metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dibromidobis(2-methyl-1*H*-benzimidazole-*κN*³)cadmium

Bao-Cheng Liu,* Yan-Ling Jin and Fa-Qian Liu

Key Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: gdplastics@163.com

Received 10 August 2013; accepted 3 September 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.033; wR factor = 0.077; data-to-parameter ratio = 17.1.

In the title compound, $[CdBr_2(C_8H_8N_2)_2]$, the Cd^{II} atom has a distorted tetrahedral coordination formed by the two imino N atoms of two 2-methylbenzimidazole ligands and two terminal bromide ligands. The Cd^{II} atom is slightly out of the benzimidazole planes by 0.320 (3) and 0.210 (3) Å. The dihedral angle between the benzimidazole planes is 71.6 (2)°. In the crystal, molecules are linked by N–H···Br hydrogen bonds into puckered layers parallel to (001).

Related literature

For background to benzimidazole, see: Roderick *et al.* (1972). For related crystal structures, see: Barros-García *et al.* (2005); Wang *et al.* (2010); Yang *et al.* (2011).

Experimental

Crystal data [CdBr₂(C₈H₈N₂)₂]

 $M_r = 536.54$

Monoclinic, $P2_1/c$	
a = 10.007 (9) Å	
b = 14.747 (12) Å	
c = 12.399 (11) Å	
$\beta = 93.088 (14)^{\circ}$	
V = 1827 (3) Å ³	

Data collection

Rigaku R-AXIS Spider	9698 measured reflections
diffractometer	3585 independent reflections
Absorption correction: multi-scan	2748 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.032$
$T_{\min} = 0.374, \ T_{\max} = 0.469$	

Z = 4

Mo $K\alpha$ radiation

 $0.22 \times 0.18 \times 0.16 \text{ mm}$

 $\mu = 5.57 \text{ mm}^{-1}$

T = 296 K

Refinement $R[F^2 > 2\sigma(F^2)] = 0.033$ 210 parameters $wR(F^2) = 0.077$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.39$ e Å⁻³3585 reflections $\Delta \rho_{min} = -1.02$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2 \cdots Br1^{i}$ $N4 - H4 \cdots Br2^{ii}$	0.86 0.86	2.88 2.77	3.495 (4) 3.563 (4)	130 155
Summatry and as (i)	v 1 v 1	z + ³ . (ii) x y	1 7 1 3	155

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *RAPID-AUTO* (Rigaku, 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the NSF of Shandong Province (No. 2009ZRA02071), the Scientific Development Plan of Universities in Shandong Province (No. J09LB53) and the Doctoral Science Foundation of QUST.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KQ2008).

References

- Barros-García, F. J., Bermalte-García, A., Luna-Giles, F., Maldonado-Rogado, M. A. & Viñuelas-Zahínos, E. (2005). *Polyhedron*, 24, 1764–1772.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Roderick, W. R., Nordeen, C. W., Von Esch, A. M. & Appell, R. N. J. (1972). J. Med. Chem. 15, 655–658.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X., Li, Y.-X., Liu, Y.-J., Yang, H.-X. & Zhang, C.-C. (2010). Acta Cryst. E66, m1207.
- Yang, H.-X., Wang, X., Xie, C.-X., Li, X.-F. & Liu, Y.-J. (2011). Acta Cryst. E67, m1149.

supplementary materials

Acta Cryst. (2013). E69, m536 [doi:10.1107/S1600536813024549]

Dibromidobis(2-methyl-1*H*-benzimidazole- κN^3)cadmium

Bao-Cheng Liu, Yan-Ling Jin and Fa-Qian Liu

1. Comment

Benzimidazole and its derivatives have attracted interest because their biological activities as well as their abilities to bind different metal ions (Roderick *et al.*, 1972). In this paper, we describe the synthesis and structure of dibromo-bis(2-methylbenzimidazole)-cadmium(II).

In the title compound, $C_{16}H_{16}CdBr_2N_4$, the cadmium atom has a distorted tetrahedral coordination formed by the two imino-nitrogen atoms of two 2-methyl-benzimidazole ligands and two terminal bromide ligands (Figure 1). The similar geometry was previously found in the related compounds – $Cd(Cl)_2(N-(5,6-dihydro-4H-1,3-thiazin-2-yl)-2-amino$ $benzimidazole)_2$ (Barros-García *et al.*, 2005), $Cd(Cl)_2(2-(2-furyl)-1-(2-furylmethyl)-1H-benzimidazole)_2$ (Wang *et al.*, 2010), and $Cd(I)_2(2-(2-furyl)-1-(2-furylmethyl)- 1H-enzimidazole)_2$ (Yang *et al.*, 2011). The cadmium atom is slightly out of the two benzimidazole planes by 0.320 (3) and 0.210 (3) Å, respectively. The dihedral angle between the two benzimidazole planes is 71.6 (2)°. The mean values of Cd—Br and Cd—N bond lengths are 2.562 (2) and 2.251 (3) Å, respectively. The N—Cd—Br bond angles range from 105.40 (10) to 117.76 (9)°.

In the crystal, the molecules of the title compound are linked by intermolecular N2—H2···Br1ⁱ and N4—H4···Br2ⁱⁱ hydrogen bonds (Table 1) into puckered layers parallel to (001) (Figure 2). Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) -x, y-1/2, -z+3/2.

2. Experimental

The ligand 2-methyl-benzimidazole (0.02 mmol) in ethanol (10 mL) was added dropwise to a ethanol (10 mL) of CdBr₂ (0.01 mmol). The resulting solution was allowed to stand at room temperature. After one week colorless crystals with good quality were obtained from the filtrate and dried in air. Analysis, calculated for $C_{16}H_{16}Br_2CdN_4$: C 35.82, H 3.01, N 10.44%; Found: C 35.68, H 3.02, N 10.47%.

3. Refinement

All hydrogen atoms were placed in calculated positions with N—H = 0.86 Å and C—H = 0.93 (aryl-H) and 0.96 (methyl-H) Å and refined in the riding model with fixed isotropic displacement parameters $[U_{iso}(H) = 1.2U_{eq}(N \text{ or } C)]$.

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 2004); cell refinement: *RAPID-AUTO* (Rigaku, 2004); data reduction: *RAPID-AUTO* (Rigaku, 2004); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are shown at the 40% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

Crystal packing of the title compound along the b axis demonstrating the puckered layers parallel to (001). Dashed lines indicate the intermolecular hydrogen bonds.

Dibromidobis(2-methyl-1*H*-benzimidazole-*кN*³)cadmium

Crystal data	
$[CdBr_2(C_8H_8N_2)_2]$	V = 1827 (3) Å ³
$M_r = 536.54$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 1032
Hall symbol: -P 2ybc	$D_{\rm x} = 1.951 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.007 (9) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 14.747 (12) Å	Cell parameters from 3275 reflections
c = 12.399 (11) Å	$\theta = 2.5 - 26.6^{\circ}$
$\beta = 93.088 \ (14)^{\circ}$	$\mu = 5.57 \text{ mm}^{-1}$

T = 296 K	$0.22 \times 0.18 \times 0.16 \text{ mm}$
Block, colorless	
Data collection	
Rigaku R-AXIS Spider diffractometer	3585 independent reflections 2748 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.032$
Graphite monochromator	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.0^\circ$
ω scans	$h = -12 \rightarrow 10$
Absorption correction: multi-scan	$k = -18 \rightarrow 14$
(ABSCOR; Higashi, 1995)	$l = -15 \rightarrow 14$
$T_{\min} = 0.374, \ T_{\max} = 0.469$	13 standard reflections every 0 reflections
9698 measured reflections	intensity decay: none
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.077$	neighbouring sites
S = 1.00	H-atom parameters constrained
3585 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0407P)^2]$
210 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$

Special details

direct methods

Primary atom site location: structure-invariant

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.02 \text{ e} \text{ Å}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.3592 (3)	0.96335 (19)	0.8577 (2)	0.0362 (7)	
N2	0.5028 (4)	0.8661 (2)	0.9341 (3)	0.0485 (9)	
H2	0.5712	0.8311	0.9428	0.058*	
N3	0.0723 (3)	1.01679 (18)	0.6820(2)	0.0339 (7)	
N4	-0.1049 (3)	0.93220 (19)	0.6357 (2)	0.0417 (8)	
H4	-0.1554	0.8851	0.6290	0.050*	
Br1	0.40130 (5)	1.14156 (3)	0.60773 (4)	0.06071 (16)	
Br2	0.20546 (5)	1.20099 (3)	0.88850 (4)	0.06367 (17)	
C1	0.4087 (4)	0.8806 (2)	1.0086 (3)	0.0409 (9)	
C2	0.3939 (5)	0.8457 (3)	1.1109 (3)	0.0531 (12)	
H2A	0.4561	0.8060	1.1434	0.064*	
C3	0.2816 (6)	0.8730 (3)	1.1622 (4)	0.0626 (14)	
H3	0.2681	0.8511	1.2311	0.075*	
C4	0.1873 (6)	0.9326 (3)	1.1139 (4)	0.0633 (13)	

H4A	0.1119	0.9482	1.1505	0.076*
C5	0.2045 (5)	0.9687 (3)	1.0127 (3)	0.0535 (11)
H5	0.1432	1.0094	0.9812	0.064*
C6	0.3175 (4)	0.9417 (2)	0.9597 (3)	0.0368 (9)
C7	0.4708 (4)	0.9156 (2)	0.8454 (3)	0.0408 (9)
C8	0.5489 (5)	0.9139 (3)	0.7478 (4)	0.0620 (13)
H8A	0.4935	0.9338	0.6867	0.093*
H8B	0.5793	0.8532	0.7355	0.093*
H8C	0.6246	0.9536	0.7578	0.093*
C9	-0.0236 (4)	1.0707 (2)	0.6250 (3)	0.0332 (8)
C10	-0.0180 (4)	1.1618 (2)	0.5961 (3)	0.0420 (9)
H10	0.0571	1.1972	0.6131	0.050*
C11	-0.1303 (5)	1.1972 (3)	0.5406 (3)	0.0502 (11)
H11	-0.1297	1.2575	0.5187	0.060*
C12	-0.2441 (5)	1.1449 (3)	0.5168 (3)	0.0531 (11)
H12	-0.3184	1.1720	0.4820	0.064*
C13	-0.2499 (4)	1.0548 (3)	0.5431 (3)	0.0482 (10)
H13	-0.3255	1.0199	0.5259	0.058*
C14	-0.1372 (4)	1.0184 (2)	0.5966 (3)	0.0364 (9)
C15	0.0180 (4)	0.9343 (2)	0.6856 (3)	0.0386 (9)
C16	0.0818 (5)	0.8531 (2)	0.7384 (3)	0.0577 (13)
H16A	0.1749	0.8514	0.7233	0.087*
H16B	0.0384	0.7992	0.7108	0.087*
H16C	0.0733	0.8566	0.8150	0.087*
Cd1	0.26490 (3)	1.074421 (18)	0.75481 (2)	0.03930 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.039 (2)	0.0255 (15)	0.0436 (18)	0.0043 (14)	0.0033 (15)	0.0002 (14)
N2	0.044 (2)	0.0340 (18)	0.066 (2)	0.0133 (15)	-0.0060 (18)	0.0078 (17)
N3	0.0365 (18)	0.0242 (15)	0.0410 (16)	-0.0068 (13)	0.0015 (14)	-0.0021 (13)
N4	0.048 (2)	0.0289 (17)	0.0482 (19)	-0.0128 (14)	0.0016 (16)	-0.0055 (14)
Br1	0.0653 (3)	0.0460 (3)	0.0713 (3)	-0.0150 (2)	0.0077 (2)	0.0149 (2)
Br2	0.0746 (4)	0.0398 (3)	0.0745 (3)	0.0205 (2)	-0.0163 (3)	-0.0179 (2)
C1	0.044 (2)	0.027 (2)	0.050(2)	-0.0007 (17)	-0.010 (2)	0.0000 (18)
C2	0.066 (3)	0.039 (2)	0.053 (3)	-0.008(2)	-0.017 (2)	0.006 (2)
C3	0.089 (4)	0.058 (3)	0.041 (2)	-0.018 (3)	0.003 (3)	-0.003 (2)
C4	0.082 (4)	0.057 (3)	0.052 (3)	0.005 (3)	0.016 (3)	-0.005 (2)
C5	0.058 (3)	0.049 (3)	0.053 (3)	0.016 (2)	0.002 (2)	-0.003 (2)
C6	0.043 (2)	0.0256 (19)	0.041 (2)	-0.0001 (16)	0.0017 (18)	-0.0006 (16)
C7	0.039 (2)	0.030 (2)	0.053 (2)	0.0008 (17)	0.0057 (19)	-0.0037 (18)
C8	0.057 (3)	0.050 (3)	0.081 (3)	0.006 (2)	0.027 (3)	-0.005 (2)
C9	0.037 (2)	0.030 (2)	0.0328 (19)	0.0039 (16)	0.0046 (16)	-0.0025 (16)
C10	0.046 (3)	0.033 (2)	0.048 (2)	-0.0044 (18)	0.0004 (19)	-0.0034 (18)
C11	0.068 (3)	0.029 (2)	0.053 (2)	0.013 (2)	-0.003 (2)	-0.0004 (19)
C12	0.051 (3)	0.054 (3)	0.053 (3)	0.013 (2)	-0.010 (2)	-0.006(2)
C13	0.041 (3)	0.053 (3)	0.050 (2)	-0.004 (2)	-0.005 (2)	-0.011 (2)
C14	0.041 (2)	0.035 (2)	0.0341 (19)	-0.0006 (17)	0.0046 (17)	-0.0080 (16)
C15	0.051 (3)	0.028 (2)	0.038 (2)	-0.0037 (17)	0.0054 (19)	0.0007 (16)

supplementary materials

C16 Cd1	0.082 (4) 0.04113 (19)	0.030 (2) 0.02686 (16)	0.059 (3) 0.04918 (18)	-0.008 (2) 0.00061 (12)	-0.014 (2) -0.00430 (13)	0.011 (2) 0.00266 (12)			
Geome	Geometric parameters (Å, °)								
N1—0	27	1.336 (5)	C4—H4A	0.9	300			
N1—C	26	1.390 (5)	C5—C6	1.3	96 (6)			
N1—0	Cd1	2.252 (3)	С5—Н5	0.9	300			
N2—0	27	1.345 (5)	С7—С8	1.4	75 (6)			
N2—0	21	1.370 (5)	C8—H8A	0.9	600			
N2—H	12	0.8600	<i>,</i>	C8—H8B	0.9	600			
N3—C	C15	1.334 (4)	C8—H8C	0.9	600			
N3—0	C9	1.407 (5)	C9—C10	1.3	93 (5)			
N3—0	Cd1	2.250 (3)	C9—C14	1.4	03 (5)			
N4—C	C15	1.347 (5)	C10-C11	1.3	87 (6)			
N4—C	214	1.392 (5)	C10—H10	0.9	300			
N4—H	I 4	0.8600		C11—C12	1.3	94 (6)			
Br1—	Cd1	2.5372	(15)	C11—H11	0.9	300			
Br2—	Cd1	2.5869	(15)	C12—C13	1.3	570 (6)			
C1—C	22	1.385 (6)	С12—Н12	0.9	300			
C1—C	26	1.398 (5)	C13—C14	1.3	86 (6)			
С2—С	23	1.381 (7)	C13—H13	0.9	300			
С2—Н	I2A	0.9300		C15—C16	1.4	92 (5)			
С3—С	24	1.401 (7)	C16—H16A	0.9	600			
С3—Н	13	0.9300		C16—H16B	0.9	600			
C4—C	25	1.381 (6)	C16—H16C	0.9	600			
C7—N	V1—C6	106.1 (3)	С7—С8—Н8С	109	9.5			
C7—N	V1—Cd1	130.2 (3)	H8A—C8—H8C	10	9.5			
C6—N	V1—Cd1	123.1 (2)	H8B—C8—H8C	10	9.5			
C7—N	V2—C1	109.0 (3)	C10—C9—C14	120	0.6 (4)			
C7—N	V2—H2	125.5		C10—C9—N3	129	9.7 (4)			
C1—N	V2—H2	125.5		C14—C9—N3	10	9.7 (3)			
C15—	N3—C9	105.3 (3)	C11—C10—C9	110	6.6 (4)			
C15—	N3—Cd1	132.3 (3)	C11—C10—H10	12	1.7			
C9—N	V3—Cd1	122.3 (2)	С9—С10—Н10	12	1.7			
C15—	N4—C14	109.1 (3)	C10-C11-C12	12	1.9 (4)			
C15—	N4—H4	125.4		C10—C11—H11	119	9.1			
C14—	N4—H4	125.4		C12—C11—H11	119	9.1			
N2-C	C1—C2	132.2 (4)	C13—C12—C11	12	2.1 (4)			
N2-C	C1—C6	105.3 (3)	C13—C12—H12	119	9.0			
C2—C	C1—C6	122.5 (4)	C11—C12—H12	119	9.0			
03-0	22—CI	116.3 (+)	C12—C13—C14	110	5.5 (4)			
03-0	2—H2A	121.8		C12—C13—H13	12	1.8			
C1 - C	H_2 H2A	121.8	4)	C14—C13—H13	12	1.8			
$C_2 = C_2$.5-04	122.2 (4)	C13—C14—N4	13.	5.4 (4) 2.2 (4)			
C_{2}	лэ—Нэ 12 112	118.9		C13 - C14 - C9	12.	2.5 (4)			
C4-C	лэ—пэ Га С2	118.9	5)	IN4-U14-U9	104	+.2 (3)			
C_{5}	лч—Сэ Га цал	121.0 (0)	N3 - C15 - N4	11.	1.7 (3) 5 5 (4)			
<u> </u>	/ -	119.3		113-013-010	12.	J.J (+)			

C3—C4—H4A	119.5	N4	122.8 (3)
C4—C5—C6	117.5 (4)	C15—C16—H16A	109.5
C4—C5—H5	121.2	C15—C16—H16B	109.5
С6—С5—Н5	121.2	H16A—C16—H16B	109.5
N1—C6—C5	130.8 (4)	C15—C16—H16C	109.5
N1—C6—C1	108.8 (3)	H16A—C16—H16C	109.5
C5—C6—C1	120.4 (4)	H16B—C16—H16C	109.5
N1—C7—N2	110.8 (3)	N3—Cd1—N1	106.04 (12)
N1—C7—C8	125.9 (4)	N3—Cd1—Br1	109.95 (9)
N2—C7—C8	123.3 (4)	N1—Cd1—Br1	117.77 (9)
C7—C8—H8A	109.5	N3—Cd1—Br2	107.95 (9)
C7—C8—H8B	109.5	N1—Cd1—Br2	105.40 (9)
H8A—C8—H8B	109.5	Br1—Cd1—Br2	109.28 (2)
C7 - N2 - C1 - C2	178 9 (4)	C9-C10-C11-C12	12(6)
C7-N2-C1-C6	0.1(4)	C10-C11-C12-C13	-2.5(7)
N_{2} C_{1} C_{2} C_{3}	-177.2(4)	C11-C12-C13-C14	11(6)
C6-C1-C2-C3	13(6)	C12 $C12$ $C13$ $C14$ $N4$	-1799(4)
C1 - C2 - C3 - C4	0.1 (7)	C12 $C13$ $C14$ $C9$	1.4 (6)
C_{2} C_{3} C_{4} C_{5}	-1.5(7)	C12 = N4 - C14 - C13	-177.7(4)
C_{3} C_{4} C_{5} C_{6}	1.5 (7)	C15 - N4 - C14 - C9	1.2 (4)
C7—N1—C6—C5	-177.1 (4)	C10—C9—C14—C13	-2.7(6)
Cd1—N1—C6—C5	11.3 (6)	N3-C9-C14-C13	177.7 (3)
C7—N1—C6—C1	0.9 (4)	C10—C9—C14—N4	178.3 (3)
Cd1—N1—C6—C1	-170.7(2)	N3—C9—C14—N4	-1.4(4)
C4—C5—C6—N1	177.6 (4)	C9—N3—C15—N4	-0.2(4)
C4—C5—C6—C1	-0.2 (6)	Cd1—N3—C15—N4	175.6 (2)
N2—C1—C6—N1	-0.6 (4)	C9—N3—C15—C16	-179.7 (4)
C2-C1-C6-N1	-179.5 (3)	Cd1—N3—C15—C16	-3.9(6)
N2—C1—C6—C5	177.6 (4)	C14—N4—C15—N3	-0.6 (4)
C2—C1—C6—C5	-1.3 (6)	C14—N4—C15—C16	178.9 (4)
C6—N1—C7—N2	-0.9 (4)	C15—N3—Cd1—N1	-4.6 (3)
Cd1—N1—C7—N2	169.9 (2)	C9—N3—Cd1—N1	170.6 (2)
C6—N1—C7—C8	177.7 (4)	C15—N3—Cd1—Br1	123.7 (3)
Cd1—N1—C7—C8	-11.5 (6)	C9—N3—Cd1—Br1	-61.0 (3)
C1—N2—C7—N1	0.5 (4)	C15—N3—Cd1—Br2	-117.1 (3)
C1—N2—C7—C8	-178.1 (4)	C9—N3—Cd1—Br2	58.1 (3)
C15—N3—C9—C10	-178.6 (4)	C7—N1—Cd1—N3	112.4 (3)
Cd1—N3—C9—C10	5.1 (5)	C6—N1—Cd1—N3	-78.2 (3)
C15—N3—C9—C14	1.0 (4)	C7—N1—Cd1—Br1	-11.1 (4)
Cd1—N3—C9—C14	-175.3 (2)	C6—N1—Cd1—Br1	158.3 (2)
C14—C9—C10—C11	1.3 (5)	C7—N1—Cd1—Br2	-133.3 (3)
N3-C9-C10-C11	-179.1 (3)	C6—N1—Cd1—Br2	36.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2···Br1 ⁱ	0.86	2.88	3.495 (4)	130

			supplementary materials		
N4—H4····Br2 ⁱⁱ	0.86	2.77	3.563 (4)	155	
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+3/2$	2; (ii) $-x$, $y-1/2$, $-z+3/2$.				