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Azithromycin Downregulates Gene Expression of IL-1b
and Pathways Involving TMPRSS2 and TMPRSS11D
Required by SARS-CoV-2

To the Editor:

At the time of this report, more than 20 million people have been
infected with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). Disease pathophysiology suggests the virus initially
enters the nasal cavities (1) and then infects the ciliated airway
epithelium (2). Often, there is an excessive inflammatory response
to the virus mediated by overexpressed TNF-a (tumor necrosis
factor-a), IL-6, and IL-1b (3), which leads to significant damage to
the integrity and function of the lung parenchyma, causing death in
the most vulnerable populations (4). To date, additional treatments
against SARS-CoV-2 infections remain needed.

An interesting drug candidate against SARS-CoV-2 is
azithromycin, a drug with recognized antiinflammatory (5) and
epithelial repair effects (6) already being used in the treatment of
chronic obstructive pulmonary disease and cystic fibrosis (7).
However, its role in the regulation of TMPRSS2 (transmembrane
serine protease 2), ACE2 (angiotensin converting enzyme 2), and
TMPRSS11D (transmembrane serine protease 11D) genes,
coding for proteins necessary for SARS-CoV-2 activation,
infection, and transmission, respectively (2), remains to be
further investigated.

Methods
Briefly, three previously enrolled patients who were part of a larger
descriptive study were asked to participate in this pilot study.
These patients had a diagnosis of chronic rhinosinusitis according
to the published American Association of Otorhinolaryngology - Head
and Neck Surgery guidelines and were scheduled for endoscopic sinus
surgery. A nasal biopsy at the level of the anterior ethmoid bulla was
taken at the time of surgery. Three male patients of age 41, 49, and 53
years with no significant comorbidities other than chronic obstructive
pulmonary disease in the latter were the sources of the nasal biopsies. No
patient had received oral corticosteroids or topical or systemic antibiotic
therapy in the preceding 30 days. All subjects had ceased topical
intranasal corticosteroids 14 days before surgery.

Primary airway nasal epithelial cells were isolated from
biopsies of the anterior ethmoid bulla and cultured according to

a modified protocol from Maillé and colleagues (8). Through
immunohistochemistry, the freshly isolated cell suspension was
characterized to be composed of basal (cytokeratine 13–positive
cells), ciliated (bIV-tubulin–positive cells), and goblet (MUC5AC-
positive cells) nasal epithelial cells (Figure E1 in the data
supplement). These cell types have all been described as expressing
ACE2 and harbor the potential of sustaining a SARS-CoV-2
infection (9). To obtain a uniform and consistent cell population
during our experiments with azithromycin treatment, this cell
suspension was then expanded for 5–7 days, leading to a
homogenous cell culture, predominantly composed from
progenitor basal cells.

Based on previous azithromycin toxicity studies on human
bronchial airway epithelial cells, the plate was treated with 10 mg/ml
of azithromycin diluted in DMSO (Sigma-Aldrich) or a mock.

RNA was extracted from these cultures treated with
azithromycin or mock. Then, samples for microarray studies
were prepared using the Illumina RNA Amplification TotalPrep
kit from Ambion (Life Technologies) and collected with the
Illumina Bead Array Reader (IIlumina). Raw gene expression
data was preprocessed, and pathway analysis was performed
using the gene set enrichment analysis. Differential Gene
Expression was then performed using the LIMMA package from
Bioconductor (10). For a more detailed Methods section, refer to
the data supplement.

Results
Pathway analysis using gene set enrichment analysis showed
that cultures treated with 10 mg of azithromycin demonstrated
a significant downregulation in serine hydrolase activity
pathway (normalized enrichment score [NES] =21.8720,
P= 0.0020) together with endocytosis (NES=21.6866, P=0.0020)
and receptor-mediated endocytosis pathway (NES=21.5139,
P= 0.0124). This is particularly interesting because the strongest
associated genes included TMPRSS2 and TMPRSS11D.

Azithromycin’s antiinflammatory properties were also
demonstrated by a significant downregulation of Hallmark and
Gene Ontology canonical inflammatory response pathways
(NES =22.0729, P = 0.0005 and NES =22.0569, P = 0.0020,
respectively) together with IFN-g and IFN-a pathways
(NES =22.1717, P = 0.0005 and NES =22.1484, P = 0.0005,
respectively). Moreover, downregulation of key IL signaling
pathways, including IL-2, IL-6, and IL-8, was also seen.

Interestingly, Gene Ontology’s sterol biosynthetic process and
Hallmark’s cholesterol homeostasis were upregulated (NES= 3.0991,
P= 0.0020 and NES=3.0543, P=0.0005, respectively). Selected
significant pathways are presented in Figure 1A and summarized in
Table E1. A full table of all significantly modulated canonical
pathways are presented in Table E3.

Differential Gene Expression of cultures treated with 10 mg
of azithromycin demonstrated a significant downregulation of
IL-1b (fold change =21.411, P= 0.0094) and NDST-1 (fold
change =21.345, P= 0.0276).

Interestingly, within the lipid and cholesterol biosynthesis
pathways, most of its individual genes were significantly
upregulated. A display of selected genes is found in Figure 1B
and Table E2. A full table of all tested genes are presented in
Table E4.
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With this study, we provide some evidence that azithromycin
downregulates key pathways involving genes TMPRSS2 and
TMPRSS11D, which code for two serine proteases required by
SARS-CoV-2 for its activation (2) and cell-to-cell transmission
(11), respectively.

Furthermore, downregulating IL-1b and NDST-1 (12) together
with associated inflammation and leukocyte recruitment pathways
may help reduce the characteristic excessive respiratory epithelial
inflammation, a key feature of SARS-CoV-2 infection.

Finally, the unexpected upregulation of multiple genes
involved in cholesterol biosynthesis is believed to be a process
known as drug-induced phospholipidosis, which may decrease
cholesterol in cell membrane lipid rafts (5). This may hinder
SARS-CoV-2 infection, as in vitro studies demonstrated that
depletion of cholesterol in the cell membrane resulted in
decreased SARS-CoV-1 cell infection (13, 14). Moreover, our data
are in line with a previous in vitro study in which azithromycin
upregulated lipid and cholesterol pathways while decreasing
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Figure 1. Host transcriptional response to azithromycin in basal nasal epithelial cells. (A) Gene set expression analysis comparing differential expression of
a custom selection of major pathways of biological interest from MsigDB, Hallmark, C2, and C5 gene set collections. All pathways present have a false
discovery rate, 0.05. Data is presented as normalized enrichment scores in which values . 0 represent upregulation and values ,0 represent
downregulation when comparing azithromycin-treated cell culture with mock-treated cell cultures. (B) Heatmap of a custom selection of differentially
expressed genes between cell cultures treated with azithromycin and mock-treated cell cultures. Selected genes were based on biological relevance.
ACAT2=acetyl-CoA acetyltransferase 2; ACSS2=acyl-CoA synthetase short chain family member 2; ALDOC=aldolase, fructose-bisphosphate C;
APP = amyloid beta precursor protein; CTNN-b1 = catenin b1; CTRL = control; CXCL10 =C-X-C motif chemokine ligand 10; DHCR7 = 7-
dehydrocholesterol reductase; F2RLI = F2R like trypsin receptor 1; FADS1= fatty acid desaturase 1; FASN= fatty acid synthase; FDFT1= farnesyl-
diphosphate farnesyltransferase 1; FDPS= farnesyl diphosphate synthase; GO=Gene Ontology; HDGF=heparin binding growth factor; HMGCR=
3-hydroxy-3-methylglutaryl-CoA reductase; HMGCS1=3-hydroxy-3-methylglutaryl-CoA synthase 1; IDI-1 = isopentenyl-diphosphate D isomerase 1;
IGFBP3= insulin like growth factor binding protein 3; INSIG-1= insulin induced gene 1; KEGG=Kyoto Encyclopedia of Genes and Genomes; KRT-16=
keratin 16; LDLR= low density lipoprotein receptor; LPIN-1= lipin 1; MYC=MYC proto-oncogene; NDST1=N-deacetylase and N-sulfotransferase 1;
PIM-1=Pim-1 proto-oncogene, serine/threonine kinase; PLAT=plasminogen activator, tissue type; PLAUR= plasminogen activator, urokinase receptor;
PTGS2=prostaglandin-endoperoxide synthase 2; SARS-CoV-2= severe acute respiratory syndrome coronavirus 2; SCD= stearoyl-CoA desaturase;
TICAM1=Toll-like receptor adaptor molecule 1; TMEM97= transmembrane protein 97; TMPRSS2= transmembrane serine protease 2;
TMPRSS11D= transmembrane serine protease 11D; TP53= tumour protein 53.
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important proinflammatory cytokines in differentiated human
bronchial epithelial cell cultures (15).

Our study should, however, be interpreted with caution because
it is limited by its small sample size, the inclusion of only a male
population, and the lack of experiments validating that the observed
changes in gene expression had an impact on protein levels.
Nevertheless, our findings harbor significant information to better
orient larger in vivo or clinical studies on future treatments against
SARS-CoV-2 infections. n
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