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Abstract

Background: The use of health-related quality of life (HRQoL) as an endpoint in cancer clinical trials is growing
rapidly. Hence, research into the statistical approaches used to analyze HRQoL data is of major importance, and could
lead to a better understanding of the impact of treatments on the everyday life and care of patients. Amongst the
models that are used for the longitudinal analysis of HRQoL, we focused on the mixed models from item response
theory, to directly analyze raw data from questionnaires.

Methods: We reviewed the different item response models for ordinal responses, using a recent classification of
generalized linear models for categorical data. Based on methodological and practical arguments, we then proposed
a conceptual selection of these models for the longitudinal analysis of HRQoL in cancer clinical trials.

Results: To complete comparison studies already present in the literature, we performed a simulation study based
on random part of the mixed models, so to compare the linear mixed model classically used to the selected item
response models. As expected, the sensitivity of the item response models to detect random effects with lower
variance is better than that of the linear mixed model. We then used a cumulative item response model to perform a
longitudinal analysis of HRQoL data from a cancer clinical trial.

Conclusions: Adjacent and cumulative item response models seem particularly suitable for HRQoL analysis. In the
specific context of cancer clinical trials and the comparison between two groups of HRQoL data over time, the
cumulative model seems to be the most suitable, given that it is able to generate a more complete set of results and
gives an intuitive illustration of the data.
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Background
In cancer clinical trials, endpoints refer to the biological
and clinical measurements used to assess the efficiency
of new therapeutic strategies. Overall survival is the gold
standard endpoint used to show a clinical benefit of the
strategies and treatments being trialed. However, thera-
peutic treatments are becoming more efficient, leading to
an increase in patients’ lifespans, and therefore an overall
survival endpoint may be insufficient to show a significant
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difference between two treatments. It is then necessary to
consider a longer follow-up or a larger cohort of patients
to have a sufficient number of events and a good sta-
tistical power [1], both representing considerable costs.
Therefore, to assess the benefit of a new treatment, other
endpoints have emerged, and health-related quality of life
(HRQoL) is currently one of the most important, with
HRQoL data routinely collected in cancer clinical trials.
Patient-reported outcomes are being increasingly used in
medical decision making to assess the clinical benefit of
therapeutic treatments and strategies [1]. Moreover, the
use of HRQoL as an endpoint may be more pertinent to
demonstrate the benefit of a new therapy in some cases,
such as for palliative or geriatric treatments.
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In oncology, HRQoL is assessed using both a generic
questionnaire and an additional specific questionnaire
associated with each type of cancer [2, 3]. Each question-
naire breaks down the HRQoL to measure several under-
lying concepts (functional and symptomatic dimensions
of HRQoL), which themselves comprise one or several
items. The items are built on Likert scales, in which the
response variable is ordinal. In European cancer clinical
trials, the standard questionnaire used is the European
organization for research and treatment of cancer Qual-
ity of Life Questionnaire - Core 30 (EORTC QLQ-C30)
[2]. EORTC QLQ-C30 is composed of 30 ordinal items
assessing several dimensions of HRQoL: the global health
status (GHS), five functional dimensions (physical, role,
cognitive, emotional and social), four multi-item symp-
tomatic dimensions (fatigue, pain, nausea and vomiting,
loss of appetite), and five single item symptomatic dimen-
sions (diarrhea, constipation, insomnia, dyspnea and per-
ceived financial impact). It is completed by the patients
themselves, and collected at different time points defined
in the trial protocol (usually at inclusion, during treat-
ment and at follow-up). These repeated measurements
are used to assess the evolution of the subjects’ HRQoL
over time. According to the scoring procedure proposed
by the EORTC [4], a score is then calculated for each
dimension and for each subject at each time, correspond-
ing to the average of the item responses for a single
dimension, and expressed on a scale ranging from 0 to
100. The interpretation is such that high functional scores
reflect good functional capacities and a good HRQoL
level, and conversely, high symptomatic scores represent
strong symptoms and point out difficulties. The use of
scoring procedures is common practice because the statis-
tical methods for quantitative variables are more powerful
and easier to implement and interpret [5]. However, in a
Likert scale, the gap which separates each adjacent cat-
egory of response (“not at all”, “a little”, “quite a bit” and
“very much”) may not be the same, and the calculation
used to generate a HRQoL score does not take this char-
acteristic into account. Another drawback to the HRQoL
score is that subjects could have different item outcomes
and obtain the same score. In this situation, the score does
not make a distinction between these subjects [6].
The longitudinal statistical approach classically used in

oncology is to apply a linear mixed model (LMM) to the
patient score [7]. Mixed models take into account the
correlation introduced by repeated measurements on the
same patient (i.e. collection of the HRQoL questionnaires
over time), and different covariates such as time, treat-
ment group and age etc. However, the use of the LMM
forHRQoL analysis is scientifically questionable. Since the
variable associated with the HRQoL score is then consid-
ered as a continuous variable, whilst it presents the char-
acteristics of an ordinal variable, being non-continuous

and bounded. Furthermore, many symptomatic dimen-
sions are composed of only one item, and the HRQoL
score has exactly the same properties as ordinal categor-
ical data, therefore using the LMM is not appropriated.
Thus, if a ceiling or floor effect is observed, the categorical
feature is even more marked when one of the two extreme
categories is over-represented.
Interest in using HRQoL as an endpoint in cancer clin-

ical trials is growing rapidly, hence it is essential to use a
suitable methodology to analyze HRQoL data, taking into
account the data properties (repeated measurements of
multiple ordinal responses). In our work, we first focused
on the different most adapted models used to analyze
HRQoL from raw data, i.e. directly based on the item
outcomes. Studies on psychometric properties from ques-
tionnaires such as the one used for HRQoL have been
ongoing for a long time [8, 9], known as the item response
theory (IRT). The IRT models link the individual’s item
responses and a unique latent variable which represents
the studied HRQoL concept. They can be seen as general-
ized linear mixed models (GLMM) for ordinal responses
with a particular parameterization of the linear predic-
tor. The interest in this kind of model to analyze data,
including longitudinal analysis, is increasing [6, 10–12].
However, to our knowledge, there is no study that dis-
cusses the choice of one of the different IRT models
over the others for the longitudinal analysis of HRQoL.
First, we propose in the “Methods” section a conceptual
selection of these models through practical and method-
ological arguments. For this, we replaced IRT models in
the GLMM framework using the new specification of gen-
eralized linear models (GLM) for categorical responses,
proposed by Peyhardi et al. [13]. Then, we carried out
both a simulation study and an application on data from a
cancer clinical trial in the “Results” section. As some pre-
vious simulations have compared IRT models and LMM
on their capacity to detect fixed effects [7], we focused on
the sensitivity of these models to detect random effects.
The selected IRTmodel was then used to analyze real data
from a multicenter randomized phase III clinical trial in
first-line metastatic pancreatic cancer patients [14].

Methods
This section concerns a conceptual selection of IRT mod-
els for the longitudinal analysis of HRQoL in cancer clin-
ical trials. HRQoL raw data are repeated measurements
of multiple ordinal responses. The GLMM for ordinal
responses seem suitable to analyze this kind of data. The
incorporation of random effects takes into account inter-
patient variability and the correlation between repeated
measurements for each single patient. IRT models turn
out to be GLMM for polytomous data with a spe-
cific parameterization of the linear predictor, taking into
account multiple outcomes. For ordinal responses, three
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families of regression models are described: adjacent
models [15, 16], cumulative models [17, 18] and sequen-
tial models [19, 20]. Many IRT models are proposed for
the analysis of this kind of data, often with no explanation
regarding the choice of one model over another.
In this section, we used the new specification of the

GLM for categorical data, as proposed by Peyhardi et al.
[13], to discuss the relevance of the models adopted in
the context of longitudinal analysis of HRQoL in cancer
clinical trials. Whatever the model’s family, each GLM for
categorical responses is defined according to three com-
ponents (r,F,Z): the ratio of probabilities (r), the cumu-
lative distribution function (CdF) (denoted by F) and
the parameterization of the linear predictor determined
by the design matrix (Z). For the GLMM framework,
we extended this new specification to the quadruplet
(r,F,Z,U), with Z being the design matrix of fixed effects,
and U the design matrix of random effects. The relation-
ship between these components is determined by R =
F(Zβ + Uξ). Given the linear predictor η = Zβ + Uξ

and π
(j)
iv =

(
π

(j)
iv0, . . . ,π

(j)
ivMj

)
the vector of conditional

probabilities with π
(j)
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(
Y (j)
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)
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After a discussion of the IRT parameterization used
concerning the linear predictor, we compare different
polytomous IRT models on the basis of the link function
(ratio of probabilities and the CdF), using both method-
ological and practical arguments.

IRT parameterization of the linear predictor
The IRT probabilistic models emerged following the
works of Georg Rasch [21] on dichotomous responses,
and were then extended to ordinal responses. Considering
the three families of adjacent, cumulative and sequential
models, there are three associated famous IRT models
[22, 23], respectively, the graded response model [17], the
(generalized) partial credit model [15, 24] and the sequen-
tial model [19]. These models link the individual’s item
responses to the unidimensional latent variable, which
represents a concept not directly measurable. In an oncol-
ogy setting, the concept is HRQoL relative to one specific
HRQoL dimension.

In IRT, the specific parameterization of the linear pre-
dictor η

(j)
im combines two parts: the individual part and

the item part. This is most commonly defined using the
following decomposition:

η
(j)
im = αj

(
θi − δjm

)
, (1)

where θi is associated with a unidimensional random vari-
able (currently assumed to be distributed through the
standard normal distribution for identifiability), repre-
senting the latent value for the i-th subject which quan-
tifies the dependence between each item response, δjm
and αj being the item parameters which allow a fit of
the model for each considered item. Generally denoted
as the difficulty parameter, δjm is the threshold associated
with the item j for the category m ∈ {

1, . . . ,Mj
}
. The

parameter αj is known as the discrimination parameter
of item j, and represents the sensitivity of each response
probability according to the value of the latent trait. The
higher the value of the discrimination parameter, themore
the item allows for discriminating between two individu-
als with a close latent trait value. However, the predictor
is no longer linear for IRT models using discrimination
parameters, because it includes a product of parameters
[25]. Therefore, these models do not belong to the class of
GLMM.
In oncology, HRQoL analysis is classically carried out

using IRT models which do not include discrimination
parameters (fixed to one for all items). Consequently these
IRT models are within the class of GLMM. Concern-
ing longitudinal analysis, several studies have proposed
to extend some IRT models using linear decomposition
of the latent variable θ with fixed and random effects
[26–28]:

θiv = x′
ivβ + u′

vξi, (2)

where β is the parameter vector associated with fixed
effects, ξi is the vector of the subject-specific random
effects and θiv is thus the estimation of latent process at
the visit v.

The probability ratio: structure of the models
The ratio of probabilities is the component which defines
membership to a particular family of models. Regarding
categorical responses, the linear predictor is not directly
related to the response probability, but to a particular
transformation ratio. The choice of ratio is related to
the nature of the response from the ordering assumption
among categories. Thus, the reference ratio [13] for nom-
inal responses is excluded in this work, because HRQoL
responses are ordinal.
First, let us consider the simple situation from GLM

with one item with (M + 1) response categories given
in the ascending order. The three model families for
ordinal data are distinguished by the choice of the
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ratio of probabilities r (π) = (r0 (π) , . . . , rM−1 (π)).
Each model is summarized by M equations{
rm (π) = F

(
η	
m

)}
m=0,...,M−1, highlighting the decompo-

sition of the link function, which is determined through
the ratio of probabilities and the CdF. Indeed, we may dis-
tinguish different ratios of probabilities for these different
families, respectively, for the cumulative models,

rm (π) = π0 + . . . + πm, m = 0, . . . ,M − 1; (3)

for the adjacent models,

rm (π) = πm
πm + πm+1

, m = 0, . . . ,M − 1; (4)

and, for the sequential models,

rm (π) = πm
πm + . . . + πM

, m = 0, . . . ,M − 1.

In IRT, adjacent and cumulative models are usually
presented given the reverse permutation [15, 17, 23].
This permutation is defined as the reversal of category
order [18]. Assuming that the considered CdF is sym-
metric (i.e. the coresponding probability density function
is symmetric about the y-axis), these models are invari-
ant under this permutation [13]. In the context of our
application, this is an advantage for the interpretation
of the results. A lower item-response category reflects a
lower level of capacity for the symptomatic dimensions,
whereas it represents a higher level of capacity for the
functional dimensions. A reverse permutation of the func-
tional dimensions, makes it easier and more intuitive for
clinicians to present their results. This allows for homog-
enization in the interpretation of results, as is present in
the scoring procedure proposed by the EORTC (for func-
tional dimensions the score scale is reversed compared
with the order of the item response categories) [4]. Since
HRQoL data is from a ordered scale, both the adjacent and
cumulativemodels are suitable. However, sequential mod-
els are not reversible, because they correspond to process
ordering, and reversing the process may change its nature.
Thus, sequential models will not be used, and only the
adjacent and cumulative models, which correspond to
scaled ordering (as used for HRQoL measurements), will
be considered.
From now on, we consider the simple situation from

GLM, with one item with (M + 1) response categories
given in the descending order as commonly seen in IRT.
Then, r (π) = (r1 (π) , . . . , rM (π)), where the model is
summarized by M equations {rm (π) = F (ηm)}m=1,...,M
with ηm = θ − δm. The ratio of probabilities defined in
Eqs. (3) and (4) are given in descending order by:

rm (π) = πm + . . . + πM, m = 1, . . . ,M; (5)

for the cumulative models and by:

rm (π) = πm
πm + πm−1

, m = 1, . . . ,M;

for the adjacent models. Peyhardi et al. [13] described
the transformation between the linear predictors η	

m and
ηm, for ascending and descending orders, respectively.
Therefore, the probabilities for the cumulative model are
defined from the Eq. (5) and given F as:

⎧⎨
⎩

π0 = 1 − F (η1)
πm = F (ηm) − F (ηm+1) , m = 1, . . . ,M − 1
πM = F

(
ηM

) .

(6)

In the literature, the cumulative model is associated
with the use of several of the previously mentioned CdF
[17, 20, 25], whilst the adjacent models are only associ-
ated with logistic CdF [7, 15, 16, 20, 24, 26]. However, the
different response probabilities can be presented from the
adjacent ratio and according to a general CdF (F):

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π0 = 1

1 + ∑M
m=1

∏m
k=1

(
F(ηk)

1−F(ηk)

)

πm =
∏m

k=1

(
F(ηk)

1−F(ηk)

)

1 + ∑M
m=1

∏m
k=1

(
F(ηk)

1−F(ηk)

) , m = 1, . . . ,M

(7)

The cumulative models also have additional properties
[18], including that they are invariant when successive cat-
egories are gathered. Thus, if one category is not observed,
it can be combined with its successive categories without
changing the model. Another advantage of the cumulative
models is their interpretation through a continuous latent
response variable Ỹ . Indeed, this latent variable underly-
ing the model exists and a direct link with the response
variable Y through the thresholds presumed to be strictly
increasing (−∞ = δ0 < δ1 < . . . < δM < δM+1 = +∞) is
such as:

{Y = m} if
{
δm < Ỹ ≤ δm+1

}
, m = 0, . . . ,M ,

where Ỹ = θ+ε and ε is the error term distributed follow-
ing the CdF. Here, the latent variable Ỹ represents HRQoL
and its interpretation is then equivalent to the one of the
response variable using a LMM.
An advantage of the adjacent models is that there are

no constraints affecting the model estimation. However,
the cumulative models have to respect constraints, which
can make model estimation difficult, particularly in the
case of a non-proportional design of the linear predictor
[13]. For the proportional design, a common variable θ

is considered for all categories, otherwise it is dependent
on the category (θm). Considering a proportional design
(θ = θ1 = . . . = θM), the cumulative models refer to the
principle of thresholds [18, 29], with the constraint that
they have to be strictly increasing such as −∞ < δ1 <

. . . < δM < +∞. Considering the non-odd proportional



Barbieri et al. BMCMedical ResearchMethodology  (2017) 17:148 Page 5 of 13

models, the constraint then becomes −∞ < ηM < . . . <

η1 < +∞, which is more difficult to verify.
Table 1 summarizes some of the characteristics of the

three families of models which are considered important
for the longitudinal analysis of HRQoL in cancer clinical
trials. In this context, a proportional design of the linear
predictor is classically used. Under this parameterization,
the cumulative model’s constraints are only on the thresh-
old, making easier to estimate these models. Moreover,
the cumulative models’ interpretation utilizing the under-
lying continuous latent response variable, which directly
links the observed outcomes through threshold parame-
ters, given a more intuitive interpretation of results than
is achieved using the adjacent models. Despite the fact the
cumulative model is more appropriate, the adjacent model
is more flexible because there are no constraints to ver-
ify. Therefore, in another context with non-proportional
design, the adjacent model may be preferred.

The cumulative distribution function
The last component of the IRT model selection to be dis-
cussed is the CdF. Each model probability can be defined
with any CdF and the choice of which CdF to use should be
that which best fits the data. Let’s consider four CdF from
two different kinds: the most commonly used symmetric
distributions, the logistic and Gaussian distributions, and
the two asymmetric distributions, the Gumbel min and
Gumbel max distributions. The two later distributions are
respectively defined by F(η) = exp(−exp(−η)) for the
Gumbel max distribution and by F(η) = 1−exp(−exp(η))

for the Gumbel min distribution.
Figure 1a shows different slopes depending on the par-

ticular CdF. The CdF allows to take into account the
influence of linear predictor (η) change on the response
probability evolution. In general IRT parameterization
(Eq. 1), the slope adjustment is managed by the discrim-
ination parameter. Depending on different discrimination
parameter values, Fig. 1b shows the CdF logistic accord-
ing to the individual latent variable. This item parameter
has the task of fitting the CdF slope for each consid-
ered item. In the context of HRQoL in clinical trials, the
HRQoL dimension considers a small set of items which
are correlated, and measures a unique latent variable. The

Table 1 Summary of the characteristics for the three model
families

Models

Characteristics Adjacent Cumulative Sequential

Ordinal scale yes yes no

Reversibility yes yes no

Interpretation using the latent variable no yes yes

Always defined yes yes(noa) yes

afor some non proportional design models

discrimination parameter is not routinely used in this kind
of analysis. Moreover, the use of a symmetric CdF seems
more suitable given the tendency to use reversible models
in the context of the HRQoL in clinical trial.
Relative to the literature, Table 2 outlines the spec-

ifications and the different components of the famous
polytomous IRT models. For IRT models within the class
of GLMM, we propose to define them using the four com-
ponents (r,F,Zq,Ua). The kind of considered location item
parameters can be indicated by the index q, where q = 1
when including only difficulty parameters. Let q = 2 when
considering the rating scale model [30] parameterization,
where difficulty parameters are common for all items and
one shift parameter is considered for each item. Regard-
ing the random part, the number of random effects is
indicated by the index a. For the classical IRT parame-
terization presented in Table 2, only one random effect
(r = 1) is taken into account: the latent variable θ . For
IRT models including discrimination parameters for each
item, we proposed to replace the components Z and U
by a component specifying that the predictor is no longer
linear (nl), such as (r,F,nl).

Software
Simulation and application studies were performed using
the SAS procedure PROC NLMIXED from the SAS soft-
ware (version 9.3) [22, 31]. SAS codes to estimate IRT
adjacent and cumulative models are available in the
Additional file 1.

Results
Simulation study
In the previous section, we focused on the use of mixed
models for ordinal data analysis, and discussed their rel-
evance in the HRQoL analysis in oncology. Some previ-
ous studies have compared IRT models to the classical
approaches (in particular the LMM) [7, 32, 33], mainly
focusing on the fixed part of the mixed models to iden-
tify trends in latent traits. For example, Anota et al. [7]
show an equivalent capacity of both the LMM and one of
the IRT models to detect a fixed effect. Indeed, even if the
LMM take into account the HRQoL score, which is a sum-
mary variable, this approach is at least equivalent to the
IRT models in terms of power.
In our simulation study, the adjacent and cumulative

models used the same parameterization of the linear
predictor and the logistic CdF (as is usual for longitudi-
nal analysis with IRT models). The aim of the following
section is to reinforce comparisons between the LMMand
the IRT models on the random part of the mixed models.
The datasets were simulated from an IRT model (adjacent
and cumulative models). Regarding the parameterization,
two subject-specific random effects ξi0 and ξi1 were con-
sidered, respectively associated with the intercept and
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Fig. 1 Relationship between the CdF and the IRT parameterization for dichotomous items where F(η) = F(αj(θ − δj)). a presents the different CdF
for one item j given αj = 1 and δj = 0. b presents the logistic CdF adjustment for three items (j = 1, 2, 3) with different αj and δj = 0, given the
linear predictor defined in Eq. (1)

the slope. Of course, the usefulness of introducing ran-
dom effects to the model is strongly dependent upon the
observed data. HRQoL is a subjective endpoint, and the
inclusion of individual random effect ξi0 is thus entirely
justified. Indeed, it is easy to imagine that each patient has
a different level of HRQoL at baseline. The inclusion of the
random slope is more questionable, indeed, the assump-
tion that the specific HRQoL evolution of one single
patient diverges from the average evolution for the whole
population is less obvious than the previous assumption
that each patient has a different level of HRQoL at base-
line. Thus, in this section, we studied the capacities of
the adjacent and cumulative mixed models to detect the
random slope.

Design
We aimed to study the capacity of each model to detect
the random effect ξi1 associated with time (random slope).
The two subject-specific random effects are considered
independent where ξi0 ∼ N

(
0, σ 2

0
)
and ξi1 ∼ N

(
0, σ 2

1
)
.

The following model choice study is performed on the

Table 2 Specification of the famous IRT model following the
components: (r,F,Zq ,Ua) for the GLMM and (r,F,nl) for IRT model
with no longer linear predictor

IRT models η
(j)
im (r,F,Zq ,Ua)

Rating scale model θi −
(
δm + τj

)
(adjacent,logistic,Z2,U1)

Partial credit model θi − δjm (adjacent,logistic,Z1,U1)

Sequential Rasch model θi − δjm (sequential,logistic,Z1,U1)

Graded response model αj
(
θi − δjm

)
(cumulative,logistic,nl)

Generalized partial credit model αj
(
θi − δjm

)
(adjacent,logistic,nl)

Index q denotes the number of kind of item parameters considered in the IRT
model and a the number of random effects

basis of the Bayesian information criteria (BIC) where
two models were considered: M2 with the two random
effects (r,F,Z1,U2) and M1 excluding the random slope
(r,F,Z1,U1). For the IRT models, the linear decomposition
of the latent trait θiv only took into account time as a
fixed effect. The two consideredmodels with proportional
design are:

M2 : θiv = (tv − t0) β1 + ξi0 + (tv − t0) ξi1

M1 : θiv = (tv − t0) β1 + ξi0
(8)

In order to best reflect the EORTC QLQ-C30 ques-
tionnaire, the most frequent HRQoL dimension with two
items (j = 1, 2) comprising four response categories
(m ∈ {0, . . . ,M} with M = 3), was used to design
the simulation study. A sample size of 300 subjects (i =
1, . . . , n with n = 300) with eight follow-up time points
t = (0, 0.5, 1, 2, 4, 6, 8, 10) was used. The datasets were
simulated from a multinomial distribution. The different
response probabilities

{
π

(j)
ivm = Pr

(
Y (j)
iv = m|θiv, δj

)}
con-

cerning the subject i for item j were determined by Eq. (7)
for the adjacent model and by Eq. (6) for the cumulative
model, given: the item parameters δj = (

δj1, δj2, δj3
)
j=1,2,

the latent trait (θiv) deduced in accordance with Eq. (8),
and the logistic CdF,

F
(
η

(j)
ivm

)
=

exp
(
η

(j)
ivm

)

1 + exp
(
η

(j)
ivm

) ,

where η
(j)
ivm = θiv − δjm.

The values of the parameters used were deduced
from the pain symptom data from the clinical trial pre-
sented in the application subsection. We considered
two kinds of difficulty parameters: near δne = (

δne1 , δne2
)
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and far δfa =
(
δ
fa
1 , δ

fa
2

)
. These parameter values were

chosen in order to illustrate the several scenarios
described in Table 3. The different scenarios were due
to the different associations between the model used
to simulate the data, (adjacent,logistic,Z1,Ua)a=1,2 or
(cumulative,logistic,Z1,Ua)a=1,2, and the different con-
sidered values of the difficulty parameters. Table 3 shows
the simulated responses expected at baseline (t = 0).
The responses simulated across time depend on of the
considered coefficient, β1. Each scenario was simulated
N = 500 times.
Concerning the LMM, the scoring procedure proposed

by the EORTC was considered [4], and the score associ-
ated with a symptomatic dimension was first calculated
using the simulated data. Considering the two simulated
ordinal outcomes y(1)

iv and y(2)
iv concerning the individual i

at the visit v, the related score was:

Siv =
⎛
⎝

∑J=2
j=1 y

(j)
iv

2

⎞
⎠ 100

M
.

Similar to the parameterization in Eq. (8), we took into
account the related choice model with:

M2 : Siv = β
l
0 + (tv − t0) β

l
1 + ξ

l
i0 + (tv − t0) ξ

l
i1 + εiv

M1 : Siv = β
l
0 + (tv − t0) β

l
1 + ξ

l
i0 + εiv

(9)

where β
l
0 is the fixed parameter associated with the inter-

cept, ξ l are the random effects normally distributed with
the mean equal to zero, and εiv ∼ N

(
0, σ 2

ε

)
the error

term.

Simulation results
Table 4 shows the capacity of the three models (adjacent
model, cumulative model and LMM) to detect the ran-
dom slope in different given scenarios (Table 3). When
we simulated the data under M2 according to the ran-
dom effect variances estimated from real data, eachmodel
detected the random slope (ξi1) in 100% of cases whatever
the given situation. As expected underM1, the simulated
modelM1 was correctly chosen in most cases, and in par-
ticular for the IRT model used to generate the datasets.
However, for all simulations under M1, the cumulative
model seemed to detect the random slope in about 5 to
10% of cases, although it was not included in the simula-
tion step. Moreover, the IRT model which was not used

to generate the data, wrongly detected this random effect
given a negative value of β1 and the difficulty parameter
coefficients δne. This is caused by the relationship between
the latent variable θ which changes over time and δne

which accounts for the observed ordinal responses over
time. For these specific parameter values (β1 ≈ −0.3 and
δne given in Table 3), the linear predictors η

(j)
itm = θit − δnejm

were close between them for m = 2, 3 whatever j = 1, 2.
These linear predictors being negative and different from
zero value, the probability of selecting the upper cate-
gories was very small over time and under-represented
in comparison to the lower categories. In this specific
case, the IRT model used to generate the data had the
advantage of being closest to the data and only required
the use of the fixed effect and the random intercept to
explain the different outcomes, whereas the other model
compensated by using the random slope. We then could
expect symmetric results from β1 (positive values), con-
sidering the opposite sign of the difficulty parameters,
because of the reversibility property of the IRT models
given symmetric CdF. On the contrary, the LMM was
stable and thus proved to be a choice of model what-
ever the β1 values and the IRT model used to simulate
the data.
The capacity of the different models to detect the ran-

dom slope when its variance value changes is presented
in Table 5. Only the values of σ 2

1 for which the capac-
ities varied between the three models are presented for
each considered value of β1. Each model was sensitive
to the signal-to-noise ratio: the larger the value of |β1|,
the larger the variance of the random effect needed to
be detected. For example, when |β1| = 1, each model
detected the random slope at 100 percent for σ 2

1 being
over 0.5, while they detected it for σ 2

1 being over 0.2
when |β1| = 0.3. When the models were compared, the
IRT models showed a better capacity than the LMM to
detect the random effect with small variance, whatever
the value of β1. Moreover, the capacity of the IRT models
remained stable for the different given scenarios, whilst
the LMM’s changed. For β1 = 0.3 and β1 = 0 (cases
where a lot of different higher responses were observed),
the capacity of the LMM was close to that of the IRT
models, whilst for the other scenarios, the capacity of the
LMM was lower. Comparing the two IRT models, there
is a tendency for the random slope model to be preferred
under the cumulative model regardless of whether it is the

Table 3 Values of difficulty parameters used to simulate the data and expected responses at t0 under each studied scenarios

Difficulty parameters

Models δne1 = (−1.6, 1, 1.45) δfa1 = (−2.1, 1, 2.75)

(r, F, Z1,Ua)a=1,2 δne2 = (−0.8, 1.15, 1.9) δfa2 = (−1.25, 1.4, 3.3)

(adjacent,logistic,Z1,Ua)a=1,2 Balanced responses Focus on center categories (1 and 2)

(cumulative,logistic,Z1,Ua)a=1,2 Focus on extreme categories (0,1 and 3) Balanced responses
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Table 4 Percentages of selectingM1 according to the BIC on N = 500 datasets, given tv = (0, 1, 2, 4, 6, 8, 10, 12) and σ 2
0 = 1.5

Parameter Scenarios

Values AM using δne CM using δfa CM using δne AM using δfa

σ 2
1 β1 LMM AM CM LMM AM CM LMM AM CM LMM AM CM

0.2 −0.3 0 0 0 0 0 0 0 0 0 0 0 0

0.2 0.3 0 0 0 0 0 0 0 0 0 0 0 0

0 −0.5 97.7 99.3 56.49 100 94.6 93.0 100 61.3 95.7 100 99.7 89.5

0 −0.3 99.0 100 33.0 100 88.6 93.3 100 36.3 94.9 100 100 83.3

0 −0.2 100 99.6 49.3 100 94.6 93.8 100 71.7 95.8 100 99.6 79.0

0 −0.1 98.7 95.7 94.8 100 98.7 89.6 100 99.0 90.4 100 100 88.1

0 0.0 95.6 100 94.6 99.0 99.7 91.8 99.0 99.7 89.7 97.0 99.7 94.4

0 0.1 83.0 100 94.8 93.3 100 92.6 97.0 100 90.9 87.3 100 94.7

0 0.3 98.3 99.6 90.6 100 99.6 89.1 100 100 93.7 100 99.6 93.8

0 0.5 100 100 94.3 100 99.3 94.7 100 100 97.6 100 100 97.2

The (adjacent,logistic,Z1,Ua)a=1,2 models and the (cumulative,logistic,Z1,Ua)a=1,2 models are denoted respectively by AM and CM. For the random component, U1 if σ 2
1 = 0

and U2 if σ 2
1 > 0

true model or not. On the contrary, in the specific case
where β1 = −0.3, the IRT model used to simulate the
data was less efficient than the other IRT model which
detected a random slope to remedy the lack of informa-
tion. This was consistent with our previous results shown
in Table 4.
In conclusion, the closer the value of β1 to zero (small

signal), the easier it is for the models to detect the ran-
dom slope with a low variance. The IRT models are more
sensitive and stable than the LMM whatever the parame-
ter values. This result was expected because the LMM is
based on the HRQoL score, which is a summary variable
with less information than the raw data. Comparing the
IRT models, the one which was not used to generate the
data tended to wrongly detect a random effect where there
was none.

Application to a real dataset
The real dataset we used was HRQoL data from
a multicenter randomized phase III clinical trial
in first-line metastatic pancreatic cancer patients:
PRODIGE4/ACCORD11 [14]. Three hundred and
forty-two patients were randomly assigned to Folfirinox
(experimental arm) versus Gemcitabine (control arm)
regimens. Detailed inclusion and exclusion criteria, study
design and protocol, treatment, compliance to the ques-
tionnaires and HRQoL analysis have all previously been
described [14, 33, 34]. The patients completed the EORTC
QLQ-C30 questionnaire themselves at different follow-up
times as defined in the protocol: at baseline, day 15, day
30, and at months 2, 4, 6, 8, and 10. The different time
points reflect the longitudinal aspect of HRQoL and allow
us to assess the change in HRQoL for each dimension.
Previously, cumulative models have been preferred

for the longitudinal analysis of HRQoL, then the

(cumulative,logistic,Z1,U2) model is used to analyze data
in this application. In oncology, analysis is carried out for
each HRQoL dimension. Given one HRQoL dimension
with few correlated items, the discrimination parameters
could be considered equal to one for each item. Distinc-
tion between multiple-item responses is only achieved
through the use off difficulty parameters (thresholds)
[7, 33]. Given the subject i (i = 1, . . . , 342), the visit
v (v = 1, . . . , 8), the item jwithMj response categories, the
(cumulative,logistic,Z1,U2) model is defined by:

Pr
(
Y (j)
iv ≥ m|θi

)
=

exp
(
η

(j)
ivm

)

1 + exp
(
η

(j)
ivm

) , (10)

with the following linear predictor considered in the anal-
ysis:

⎧
⎪⎨
⎪⎩

η
(j)
ivm = θiv − δjm

θiv = giβ1 + (tv − t0) β2 + gi (tv − t0) β3

+ ξi0 + (tv − t0) ξi1

(11)

where δjm is the difficulty parameter (threshold) associ-
ated with the category m of item j, tv is the date of the
visit v, and t0 is the date of baseline, gi = 1 if the patient
i belongs the experimental group (Folfirinox), gi = 0 if
the patient i belongs the control group (Gemcitabine), β1
is the effect difference at baseline between Folfirinox and
Gemcitabine groups, β2 is the slope (evolution) of HRQoL
perception for the Gemcitabine group, β2+β3 is the slope
(evolution) of HRQoL perception for the Folfirinox group,
and ξi0 and ξi1 are respectively the subject-specific ran-
dom effects associated with the intercept and the slope
such as (ξi0, ξi1)′ ∼ N (0,
), 
 being the unstructured
covariance matrix.
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Table 5 Percentages of selectingM2 according to the BIC on N = 500 datasets, given tv = (0, 1, 2, 4, 6, 8, 10, 12) and σ 2
0 = 1.5

Parameter Scenarios

Values AM using δne CM using δfa CM using δne AM using δfa

β1 σ 2
1 LMM AM CM LMM AM CM LMM AM CM LMM AM CM

1 0.01 0 2.3 24.9 0 5.0 6.9 0 2.7 3.7 0.3 6.4 24.8

0.02 0 21.4 54.7 0 37.6 44.1 0 17.7 18.1 0 50.0 77.0

0.03 0 61.0 91.0 0 75.7 80.0 0 41.3 45.6 0 86.3 98.3

0.05 0 97.7 99.7 0 100 100 0.3 89.0 90.0 0 99.3 100

0.2 39.3 100 100 40.7 100 100 10.7 100 100 57.7 100 100

0.5 100 100 100 100 100 100 100 100 100 100 100 100

0.5 0.005 0.2 25.5 56.4 0 41.2 25.7 0 14.9 11.0 0 41.2 53.6

0.008 0.8 73.8 89.4 0 85.8 73.4 0 42.9 38.8 0.2 91.6 93.6

0.01 2.0 91.2 97.0 0 97.0 91.6 0 66.6 63.4 0.6 99.2 99.2

0.02 26.4 100 100 4.8 100 100 0 100 100 51.8 100 100

0.03 77.0 100 100 64.8 100 100 0.8 100 100 96.6 100 100

0.05 99.8 100 100 100 100 100 62.3 100 100 100 100 100

0.3 0.002 16.7 6.3 21.4 0 2.1 4.0 0 3.1 3.9 11.0 11.0 15.3

0.005 72.3 86.3 92.7 30.7 55.3 59.0 0 32.3 46.0 85.7 87.3 91.7

0.008 97.7 100 100 86.0 97.3 98.0 4.0 76.3 88.3 99.3 99.7 100

0.01 100 100 100 96.3 99.7 99.3 17.3 94.0 97.0 100 100 100

0.02 100 100 100 100 100 100 96.7 100 100 100 100 100

0 0.001 24.8 2.8 5.7 6.8 0.4 1.6 4.8 0.6 1.9 15.2 1.4 3.7

0.002 70.2 32.0 37.3 26.4 6.6 8.2 20.6 2.4 5.1 47.6 15.2 21.4

0.005 99.8 99.4 99.6 92.2 70.4 77.2 88.2 61.8 72.4 99.6 97.8 97.8

0.008 100 100 100 99.8 98.0 98.8 99.8 98.4 99.2 100 100 100

0.01 100 100 100 100 100 100 100 100 100 100 100 100

0.02 100 100 100 100 100 100 100 100 100 100 100 100

−0.3 0.002 0.7 4.4 61.4 0 54.0 5.1 0 93.3 1.8 0 2.1 18.6

0.005 5.7 62.3 79.0 0 95.7 40.4 0 99.7 33.2 0 56.0 48.3

0.008 23.7 96.3 97.3 0 100 86.7 0 100 82.7 1.7 96.3 86.3

0.01 45.2 100 99.6 0 100 98.2 0 100 92.3 6.8 99.8 98.4

0.02 98.8 100 100 61.4 100 100 26.6 100 100 96.0 100 100

−0.5 0.005 2.6 12.1 48.6 0 57.6 13.2 0 84.8 9.8 0 41.2 53.6

0.008 3.8 43.5 70.7 0 85.8 41.6 0 96.1 33.5 0.2 91.6 93.6

0.01 5.6 70.0 84.8 0 95.6 61.5 0 98.4 49.6 0.6 99.2 99.2

0.02 12.8 100 100 0 100 100 0 100 97.8 51.8 100 100

0.03 36.8 100 100 0 100 100 0 100 100 96.6 100 100

0.05 93.0 100 100 43.4 100 100 17.6 100 100 100 100 100

−1 0.01 0 0.6 34.5 0 5.8 5.2 0 8.4 6.3 0 1.6 15.1

0.02 0 5.8 46.6 0 21.2 18.4 0 20.8 11.0 0 8.8 34.3

0.03 0 30.4 73.2 0 50.4 44.8 0 50.0 37.4 0 36.4 58.0

0.05 0 83.6 95.2 0 92.6 91.4 0 85.6 80.1 0 90.0 96.0

0.2 46.4 100 100 21.4 100 100 12.0 100 100 41.8 100 100

0.5 100 100 100 100 100 100 100 100 100 100 100 100

For the (adjacent,logistic,Z1,Ua)a=1,2 models and the (cumulative,logistic,Z1,Ua)a=1,2 models are denoted by AM and CM, respectively. For the random component, U1 if
σ 2
1 = 0 and U2 if σ 2

1 > 0
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These HRQoL data have previsouly been analyzed using
different approaches. Specifically, Gourgou-Bourgade
et al. [34] analyzed the results using time-to-event mod-
els. They concluded HRQoL was better in the Folfirinox
arm than in the Gemcitabine arm. Then, Barbieri et al.
[33] have presented the results through the LMM and the
partial credit model extended for the longitudinal analysis
(adjacent,logistic,Z1,U2). The conclusions of both mixed
models are similar.
For the (cumulative,logistic,Z1,U2)model, Table 6 shows

the estimations of fixed parameters, their standard devia-
tion and the associated P-value from the Wald test. Con-
cerning the functional dimension, we performed a reverse
permutation on the functional scale for an intuitive inter-
pretation. This allows us to consider that an increase in
the latent variable θ is associated with an increase in
the functional capacity (improvement of HRQoL) or an
increase in the symptoms (deterioration of HRQoL). For
all HRQoL dimensions, there should be no difference at
baseline (β1 = 0) in a randomized clinical trial. However,
we observed a significant difference in terms of diarrhea
symptoms between the two groups at baseline (P-value =
0.007∗∗). This is caused by an observed difference between
the two arms of the study during the treatment period
(at day 15 and day 30). This result was expected because
Folfirinox is known as beingmore toxic thanGemcitabine,
and also known to cause more diarrhea symptoms. Given
our model does not take into account a possible dif-
ference between the two treatments during only this
period, the fixed intercept was affected. The perception
of diarrhea symptoms remained higher in the Folfiri-
nox arm over time, particularly during the treatment
period.
HRQoL also changed over time for several of the

other dimensions (emotional functioning, pain, insomnia,
constipation and appetite loss) resulting in a significant
improvement in terms of HRQoL perception. Only the
pain dimension showed a significantly different evolution
between the two arms (P-value = 0.04). Patients receiv-
ing Folfirinox had a perception of pain which decreased
significantly more over time than that of the patients
receiving Gemcitabine.
One of the many advantages of the cumulative models

regards the interpretation of results. The constraints on
the item parameter in these models allows for interpreta-
tion through the latent response variable (i.e. comparing
the proportion of patients that selected a response cate-
gory for one specific item over time or between different
groups during a fixed time. Figure 2 shows HRQoL evo-
lution concerning the probability of a response either
over time (Fig. 2a) or between groups (Fig. 2b). It specif-
ically shows the first item of the pain symptoms from
the clinical trial previously described. The probability
(πm) for a patient to respond category m corresponds

Table 6 Estimations of fixed effect parameters (βp)p=1,2,3 of the
(cumulative,logistic,Z1,U2) model

HRQoL

Dimensions Coefficient Standard error P-value

Global Health Status

β2 0.098 0.070 0.166

β3 0.130 0.085 0.128

Physical functioning

β2 -0.150 0.077 0.051

β3 0.122 0.098 0.212

Role functioning

β2 -0.011 0.081 0.892

β3 0.157 0.103 0.131

Emotional functioning

β2 0.335 0.070 < .001∗∗∗

β3 0.001 0.086 0.992

Cognitive functioning

β2 -0.002 0.054 0.972

β3 0.088 0.067 0.189

Social functioning

β2 0.010 0.073 0.888

β3 0.116 0.093 0.211

Fatigue

β2 -0.087 0.085 0.308

β3 -0.033 0.107 0.761

Nausea and vomiting

β2 -0.052 0.060 0.393

β3 -0.069 0.072 0.336

Pain

β2 -0.330 0.076 < .001∗∗∗

β3 -0.188 0.092 0.040∗

Dyspnea

β2 -0.060 0.075 0.420

β3 -0.093 0.088 0.295

Insomnia

β2 -0.359 0.080 < .001∗∗∗

β3 0.046 0.083 0.627

Appetite loss

β2 -0.354 0.072 < .001∗∗∗

β3 -0.026 0.080 0.747

Constipation

β2 -0.325 0.077 < .001∗∗∗

β3 0.003 0.083 0.974

Diarrhea

β1 0.739 0.272 0.007∗∗

β2 0.018 0.067 0.792

β3 -0.026 0.076 0.786

Financial difficulties

β2 -0.522 0.282 0.066

β3 0.302 0.208 0.146

All HRQoL dimensions of the EORTC QLQ-C30 are considered
*P-value < .05; **P-value < .01; ***P-value < .001
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Fig. 2 Interpretation of the (cumulative,logistic,Z1,U2) model through its underlying latent variable concerning the pain symptom (including the
items 9 and 19). The estimated difficulty parameter for the item 9 are δ9,1 = −2.1, δ9,2 = 1 and δ9,3 = 2.75, and for the item 19 : δ19,1 = −1.28,
δ19,2 = 1.40 and δ19,3 = 3.34. a the different HRQoL evolution of the latent variable and response variable (Y(j))j=9,19 between the two groups. b the
different proportions (πm) of different response categories of Y(9) between the two groups four months after the Baseline (t4)

to the area under the curve delimited by the horizontal
lines. Figure 2a shows for both groups the probability of
choosing categories 2 or 3 decreased over time, whilst
the probability of choosing category 0 increased. At base-
line, the response proportions for categories 0, 1, 2 and 3
were respectively, π0 = 0.10, π1 = 0.62, π2 = 0.22 and
π3 = 0.06 for each group. The evolution of the propor-
tion of patients selecting each category showed a decrease
in the level of pain between baseline and at the 4 month
visit, and finally, a decrease in the latent trait over time.
Likewise, Fig. 2b shows the different response proportions
between the two groups at 4 months. For control group,
the proportions were π0 = 0.29, π1 = 0.61, π2 = 0.08
and π3 = 0.02 for categories 0, 1, 2 and 3, respectively.
For experimental group, they were π0 = 0.47, π1 = 0.48,
π2 = 0.04 and π3 = 0.01. The probability of respond-
ing to category 3 was the lowest whatever the group, but
was even less likely for patients in the experimental group
than those in the control group. On the contrary, patients
in the experimental group were more likely to select cat-
egory 0, than those in the control group. The observed
gap corresponds to the difference between the two lin-
ear predictors associated with each group only 4 months
after the baseline. One of the benefits of this illustration
regards the clinical interpretation of the results. The IRT
models thus offer a complete analysis: the general analysis
of a HRQoL dimension and the specific analysis for each
item [8].

Discussion
We have explored the different suitable mixed models
used for the longitudinal analysis of HRQoL in oncol-
ogy. Using data originating from questionnaires employ-
ing Likert scales, we focused on regression models for
ordinal data. These models have been specified in terms
of linear predictor parameterization, the ratio of prob-
abilities and the CdF [13]. In oncology, analysis is per-
formed on multiple-item measurements associated with
one HRQoL dimension [4], the specific IRT parameter-
ization of the linear predictor is thus used. The item
parameters allow us to distinguish the outcomes from
different items which measure a unique unidimensional
latent variable. This latent variable was decomposed lin-
early to take into account the different covariates in the
fixed part of the model and to incorporate subject-specific
random effects. Analysis using IRT models is richer than
analysis using classical methods, because IRT models are
based on raw data [6]. An analysis can be performed on
one specific item through the item parameters or on the
whole HRQoL dimension [8]. Indeed, these models take
into consideration all available information from the data,
it is why the use of this kind of model is becoming more
and more common [6].
Concerning the decision as to which of the model

families to use, the cumulative and adjacent models are
preferred. Due to the ratio of probabilities which charac-
terize these models and a symmetric CdF, the practical
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properties of the invariant under the reverse permuta-
tion is an important factor to remember when interpreting
the results. The cumulative models also assume an under-
lying continuous latent response variable [18, 29]. This
allows for a better interpretation and illustration of the
results. However, the adjacent models have the advantage
of not having any constraints in estimation process. These
models are thus preferred when the regression and anal-
ysis concern the item part of the linear predictor, given
non-proportional design. Finally, the choice of the CdF
essentially depends on the observed data and properties
which interest the users. These IRT models are reversible
only if the CdF is symmetrical. Therefore, the use of a
commonly symmetrical CdF is preferred (the logistic and
the Gaussian distributions).
The simulation study showed that the capacity of the

IRT models to detect the random effect was better than
that of the classically used LMM. This result was expected,
as the LMM is based on the study of a summary variable
with less information. Moreover, the capacity of the LMM
was not homogeneous following the different scenarios,
and it can then influence the ordinal characteristics of
the raw data. Concerning the IRT models, the ones that
did not generate the dataset seemed more sensitive to the
random slope than the IRT model used to generate the
dataset. Indeed, in some cases, the model tended to detect
the random slope when it did not exist. Then, in the case
where one of the two models detects the random slope, it
seems that the use of the model not detecting the effect
as it is would be is the most appropriate choice, when the
decision as to which model to use is data-driven.
When we applied the (cumulative,logistic,Z1,U2) model

to the clinical trial dataset outlined above, it was found
that although Folfirinox is known to be more toxic than
Gemcitabine, and caused significantly more diarrhea dur-
ing its administration, the pain perception with Folfirinox
decreased significantly more over time compared to that
for the patients receiving Gemcitabine. Otherwise, both
treatments are equivalent regarding HRQoL evolution
over time.

Conclusions
Research into the statistical analysis used to assess HRQoL
is of major importance in enabling clinicians to better
evaluate the impact of different treatments on the every-
day life of patients and to improve their care. Amongst
the models that are used for the longitudinal analysis of
HRQoL, we focused on themixedmodels from IRT, which
are thought to be the most suitable to directly analyze
raw data from questionnaires. In this article, the differ-
ent IRT models for ordinal responses are reviewed using
a recent classification of generalized linear models for
categorical data. This allowed us to consider a concep-
tual selection of these models for the different analytical

aims, based on theoretical and practical arguments to jus-
tify the use of one model over another one. Concerning
the longitudinal analysis of HRQoL in cancer clinical tri-
als, the cumulative model from IRT with proportional
design and symmetrical CdF produces results that are
easier to interpret than those from the adjacent model.
Conversely, the adjacent model is more flexible, as there
are no parameter constraints, and it seems more suit-
able than the IRT cumulative model for non-proportional
design.
The multidimensional aspect of HRQoL remains to be

discussed. Presently in oncology, the different dimensions
are analyzed independently of one another, thus result-
ing in the use of multiple tests, which can be problem-
atic. Moreover, there can be latent relationships present
between certain HRQoL dimensions, and a more com-
plete analysis of these relationships may be of interest.
One approach that would take into consideration all
HRQoL data would be the use of structural equation
modeling. This could show the influence of each HRQoL
dimension through different factors to explain the global
HRQoL, and any potential structural links between the
latent variables.
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