/geo/) is widely used to archive 
high‐throughput microarray experimental data, original series, 
and platform records. In total, the gene expression profiles of 
GSE781 (Lenburg et al., 2003), GSE6344 (Gumz et al., 2007; 
Tun et al., 2010), and GSE100666 were downloaded from 
GEO database. These RNA profiles were provided on GPL96 
(Affymetrix Human Genome U133A Array) and platforms 
GPL16951 (Phalanx Human OneArray Ver. 6 Release 1).

2.2 | Identification of DEGs
The original CEL files were downloaded and classified as 
KIRC and normal groups. The affy package of Bioconductor 
(http://www.bioconductor.org/) was used for data standardi-
zation and transforming raw data into expression values. The 
significance analysis of the empirical Bayes methods within 
limma package was applied to identify DEGs between KIRC 
samples and normal tissue sample.(Ritchie et al., 2015) The 
genes with the following cutoff criteria were considered as 
the significant DEGs: p < 0.05 and |logFC|>1.

2.3 | Functional enrichment analysis
We performed gene ontology (GO) enrichment analysis for 
these overlap DEGs. GO enrichment analysis is a common 
useful method to analyze biological process (BP), molecu-
lar functions (MF), and cellular components (CC) of genes 

genes, which significantly associated with worse survival of patients. Finally, we 
identified the top 20 most significant small molecules and pipemidic acid was the 
most promising small molecule to reverse the KIRC gene expression.
Conclusions: This study first uncovered six key genes in KIRC which contributed to 
improving our understanding of the molecular mechanisms of KIRC pathogenesis. 
ACAA1, ACADSB, ALDH6A1, AUH, HADH, and PCCA could serve as the promising 
novel biomarkers for KIRC diagnosis, prognosis, and treatment.

K E Y W O R D S
bioinformatics analysis, candidate small molecules, kidney renal clear cell carcinoma, novel biomarkers
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and gene products. KEGG pathway enrichment analy-
sis was used to identify the potential functional and meta-
bolic pathways associated with overlap DEGs. KEGG is a 

collection of databases that store a large number of informa-
tion about genomes, biological pathways, diseases, chemi-
cal substances, and drugs. We performed GO enrichment 

F I G U R E  1  The workflow of this study for identifying key genes and pathways in KIRC
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and KEGG pathway analysis by using DAVID (Database for 
Annotation Visualization and Integrated Discovery). DAVID 
is a commonly used online biological information database 
that provides comprehensive functional annotation and path-
way interpretations (version 6.7)(http://david.ncifcrf.gov).

(Ashburner et al., 2000; Dennis et al., 2003; Gene Ontology 
Consortium, 2006; Huang da, Sherman, & Lempicki, 2009; 
Papanicolaou, Gebauer‐Jung, Blaxter, Owen McMillan, 
& Jiggins, 2008) p < 0.05 was considered statistically 
significant.

F I G U R E  2  (A) Volcano plot of gene expression profile data between KIRC and normal tissues in each dataset. Red dots: significantly 
upregulated genes in KIRC; Green dots: significantly downregulated genes in KIRC; Black dots: nondifferentially expressed genes. p < 0.05 and 
|log2 FC|>1 were considered as significant. (B) a. Venn diagram of 503 overlap DEGs from GSE781, GSE6344, and GSE100666 datasets. b. 
Upregulated overlap DEGs; c. Downregulated overlap DEGs

5.75

4.6

3.45

2.3

1.15

0
-6.42 -4.46 -2.5 -0.54 1.43 3.39 5.35

log2(FoldChange)

GSE781
-lo

g1
0(

P
-v

al
ue

)

19.23

15.38

11.54

7.69

3.85

0
-7.73 -5.46 -3.18 -0.91 1.36 3.64 5.91

log2(FoldChange)

GSE6344

-lo
g1

0(
P

-v
al

ue
)

8.43

6.74

5.06

3.37

1.69

0
-12.04 -8.42 -4.8 -1.18 2.44 6.06 9.68

log2(FoldChange)

GSE100666

-lo
g1

0(
P

-v
al

ue
)

B

A

cb

a

367

3277

1312
484

76 613

503

GSE781 GSE6344

GSE100666

GSE781 GSE6344

345

760

658
235

24 239

231

GSE100666

100

2638

740
237

19 337

250

GSE781 GSE6344

GSE100666

http://david.ncifcrf.gov


   | 5 of 15ZHANG et Al.

2.4 | Protein–protein interaction (PPI) 
network construction and module analysis
The Search Tool for the Retrieval of Interacting Genes data-
base (STRING, https://string-db.org/) was used to construct 
the PPI network.(Szklarczyk et al., 2015) The interactions 
with a combined score >0.4 were considered significant. 
The PPI network was visualized through the Cytoscape soft-
ware. (Smoot, Ono, Ruscheinski, Wang, & Ideker, 2011) 
Subsequently, Molecular Complex Detection (MCODE) 
plug‐in of the Cytoscape software was applied to screen 
significant modules from the PPI network. The degree cut-
off = 10, node score cutoff = 0.2, k‐core = 2, and max. 
depth = 100 were used as selection criterion.(Bandettini et 
al., 2012) We also performed Go and KEGG pathway en-
richment analysis for the most significant modules. In ad-
dition, the Networks Gene Oncology tool (BiNGO) plugin 

in Cytoscape was used to perform and visualize the biologi-
cal process analysis of the hub genes.(Maere, Heymans, & 
Kuiper, 2005)

2.5 | Analysis and validation of hub genes
The hierarchical clustering of module genes was constructed 
by UCSC Cancer Genomics Browser (http://genome-can-
cer.ucsc.edu). A network of hub genes and their coexpres-
sion genes was established by cBioPortal online platform 
(http://www.cbioportal.org). The Gene Expression Profiling 
Interactive Analysis (GEPIA) was used to further confirm 
the reliability of the expression level of hub genes and their 
prognostic value.(Cerami et al., 2012; Gao et al., 2013; 
Tang et al., 2017) The hazard ratio (HR) with 95% confi-
dence intervals (CI) of overall survival was calculated. The 
Kaplan–Meier curve and boxplot were visualized to present 

F I G U R E  3  Functional and signaling pathway analysis of the overlapped DEGs in KIRC. (a) Biological processes (b) Cellular components (c) 
Molecular function (d) KEGG pathway
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these relationships between gene expression and patients’ 
prognosis. The human protein atlas (HPA, www.proteinatlas.
org) database was used to determine the protein expression 
of the hub genes between KIRC and normal tissues based on 
immunohistochemistry.

2.6 | Identification of small molecules
We compared the overlap DEGs with those in the Connectivity 
Map database (CMap, http://www.broadinstitute.org/cmap/) to 
predict potential small active molecular that could reverse the 
current biological status of KIRC.(Lamb et al., 2006) First, the 
overlap DEGs were divided into upregulated and downregu-
lated groups. Then different expression significant probesets 
from each group were selected for gene set enrichment analysis. 
Finally, the enrichment scores ranging from −1 to +1 were cal-
culated. A positive connectivity value (closer to +1) indicated 
that the corresponding small molecules could induce the gene 
expression of KIRC, whereas a negative connectivity value 
(closer to −1) indicated greater similarity among the genes and 
the small molecules that could reverse the KIRC cell status.

3 |  RESULTS

3.1 | Identification of DEGs in KIRC
After the standardization of GSE781, GSE6344, and 
GSE100666 datasets, a total of 503 overlap DEGs expressed 
in KIRC tissues were identified with the Limma package. The 
volcano plot of DEGs of KIRC in each dataset was presented 
in Figure 2A. The Venn diagrams showed the 503 overlap 
DEGs among the three datasets (Figure 2Ba), consisting of 
231 upregulated genes (Figure 2Bb) and 250 downregulated 
genes (Figure 2Bc).

3.2 | Enrichment analyses
To better understand the biological functions of overlap 
DEGs among the three datasets, we performed GO func-
tion and KEGG pathway enrichment analysis using DAVID. 
For biological processes, GO analysis results indicated that 
upregulated and downregulated DEGs were significantly 
enriched in excretion, defense response, response to wound-
ing, immune response, and regulation of response to external 

Category Term p value

GOTERM_BP_FAT GO:0007588~excretion 2.32E−09

GOTERM_BP_FAT GO:0006952~defense response 6.27E−09

GOTERM_BP_FAT GO:0009611~response to wounding 1.32E−08

GOTERM_BP_FAT GO:0006955~immune response 2.22E−07

GOTERM_BP_FAT GO:0032101~regulation of response to 
external stimulus

6.55E−07

GOTERM_CC_FAT GO:0044459~plasma membrane part 9.91E−13

GOTERM_CC_FAT GO:0005887~integral to plasma membrane 3.18E−11

GOTERM_CC_FAT GO:0031226~intrinsic to plasma 
membrane

9.96E−11

GOTERM_CC_FAT GO:0005886~plasma membrane 5.00E−08

GOTERM_CC_FAT GO:0005626~insoluble fraction 2.16E−07

GOTERM_MF_FAT GO:0042802~identical protein binding 3.31E−06

GOTERM_MF_FAT GO:0,046,983 ~ protein dimerization 
activity

1.33E−05

GOTERM_MF_FAT GO:0042803~protein homodimerization 
activity

1.54E−05

GOTERM_MF_FAT GO:0005539~glycosaminoglycan binding 2.85E−05

GOTERM_MF_FAT GO:0030246~carbohydrate binding 4.20E−05

KEGG_PATHWAY hsa00280:Valine, leucine and isoleucine 
degradation

1.49E−05

KEGG_PATHWAY hsa00640:Propanoate metabolism 5.26E−05

KEGG_PATHWAY hsa04610:Complement and coagulation 
cascades

7.77E−04

KEGG_PATHWAY hsa00650:Butanoate metabolism 0.003257

KEGG_PATHWAY hsa04514:Cell adhesion molecules (CAMs) 0.005074

T A B L E  1  Functional and pathway 
enrichment analysis of the overlap DEGs

http://www.proteinatlas.org
http://www.proteinatlas.org
http://www.broadinstitute.org/cmap/
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F I G U R E  4  Protein–protein 
interaction networks construction and 
module analysis

b

a

T A B L E  2  Functional and pathway enrichment analysis of genes in the most significant modules

ID Pathway description Observed gene count False discovery rate

hsa280 Valine, leucine and isoleucine degradation 9 3.19E−15

hsa640 Propanoate metabolism 6 1.13E−09

hsa71 Fatty acid degradation 6 4.99E−09

hsa1212 Fatty acid metabolism 6 7.49E−09

hsa1100 Metabolic pathways 13 4.30E−07

hsa650 Butanoate metabolism 4 3.44E−06

hsa380 Tryptophan metabolism 4 1.60E−05

hsa1200 Carbon metabolism 5 1.81E−05

hsa310 Lysine degradation 4 3.44E−05

hsa4060 Cytokine–cytokine receptor interaction 6 7.84E−05
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stimulus. Cell component analysis showed that these DEGs 
were particularly involved in plasma membrane part, integral 
to plasma membrane, intrinsic to plasma membrane, plasma 

membrane and insoluble fraction. Similarly, changes in mo-
lecular function of DEGs were significantly enriched in iden-
tical protein binding, protein dimerization activity, protein 

F I G U R E  5  (a) The heatmap of module genes between KIRC and normal samples. (b) The biological process of module genes analyzed by 
BiNGO. The color depth of nodes represents the corrected p‐value. The size of nodes represents the number of genes involved
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homodimerization activity, glycosaminoglycan binding, and 
carbohydrate binding. Additionally, the results of KEGG 
pathway analysis revealed that these DEGs were mainly 
enriched in valine, leucine, and isoleucine degradation, pro-
panoate metabolism, complement and coagulation cascades, 
butanoate metabolism, and cell adhesion molecules (CAMs). 
(Figure 3;Table 1).

3.3 | PPI network construction and 
module analysis
The PPI network among the DEGs was established by using 
the STRING database, with 417 nodes and 1912 interactions.
(Figure 4a) Figure 4b presented the most significant module 
extracted from this PPI network by MCODE. Using KEGG 
pathway enrichment analysis, the genes in this module were 
mainly enriched in valine, leucine and isoleucine degrada-
tion, propanoate metabolism, and fatty acid degradation.
(Table 2) Hierarchical clustering indicated that the module 
genes could basically differentiate the KIRC tissues from 
the noncancerous tissues.(Figure 5a) The biological process 
analysis indicated that the module genes were significantly 
related to cell cycle arrest, negative regulation of cell cycle, 
and cell cycle arrest in response to pheromone.(Figure 5b) 
ACAA1, ACADSB, ALDH6A1, AUH, HADH, and PCCA 
with high degree of connectivity were selected as hub genes. 

The expression level of ACAA1, ACADSB, ALDH6A1, AUH, 
HADH, and PCCA in KIRC tissues was significantly down-
regulated among each dataset.(Figure 6). Table S1 showed 
the full names and function roles of these hub genes.

3.4 | Analysis and validation of hub genes
The hub gene expression and their prognostic correla-
tion were further analyzed by GEPIA database. The min-
ing of GEPIA database further confirmed that these hub 
genes were significantly downregulated in KIRC tissues 
compared to normal tissues.(Figure 7a) Based on the 
prognostic analysis of 516 KIRC patients in GEPIA data-
base, we found that downregulation of ACAA1, ACADSB, 
ALDH6A1, AUH, HADH, and PCCA were correlated with 
significantly worse overall survival of patients.(Figure 7b) 
The expression level of these hub genes could represent 
the important prognostic biomarkers for predicting the sur-
vival of KIRC patients. Due to the gene expression not al-
ways consistent with its protein content, (Maier, Guell, & 
Serrano, 2009) we used HPA database to further analyze 
the protein level of hub genes. The immunohistochemical 
staining results indicated significantly higher positivity for 
ACAA1, ACADSB, ALDH6A1, AUH, HADH, and PCCA in 
adjacent normal tissues than in cancer tissues.(Figure 8) A 
network of the module genes and their coexpression genes 
was constructed using cBioPortal online platform.(Figure 
9a) To further explore the molecular mechanism of the hub 
genes in KIRC, we predicted potential transcription factors 
and constructed a regulatory network of lncRNA, miRNA, 
and mRNA which could be involved in the expression of 
hub genes by GGBI analysis.(Gene‐Cloud Biotechnology 
Information, Figure S1 & S2).

3.5 | Identification of related active 
small molecules
In order to screen and identify potential therapeutic drugs 
for KIRC, we uploaded these DEGs which were divided 
into upregulated and downregulated groups into the 
CMap database and then matched them with small mol-
ecule treatment. The top 20 most significant small mol-
ecules with their enrichment scores were shown in Table 
3 and Figure 9b. The small molecules of pipemidic acid 
(enrichment score = −0.853) and dicloxacillin (enrich-
ment score = −0.819) were related to highly significant 
negative scores, which could imitate the status of normal 
cells. These potential small molecule drugs could reverse 
the gene expression induced by KIRC, thus providing new 
directions and molecular mechanisms for the future devel-
opment of new targeted drugs for treating KIRC. However, 
further studies were still required to confirm the value of 
these candidate small molecules in treating KIRC.

F I G U R E  6  The expression level of hub genes between KIRC 
and normal tissues in three datasets
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F I G U R E  7  (a) The expression of hub genes between KIRC tissues and normal tissues. (b) The prognostic value of hub genes
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4 |  DISCUSSION

KIRC is the most lethal urological disease and the incidence 
has increased over the past few decades. KIRC is also a 
heterogeneous histological disease and the mechanisms un-
derlying its occurrence and progression are complex. (Van 
Poppel et al., 2011; Xue et al., 2012) Therefore, identifying 
the key genes related to the pathogenesis and prognosis of 
KIRC is urgently demanded. In the present study, we inte-
grated gene expression profiles of GSE781, GSE6344, and 
GSE100666 from GEO database to screen the differentially 
expressed genes between KIRC and adjacent normal tissues 

by bioinformatics techniques. The purpose of our study was 
to find the novel diagnostic and prognostic biomarkers for 
KIRC. Additionally, we also identified the candidate small 
molecule drugs that could reverse the tumoral status of KIRC 
in order to provide new directions for the future development 
of new drugs for treating KIRC.

A total of 503 overlap DEGs were found among the three 
datasets, including 231 significantly upregulated genes and 
250 downregulated genes. We analyzed the biological pro-
cess, molecular function, and cellular component of these 
overlap DEGs using GO enrichment analysis in order to ex-
plore their role in the occurrence and development of KIRC. 
Excretion, defense response, and response to wounding were 

F I G U R E  8  Representative 
immunohistochemistry staining results 
reveal the protein level expression of hub 
genes in KIRC and normal tissues
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the top three significantly major functions among the biolog-
ical process. Molecular function enriched for the DEGs were 
mainly within identical protein binding, protein dimerization 
activity, and protein homodimerization activity. Changes in 
cell component were mainly associated with plasma mem-
brane part, integral to plasma membrane, and intrinsic to 
plasma membrane. Furthermore, the results of KEGG path-
way suggested these DEGs were significantly enriched in 
valine, leucine and isoleucine degradation, propanoate me-
tabolism, complement and coagulation cascades, butanoate 
metabolism, and cell adhesion molecules. The cell adhesion 
molecules are widely involved in the intercellular and cellu-
lar–extracellular matrix interactions of tumors. Some adhe-
sion molecules play an important role in tumor recurrence, 
metastasis, and invasion.(Okegawa, Pong, Li, & Hsieh, 2004) 
Based on the construction of PPI network and module analysis, 

ACAA1, ACADSB, ALDH6A1, AUH, HADH, and PCCA with 
high degree of connectivity were selected as hub genes. They 
were significantly downregulated in KIRC tissues compared 
with normal tissues. We used GEPIA database to further vali-
date the results of bioinformatics analysis. Similarly, the min-
ing of GEPIA database also confirmed that these hub genes 
exhibited significant differences in expression between KIRC 
and normal tissues. More importantly, these hub genes have 
important value in predicting the survival of KIRC patients. 
The low expression level of ACAA1, ACADSB, ALDH6A1, 
AUH, HADH, and PCCA was significantly correlated with 
the prognosis of patients. The immunohistochemical stain-
ing results revealed that the expression level of hub gene was 
consistent with their protein expression level, which further 
validated the accuracy of our findings. The present study first 
revealed six key genes with the diagnostic, prognostic, and 

F I G U R E  9  (a) The network of 
module genes and their coexpression genes 
constructed by cBioPortal. Nodes with thick 
outline: hub genes; Nodes with thin outline: 
coexpression genes. (b) Pop plot of top 20 
identified small molecules that could reverse 
the gene expression of KIRC
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therapeutic value in KIRC. No studies have reported the role 
of these six key genes in the initiation and progression of 
KIRC. In order to further enhance the understanding of these 
hub genes in the pathogenesis of KIRC, we predicted the 
corresponding potential transcription factors and establish 
a regulatory network of lncRNA–miRNA–mRNA for each 
hub gene. The construction of these regulatory networks will 
contribute in revealing the potential mechanism of these hub 
genes in KIRC initiation and progression. CENPK, a member 
of the centromeric protein family, was markedly upregulated 
in ovarian cancer tissues and associated with poor prognosis 
in patients. ALDH6A1 and ALDH6A1 were significantly up-
regulated in metastatic prostate cancer and could be used to 
predict the survival of patients.(Cho et al., 2018) A previous 
study showed that HADH knockdown can promote tumor cell 
migration and invasion by activing Akt signaling pathway.
(Shen et al., 2017) Evidence indicated that ACADSB was also 
markedly downregulated in HCC cell lines.(Nwosu et al., 
2018) However, no studies have reported the effects of hub 
genes on the initiation and progression of KIRC. The above 
studies indicated these hub genes could play an important 
role in the occurrence and development of KIRC.

In addition, we used the CMap database to determine a 
set of potential small molecules which may imitate the gene 
expression of normal cells. The small molecules with higher 

negative enrichment scores meant that they are more likely 
to reverse KIRC gene expression. This work will contribute 
to developing new target therapeutic drugs for KIRC. The 
efficacy and safety of pipemidic acid, the most significant 
small molecule (enrichment score = −0.853), has not been 
investigated as yet in KIRC. Meanwhile, the relationship be-
tween dicloxacillin (enrichment score = −0.819) and KIRC 
remains little known. Therefore, further studies were urgently 
demanded to reveal the huge potential of these listed small 
molecules in treating KIRC.

In conclusion, through a comprehensive bioinformat-
ics analysis for the microarray datasets of KIRC, we first 
uncovered six novel key genes associated with KIRC ini-
tiation and progression. These hub genes could serve as 
promising novel biomarkers for the diagnosis, prognosis, 
and treatment of KIRC. A series of detailed analysis were 
further confirmed their vital roles on the pathogenesis of 
KIRC. In addition, this study identified a group of can-
didate small molecule drugs, which could provide new 
directions for the development of new targeted drugs for 
KIRC. Taken together, this work provided new insights 
for KIRC to integrate multiple biomarkers in clinical 
practices.
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