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Introduction
Automated classification of histology (hematoxylin and eosin 
stained) whole slide images (WSI) has been the subject of 
detailed research.1,2 As a result, convolutional neural networks 
(CNNs) have recently gained steady popularity as the central 
technique to model and classify these images in the context of 
cancer.3,4 They have shown to be precise and efficient classifiers 
in many different experiments pertaining to a variety of cancer 
subtypes. Our previous work assessing the predictive power of 
CNNs in the context of multiple patient attributes shows that 
CNN-based image models characterize disease staging more 
effectively than other trans-omics indicators.5 Unfortunately, 
as is typical of sophisticated machine learning modeling tech-
niques, one of the drawbacks the research community faces 
while utilizing CNNs for this purpose is the lack of interpret-
ability of CNN-based features. Traditional CNNs learn incre-
mentally from training data, generating an abstract set of 
features used by the network layers to classify regions in the 
image. These features do not have a precise translation to tissue 
structure, morphology or nuclei/cell organization, hence are 
not interpretable to clinicians or researchers who rely on the 

use of these indicators to characterize disease. While observing 
activation of features in each network layer illuminates relation-
ships between CNN features and pathology driven features,4 
there still is a dearth of an attempt to conclusively find inter-
pretable signatures from CNN features. This work makes an 
effort to extend our foundational exploration of deep histology 
image models by aiming to optimize the power of CNNs while 
mimicking the output produced by pathologists who classify 
histology WSIs using qualitative and observable disease-spe-
cific indicators (Figure 1).

The interpretability of CNNs is a daunting task. It essen-
tially involves de-convolving sophisticated learning operations 
to identify and map features in existing decipherable space. 
Thus, our workflow, which aims to perform effective and inter-
pretable CNN modeling, focuses on two main tasks. First, it 
aims to reduce noise and irrelevant variance in the training data 
by utilizing only disease-relevant regions within the whole 
slide images to perform modeling. This step is motivated by 
pathologists’ protocol where they demarcate regions of interest 
(ROIs) before analyzing tissue specimens.6 As we model and 
analyze breast invasive carcinoma for the purposes of this work, 
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we chose mitotic activity as a viable indicator for marking dis-
ease-relevant tissue region.7,8 Second, we identify regions 
within the whole slide images that were most valued by the 
CNN when performing prediction of patient attributes (eg, 
American Joint Committee on Cancer [AJCC] stage). These 
“CNN relevant regions of interest (CNN-ROIs)” are further 
assessed in accordance with known image and morphology 
features. Both these tasks are achieved by utilizing a combina-
tion of specialized CNN architecture (AlexNet9 with modu-
lated parameters), methodology to visualize CNN learned 
weights (Class Activation Mapping—CAM10), and tools to 
extract image and morphology-specific features (pixel-wise 
k-means for dominant color extraction, Ilastik11 and 

CellProfiler12 for shape, size and texture assessment). The data-
set used to train a model to identify mitosis is the tumor prolif-
eration challenge (TUPAC 2016) WSI repository and patient 
attribute prediction is performed on and using the Cancer 
Genome Atlas’s Breast Invasive Carcinoma (TCGA-BRCA) 
histology dataset.13

Intelligent, mitotic activity based, sampling of training data 
resulted in significant improvement in the automatic predic-
tion of patient staging and node status. Extracting an interpret-
able signature relates three specific types of qualitative features 
to the regions that were most informative to the CNN predict-
ing staging of breast invasive carcinomas. CNN relevant ROI 
consistently presented unique dominant (pixel-wise most 

Figure 1. Histology slide assessment and use by (1) pathologists, whose protocol dictates honing in on a region of interest, classifying different structures 

in the tissue, analyzing the state and structure of cells and finally performing prediction and delivering prognosis; (2) traditional CNN modeling, which 

trains from input images with a corresponding label, and is used to predict the probability of a new image belonging to these labels by performing 

high-dimensional modeling with self engineered features; and (3) our approach to interpretable context based CNN modeling, which intelligently selects 

only disease-relevant input images for training and modeling, finally resulting in label prediction using CNNs as well as an observable qualitative label 

signature for each new image.
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frequently occurring) hues, specific shape, and size of cells and 
distinct morphological texture in the form of granularity and 
uniformity. While color/hue is an inherent property of staining 
different components of the tissue, aberrant cell size and shape 
is known to be a marker for tumor cells, and texture measures 
have proven to be highly distinct for histology images contain-
ing tumors and presenting specific disease subtypes.14,15 This 
semantic context adds a layer of understandable characteriza-
tion to CNN based models and helps identify critical compo-
nents of histology images most relevant to this successful 
modeling.

Methods and Materials
The workflow to perform interpretable CNN modeling on 
breast invasive carcinoma is divided into four (4) distinct steps 
as visualized in Figure 2. Namely, the steps are (1) building a 
deep learning model to identify areas of high mitotic activity, (2) 
building a deep learning model to predict patients attributes 
(stages and node status) using intelligent sampling of training 
data where we retain areas of high mitotic activity only, (3) 
implementing a method for performing visualization and iden-
tification of “CNN relevant regions of interest (CNN-ROIs)” 
that are regions which were most informative to the CNN while 
predicting patient attributes and lastly (4) using CNN-ROIs to 
perform qualitative feature extraction which relates patient 
attributes to observable and interpretable features. Each of these 
steps is described in detail below in Figure 2.

Predicting areas of high mitotic activity

Data and pre-processing. The data used to train a neural net-
work to identify regions of high mitotic activity are the auxil-
iary dataset provided by the Tumor Proliferation Assessment 
Challenge 2016 (TUPAC 2016), which was one of Medical 
Image Computing and Computer Assisted Intervention 
(MICCAI) 2016 grand challenges. It consists of images from 
73-breast cancer cases aggregated from three pathology cent-
ers. All cases are represented by a number of image regions 
stored as TIFF images, with the mitotic regions (as classified 
by two pathologists) annotated. The WSIs are produced at 40x 
magnification and at the spatial resolution of 0.25 µm/pixel.

All whole slide images are tiled for parallel and faster pro-
cessing. We used tile dimensions 224px x 224px to be cognizant 
of the structures we needed to identify while dispelling noise 
and artifacts. Since the average cell size in these tissues is ~40 to 
100 pixels, (observationally), we concluded that 224px x 224px 
tile size would be apt as it would allow a minimum of ~2 to 3+ 
cells per tile taking into account varying distances between cells.

Normalization was performed employing the widely used 
Macenko16 technique of normalizing histology images for quan-
titative analysis. This technique has been utilized successfully 
during histopathology assessment.4,17 It uses the highest varying 
optical density (a transformation of the RGB vector describing 
absorbance) in the image to create a color transform applied to 

all images, followed by appropriate changes to the image histo-
gram to capture most of the intensity dynamic range.

Neural network modeling. To build a model which identifies 
areas of high mitotic activity, we chose to utilize the traditional 
AlexNet architecture (Supplementary Table 1) with a few key 

Figure 2. Workflow schematic for interpretable context-based CNN 

modeling of histology images. The main four steps of the workflow are as 

follows: (1) Build a model to select disease-relevant patches from the WSI 

based on tissue state; (2) perform intelligent sampling of WSI tiles for 

training of a deep learning model to predict patient attributes, based on 

whether they exhibit disease-relevant tissue state; (3) perform patient 

attribute prediction and extract CNN relevant regions of interest 

(CNN-ROIs), which were most informative to the deep learning model; 

and (4) assess these CNN-ROIs in terms of qualitative, observable 

features that associate model learning to interpretable features.
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changes to adapt it to the nature of our problem (Supplemen-
tary Table 1). AlexNet is a popular and fundamental CNN 
architecture that has achieved widespread success in both tra-
ditional imaging challenges9 and histology specific modeling.3 
Additionally, the resulting network is not extremely deep, 
which suits data that has a few underlying distinctive features 
in the presence of largely similar images. AlexNet uses rectified 
linear unit (ReLU) activation function to add non-linearity to 
the network and speed up training, and dropout instead of 
regularization to combat overfitting. Additionally, overlap 
pooling is employed to reduce the size of network. Our version 
of the model, the codebase, the necessary utilities and the com-
plete trained models are available on request.

Selecting tiles presenting high mitotic activity. Utilizing the 
modified AlexNet architecture, and the mitosis annotated data 
from TUPAC2016, we built a model for identifying mitotic 
activity probability in tiles of histology images. This model was 
trained with tiles from TUPAC2016 whole slide images that 
were labeled according to the existence of mitotic cells within 
them. Upon successful training, the model was then employed 
to rank tiles from single whole slide images according to the 
probability of mitotic activity within that tile. The top 1% tiles 
that present high probability for mitotic activity are chosen for 
each whole slide image to represent disease-relevant areas for 
that patient.

Prediction of patient attributes based on regions of 
high mitotic activity

Data and pre-processing. The TCGA breast cancer study18 is a 
well-characterized and thoroughly comprehensive experimental 
study of breast invasive carcinoma.19,20 It consists of +1000 
whole slide images from tumor sites and associated clinical 
information detailing AJCC stage, tumor subtypes and relevant 
mutational status is available. This work utilizes the same high-
quality 163 whole slide images (105 patients) from the TCGA-
BRCA compendium that were analyzed in our previous work 
on trans-omics features5 as these images were histopathologi-
cally documented by pathologists and thus had extensive clini-
cal information available. Each image is digitized at 40x and 
contains upward of 10 billion pixels.21 The TCGA-BRCA 
compendium images were tiled and pre-processed employing 
the same methodology as detailed in the section above.

Neural network modeling. The mitotic activity prediction 
model described in the section above was employed on the 
224px x 224px tiles from each TCGA-BRCA WSI and the top 
1% of highly mitotic tiles are used to represent each whole slide 
image. Two separate models, using the AlexNet architecture as 
described above, were built. One using all the generated tiles 
(baseline) and the second using top 1% tiles showcasing mitotic 
activity, both training a predictor for patient staging and node 
status. The ensuing performance comparison ensured that the 

intelligent sampling of training data in accordance with dis-
ease-relevant tissue state was indeed producing superior results.

Visualizing CNN relevant ROIs

While there are multiple methods for visualizing a trained 
CNN’s feature weights and network filters with respect to an 
input image, we choose to use a method, namely—CAM,10 
which identifies, across the entire trained CNN, localized 
regions that contribute most to the classification task. This 
technique utilizes a global average pooling layer at the penulti-
mate step of the CNN in order to identify discriminative local-
ized regions for each class. Global average pooling enables a 
generalized view across all network layers of the optical cues in 
an image that drive the model to a certain classification. Figure 
3 presents an example of the visualization mask we obtain 
using CAM and the mitotic activity prediction model, for a 
histology image tile containing mitosis. We observe that the 
region highlighted using the CAM visualization mask con-
tained mitotic cells and other (non mitotic) cells were ignored. 
Visualization masks such as these were generated for tiles from 
TCGA-BRCA histology images on which the disease stage 
prediction model was employed. Those visualization masks 
hone in on regions informative to stage prediction.

Image and morphological feature extraction

Once CAM enabled the visualization of CNN relevant ROIs, 
the concluding step involves extracting these regions and 
extracting qualitative features from them. We focus on three 
different types of features when assessing these CNN-ROIs to 
find a cohesive and interpretable signature that can be associ-
ated with the labels that a CNN model is aiming to predict. 
Namely, these three features are (a) color/hue, (b) cell size and 
shape, and (c) image texture. The procedure for extracting these 
features from CNN-ROIs is outlined below.

Finding dominant colors in CNN-ROI. The protocol for assess-
ing histology images is highly dependent on the visible colors 
in the image (different colors of the staining mark for different 
structures within the tissue). It stands to reason that dominant 
colors visible in the CNN-ROIs evidence the predominance of 

Figure 3. (A) Whole slide image tile containing mitotic cells. (B) Binary 

mask obtained using class activation mapping to highlight the 

discriminative localized region utilized by the CNN and (C) Composite 

tile, highlighting only the regions deemed “important” by the CNN, 

zeroing in on mitotic cells.
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a certain structure relevant to the CNN modeling. The domi-
nant colors are extracted from an image by utilizing unsuper-
vised k-means clustering across the RGB vectors of all the 
pixels of an image.22–24 With k = 4(accounting for distinct vis-
ible colors observed across a sampling of whole slide images), 
we extract clusters consisting of the RGB vectors for each pixel. 
The color corresponding to the largest cluster’s centroid is then 
deemed the dominant color in the image. The method, corre-
sponding sources, and our codebase is available on request. By 
identification of cells, tissues, and gaps in TCGA-BRCA 
whole slide images and subsequent extraction of RGB vectors 
from a sampling of these areas, we closely approximated the 
main colors visible and their corresponding RGB vectors. By 
euclidean distance-based proximity to these RGB vectors, we 
classify the dominant color to either be “purple” (cells), “pink” 
(muscle), or “white” (gaps or artifacts).

Assessing cell size and shape in CNN-ROI. Cells and their attrib-
utes are known to be relevant for pathologists to study and 
grade histology samples. We perform cell-specific segmenta-
tion in the tissue and analyze size and shape characteristics of 
the cells present. This is achieved by a combination of cell seg-
mentation (performed by Ilastik) and object detection (per-
formed by CellProfiler). Ilastik is a tool for image classification 
and segmentation. We train an Ilastik model on a subset of tiles 
from available whole slide images, where we manually demar-
cate cell regions. Ilastik then uses features based on color, 
intensity, and brightness and a random forest classifier to label 
pixels of the image if they are predicted as belonging to a cell. 
Using the results from Ilastik prediction, we extract a binary 
mask of the image, which identifies cell regions. This mask can 
be now used with CellProfiler and the “IdentifyPrimaryOb-
jects” and “MeasureObjectSizeShape” module to extract size 
and shape features from the identified objects. The identifica-
tion of objects is performed using a 2-class Otsu thresholding 
on the binary mask. These features include area, compactness, 
eccentricity, form factor, and Zernike features. For each CNN-
ROI image, we extract the mean, median, and standard devia-
tion of all of these features across the objects identified in the 
image for downstream analysis. This aggregation tuple is useful 
as due to the aberrant shape of tumor cells, the dynamic ranges 
of these features are highly relevant and distinctive. A full list 
of the relevant features and their descriptions is available in 
Supplementary Table 2.

Assessing CNN-ROI texture. Finally, to complete the qualita-
tive signature for CNN-ROI, we extract the texture features of 
these images. This is also performed using a CellProfiler pipe-
line with the help of the module “MeasureTexture” and “Meas-
ureGranularity.” We perform texture extraction after separating 
the native CNN-ROI image to Red, Green and Blue channels, 
using the “ColortoGray” module in CellProfiler. Features 
include well-characterized texture features such as Haralick 

features. Similar to size and shape features, we aggregate them 
for each histology image using mean, median and standard 
deviation due to the varying dynamic ranges of each feature. A 
full list of the relevant features and their descriptions is availa-
ble in Supplementary Table 3.

Results
This work and the resulting exploration can be divided to four 
distinct findings (a) successful predictions of enhanced mitotic 
activity in whole slide image tiles, (b) prediction of patient attrib-
utes using a model built with selected tiles that display evidence 
of mitotic activity, (c) isolating the tile regions discriminative for 
each class using class activation mappings, and (d) performing 
morphological assessment of selected regions to extract inter-
pretable signatures for each class. The sections below highlight 
the main results for each aforementioned section.

Prediction of regions containing high mitotic activity

The AlexNet architecture was utilized to build a model to pre-
dict probability of a histology image tile containing mitotic 
activity. This model utilized the training data from the anno-
tated whole slide images from the TUPAC16 challenge. As 
mentioned previously, the model trains on tiles of size 224px x 
224px, and the labels are generated based on the existence of 
mitotic activity on the slide. This model seemed to successfully 
isolate mitotic activity within tiles as evidenced by all perfor-
mance measures (~82% Accuracy, precision, recall and F-score) 
when employed on the testing subset of the dataset (20% of all 
tiles). A subset of tiles was also presented to a pathologist and 
the correct identification of mitosis was verified.

Patient attribute prediction

Patient stage and node status prediction models were trained 
with all generated tiles in TCGA-BRCA histology set as well 
as when trained with selected 1% tiles presenting mitotic 
activity for each whole slide image. For the prediction of 
patient stages, between a model trained from all tiles and a 
model trained from selected tiles presenting high mitotic 
activity, accuracy increased from 42.67% to 44.73%, and preci-
sion, recall, and F-Score increased from 25.09% to 26.99%, 
24.26% to 27.13%, and 24.45% to 26.69%, respectively. 
Displaying a similar trend, a model predicting node status in 
these patients, utilizing all tiles, compared to a model trained 
on select tiles showed an increase in accuracy, precision, recall, 
and F-Score (28.64% to 38.17%, 24.09% to 28.86%, 23.02% 
to 28.19%, and 22.29% to 28.1%, respectively). As we observe 
from these results, the approach of intelligently sampling 
training data based on relevant tissue state (eg, mitotic activ-
ity) is justified as it shows marked improvement in the perfor-
mance of a prediction model. We can hypothesize that this 
reduces noise from artifacts as well as ignores non-tumor areas 
and hones in on regions that pathologists would ideally focus 
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on when assigning attributes to a whole slide image, and con-
sequently a patient.

Isolation and visualizing discriminative localized 
pixel regions

As described above, using the CAM technique, visualization 
masks were generated for each tile that highlighted the ROI to 
the CNN. The tiles selected by the mitotic activity predictor are 
used to train and test a CNN model to predict staging and for 
each prediction, an associated ROI mask is generated. The tech-
nique was tested by employing the CAM technique to the mito-
sis-predicting model as well, and on observation, we confirmed 
that the ROI masks were highlighting mitotic cells and ignoring 
typical circular non-mitotic cells. ROI masks are used to generate 
CNN-ROI images and qualitative features are extracted from 
these regions to assign an interpretable signature to the same.

Interpretable signatures of CNN-ROIs

In the penultimate step of this analysis, once we obtain the 
regions that were important to the CNN when defining the final 
prediction for patient stage, we can assess these regions inter-
pretably to isolate signatures that represent the model and its 
encompassing labels. While multiple observable facets are avail-
able for exploration of the CNN-ROIs, we focus primarily on 
three aspects of these patches. Namely, (1) dominant colors, (2) 
cell size and shape, and (3) texture features. Utilizing the tools, as 
described in the methods section above, we assess these tuple 
attributes for both CNN-ROI and non-ROI patches for each 
tile. Comparing the two facilitates the identification of the 
unique signatures as distinguished by the CNN. Figure 4 pre-
sents an overall comparison of all three qualitative features, 
between the CNN-ROI and non-ROI patches from a sampling 
of 10,000 tiles, spanning 10 patients and multiple stages.

Dominant colors comparison between CNN-ROI and Non-
ROI. In over 54% of the samples tiles, the dominant colors 
between CNN-ROI and Non ROI patches were distinct. A 
majority of these listed “purple” as the dominant color in the 
CNN-ROI patch and “pink” or “white” as the dominant color 
in the corresponding non-ROI patch. This provides evidence 
for the fact that hyperchromaticity of cells is a factor of dis-
tinction during the decision-making of the CNN patient 
staging model.

Cell size and shape. Specific features relating to shape, area, and 
orientation were observed to be distinct (twofold change) 
between CNN-ROI and non-ROI patches for each tile across 
the sampled set. These features included—standard deviation of 
compactness (cells in CNN-ROI images have highly varying 
numbers of close and well-defined enclosed structures), mean, 
median and standard deviation of cell area (cells in CNN-ROI 
images are bigger and vary more in terms of area), standard 
deviation of minimum and maximum feret diameter (cells shape 
varies more in CNN-ROI images) and multiple moments of 
Zernike shape features. This provides evidence for the hypoth-
esis that pleomorphic, aberrant, atypical, and large cells charac-
terize patient staging according to the predictive CNN model.

Image texture. Lastly, the texture measures (multiple features of 
granularity and texture angular second momentum (ASM)25 
describing structure and uniformity of texture respectively, were 
consistently distinct (twofold change) across CNN ROI versus 
non-ROI patches. Consistently, all different moments of ASM, 
which describes uniformity, are drastically lower in CNN-ROIs 
versus the non-ROIs, which present high uniformity. This is 
consistent with our previous findings, as pleomorphic cells con-
tained within CNN-ROI patches are not well ordered, which 
would result in this texture feature presenting lower values. 
Granularity on the other hand, showcases the opposite trend 

Figure 4. Results for the qualitative feature extraction (dominant color, cell size and shape, and image texture) of a random sampling of WSI tiles 

(~10 000 tiles across 10 patients, spanning multiple stages). Each heatmap compares CNN-ROI image and its inverse (Non CNN ROI) across all tiles. 

About 54% of tiles show dominant color changes from between CNN-ROI and Non CNN ROI images. Zernike features, orientation and area are distinct 

for CNN ROI cells. Uniformity and Granularity are image texture features that characterize CNN-ROI Images.
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(higher in CNN-ROI vs. non- ROI), as it describes the size dis-
tribution of objects across a certain pixel scale, which provides 
further evidence that there is a higher concentration of cells 
within the CNN-ROI patches than the non-ROI patches. 
These findings are consistent with previous results and further 
establish the qualitative feature signature built for this model.

Discussion
The goal of this manuscript was to understand and interpret the 
unique signatures between subtypes of whole slide images, as 
understood and interpreted by a CNN model. We wished to 
quantify, whether controlling the input and assessing the output 
manifests in better performance and understanding of deep his-
tology models. To this end, we identified meaningful regions in 
whole slide images by automatically classifying tissue state (high 
mitotic activity), which is a crucial facet of histologically assessing 
breast cancer. Following which, we performed experiments which 
predicted staging with the selected neural network model, using 
all tiles and only highly mitotic tiles. The performance enhance-
ment in prediction confirmed our correct selection of whole slide 
image patches. Lastly, we used these selected tiles and ROIs as 
identified by the deep learning model to explore and understand 
the exact features of regions the CNN deemed interesting, and on 
which it based its predictions. We believe this work will enable 
the community to better understand the high dimensional neural 
network models that have slowly become the standard in auto-
matic histology modeling. Additionally, it has the potential to 
identify new histopathological features that are markers of dis-
ease as understood by data driven deep modeling.
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