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Bacterial communities associated 
with the surface of fresh sweet 
pepper (Capsicum annuum) and 
their potential as biocontrol
Tshifhiwa Paris Mamphogoro  1,2, Martin Makgose Maboko  3, Olubukola Oluranti Babalola  2 & 
Olayinka Ayobami Aiyegoro  1 ✉

Fresh produce vegetables are colonized by different bacterial species, some of which are antagonistic 
to microbes that cause postharvest losses. However, no comprehensive assessment of the diversity and 
composition of bacteria inhabiting surfaces of fresh pepper plants grown under different conditions has 
been conducted. In this study, 16S RNA amplicon sequencing was used to reveal bacterial communities 
inhabiting the surfaces of red and green pepper (fungicides-treated and non-fungicides-treated) grown 
under hydroponic and open field conditions. Results revealed that pepper fruit surfaces were dominated 
by bacterial phylum Proteobacteria, Firmicutes, Actinobacteria, and, Bacteroidetes. the majority of the 
bacterial operation taxonomic units (97% similarity cut-off) were shared between the two habitats, 
two treatments, and the two pepper types. Phenotypic predictions (at phylum level) detected a high 
abundance of potentially pathogenic, biofilm-forming, and stress-tolerant bacteria on samples grown 
on open soils than those from hydroponic systems. Furthermore, bacterial species of genera mostly 
classified as fungal antagonists including; Acinetobacter, Agrobacterium, and Burkholderia were 
the most abundant on the surfaces. these results suggest that peppers accommodate substantially 
different bacterial communities with antagonistic activities on their surfaces, independent of employed 
agronomic strategies and that the beneficial bacterial strains maybe more important for peppers 
established on open fields, which seems to be more vulnerable to abiotic and biotic stresses.

Fresh products such as apples, grapes, peaches, and tomatoes are known to harbour diverse bacterial popula-
tions1–3. Plant species, geographic location, climatic conditions, ripening stage and application of agrochemi-
cals, are some of the factors that determine distribution of microorganisms on the surface of these products4. 
Bacterial species that colonise fruit surfaces (epiphytes) are introduced from the soil to the host plants by insects, 
air currents and other animal species5–7. Among these microorganisms, some are beneficial to plants, for exam-
ple, several Sphingomonas strains induce resistance to Fusarium head blight caused by Fusarium culmorum in 
the host plant8; while others are phytopathogens (e.g., Phoma and Pantoea) known to cause economic loses1,9. 
Therefore, understanding the diversity and ecology of epiphytic bacteria may be important to develop new bio-
control agents10.

Previously, the identities of the members of microbial communities were established using culture-dependent 
methods11. However, these methods are known to underestimate microbial diversity, as only 0.1–8.4% of environ-
mental bacteria are considered cultivable12,13. Data gathered using these methods only provide limited informa-
tion on the vast majority of microbes present in a given sample. Nowadays, the diversity of bacterial communities 
is usually assessed by culture-independent techniques that include the analysis of the 16S rRNA gene fragments14. 
Such methods have allowed for instance the investigation of the microbial diversity of tomato, grape, peach and 
apple fruits15,16. However, information on bacterial communities associated with the surface of fresh sweet pepper 
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fruits is still limited, despite this being vital in identifying microbes that can antagonize the effects of pathogenic 
strains which may contribute to postharvest loses.

The primary goal of this study was to investigate, using 16S rRNA gene Illumina amplicon sequencing, how 
the effect of growing conditions (hydroponic system versus direct sowing), inorganic pesticides treatment (i.e., 
application of a fungicide) and maturity status (green versus red), could influence the structure and composition 
of bacterial communities on the surfaces of fresh pepper fruits. Additionally, we aimed to predict the phenotypic 
changes in the microbiota of pepper samples and also, to identify bacterial taxa with potential to minimize post-
harvest losses of peppers.

We hypothesized that, regardless of agronomic management approaches, pepper fruits can accommodate 
antagonistic bacteria on its surfaces that can potentially minimize damage that maybe induced by its potential 
pathogens, and that some of these antagonists, may contribute in reduction of post-harvest loses.

Results and discussion
Analysing the bacterial communities associated with the surface of Capsicum annuum fruits, we obtained 
1,586,400 bacterial high-quality reads, which resulted in 1,137 OTUs (97% cut-off). The majority of bacte-
rial OTUs were shared between the habitats, treatments and pepper sample types (56.4%, 58.9% and 59.4%, 
respectively) (Supplementary Fig. S1). Microbial diversity (Supplementary Fig. S2) tended to be higher in the 
fungicide-treated compared to fungicide-untreated samples, in open field compared to the hydroponic system 
samples, and in the green compared to the red samples, although they did not differ significantly (P > 0.05). This 
implies that microbial diversity on the surfaces of peppers is not affected by growth stage, growing system and 
treatment with fungicides. For habitats, diversity results were as expected, as it is well known that the organic mat-
ter in the soil is an important source of nutrients for microorganisms and contains higher levels of fungal and bac-
terial propagules than hydroponic systems17. The diversity in treatments is in agreement with a study by Schaeffer, 
et al.18, which showed fungicides application on nectar have no observable effect on bacterial OTU richness or 
community compositions. Furthermore, higher bacterial populations observed on the immature (green) fruit 
surfaces compared to the mature samples corroborated with findings by Palumbo, et al.19, who found greatest 
bacterial diversity on early summer mature almond fruits than on the late summer mature almonds. The possible 
explanation for this observation is that the intact hulls during the immature growing stage of fruits will still be 
metabolically active and therefore, could be ideal sources of carbon and water for microbial survival.

A total of 17 distinct bacterial phyla were detected across all 80 samples. The most abundant sequences in all 
the 80 samples were affiliated with the phylum Proteobacteria (71%), followed by Firmicutes (13%), Actinobacteria 
(7%) and Bacteroidetes (5%) (Fig. 1). Other phyla were also represented, although in lower proportions. There 
were significant differences in Proteobacteria abundance between the two habitats, with the phylum being more 
abundant in open soil as compared to the hydroponic habitat (Kruskal-Wallis: P < 0.001), but non-significant 
differences were observed between the two treatment groups (Kruskal-Wallis: P = 0.55) and the two pepper sam-
ple types (Kruskal-Wallis: P = 0.53). For Firmicutes, significant differences in abundance were shown between 
the habitats (Kruskal-Wallis: P < 0.001) and treatments (Kruskal-Wallis: P = 0.03), but non-significant differ-
ences in abundance were noted between the pepper sample types (Kruskal-Wallis: P = 0.71). Moreover, abun-
dance of Actinobacteria did not differ between habitats (Kruskal-Wallis: P = 0.34), treatments (Kruskal-Wallis: 
P = 0.68) and pepper sample types (Kruskal-Wallis: P = 0.34). Additionally, significant differences in abundance 
were shown between habitats (Kruskal-Wallis: P < 0.001) and pepper sample types (Kruskal-Wallis: P = 0.03) for 
the Bacteroidetes, while abundances between treatment groups were not significant (Kruskal-Wallis: P = 0.06). 
The trend in abundance of Proteobacteria in habitats could be explained by the fact that this phylum is com-
monly identified as being copiotrophic (i.e., they thrive in conditions of elevated carbon availability and exhibit 
relatively rapid growth rates and compete successfully when organic resources are abundant), possibly because 
they associate with nematodes soil layers where organic matter, plant roots, and other resources are more abun-
dant20,21. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes have been shown to be widely represented 
on the surfaces of fruits of other plants such as grape22. They represent various taxonomic groups and different 
ecological statuses, such as antagonist, symbionts (especially, endophytes) and saprophytes23. Their dominance 
on fruit surfaces could be attributed to the fruit’s ability to use a wide variety of carbon sources such as carbohy-
drates, amino acids, and lipids, which could help resist different environmental changes that occur during fruit 
development24,25.

Potential prediction of phenotypic functions of bacterial communities (at phylum level) on the surfaces of 
the different pepper samples detected nine potential microbial phenotypes including; aerobic, anaerobic, faculta-
tive anaerobic, mobile elements carriers, biofilm forming, Gram-negative, Gram-positive and pathogens (Fig. 2; 
Supplementary Table S1). In general, aerobic bacteria were more abundant on fungicide-treated compared to 
untreated samples and this was opposite for anaerobic bacterial populations. This could suggest that the rise 
in abundance of aerobic bacteria is associated with the capability of degrading fungicides by these bacteria as 
described by Megadi et al.26. On another note, potentially pathogenic bacteria showed to be more overrepresented 
on surfaces of both, immature (green) and mature (red) peppers grown on open field (both fungicide-treated 
and untreated). This was not the case with peppers grown under the hydroponic system, and this clearly demon-
strates that, growing peppers using the hydroponic system maybe an effective agronomic management strategy 
in comparting yield constraining effects of microbial pathogens of peppers. Therefore, using the hydroponics 
technology, crops can be grown with minimal negative effects on ecosystems and biodiversity, which are usually 
profound in cropping systems dependent on synthetic pesticides for control of pests and diseases27–29. Although 
the initial investment of hydroponic systems in huge30, it may tend to be a cheaper method of growing high-value, 
horticultural crops such as peppers, since production costs will be minimized by reduction in pesticide require-
ments, which are generally very expensive31,32. Hydroponic systems have been adopted in production of some 
high value crops such as tomato and lettuce33 and in seedling production in nurseries33,34.
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Additionally, it is not surprising that stress tolerance functions were predicted to be more abundant on sur-
faces of peppers grown on open field than those grown on the hydroponic system. It is widely known that hydro-
ponic systems raise plants free from most abiotic stresses (e.g., drought and nutrient stress) as well as biotic 
stresses (diseases and weeds). In addition, it is highly likely that the biofilm forming function, predicted to be 
present on surfaces of peppers grown on open field than hydroponic-produced peppers, is necessary to compart 
the various crop growth constraining factors known to be more common on the open fields. It is also highly 
probable that bacterial antagonists to deter potential pathogens could be exhibited by biofilm function. Likewise, 
pathogenicity can also be promoted by biofilm formation. Biofilms are defined as a collective of one or more types 
of microorganisms that can grow on many different surfaces35.

Differences in abundance of all the predicted nine phenotypic functions were significant (Supplementary 
Table S1), implying that the bacterial communities with these functions were affected by how pepper plants were 
managed, (e.g., fungicide treatment versus non-fungicide treatment or hydroponic versus open soil planting). It is 
also worth mentioning that most of these predicted functions are present in the bacterial phylum, Proteobacteria 
and Firmicutes (Fig. 1, Supplementary Fig. 2). According to our knowledge, no phenotypic functions on surface 
bacterial communities for fresh produce grown in hydroponic and open field soil or in other farming practices 
such as in organic and conventional practices have been reported before.

At the genus level, significant differences in abundance of Microbispora, Sphingobium, Paenibacillus and 
Lactococcus were noted between the treated and untreated red and green peppers produced in hydroponics. 
A similar observation was recorded for peppers grown in soil (Table 1). Microbispora species have the abil-
ity to produce phenazine-1-carboxylic acid, which is capable of controlling southern blight disease caused by 
the phytopathogenic fungus, Sclerotium rolfsii, which causes large economic losses in many crops such as Zea 
mays36. Sphingobium species were reported to produce a volatile inhibitory compound 2-methyl-1-propanol 
against fungus Pseudogymnoascus destructans37, while Paenibacillus is known to be capable of producing var-
ious plant hormones, antibiotics and hydrolytic enzymes with ability to suppress Fusarium wilt of cucumber 
(Cucumis sativus), which is caused by Fusarium oxysporum f. sp. cucumerinum in non-sterile, soil-less potting 
medium38. The bacterial genus Lactococcus, a bacteriocin producing Lactic acid bacteria (LAB), isolated from 
fresh fruits Chryso-phyllum cainito (star apple) and Solanum stramofolium (pea eggplant), was reported to show 
inhibitory activities against both Gram-positive pathogens such as Bacillus cereus and Staphylococcus aureus and 
the Gram-negative pathogens (e.g., Salmonella typhimurium)39,40.

Other well-known bacterial genera such as: Acinetobacter, Agrobacterium, Arthrobacter, Bacillus, Burkholderia, 
Curtobacterium, Enterococcus, Flavobacterium, Lactobacillus, Methylobacterium, Microbacterium, Novosphingobium, 

Figure 1. Mean relative abundances of taxa (phylum); (a) between hydroponic and soil habitats samples, 
(b) green and red samples, (c) treated and untreated samples. The abundance of each taxon calculated as the 
percentage of sequences per location for a given microbial group.
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Pseudomonas, Sphingomonas and Weissella, were represented by the majority of sequences, but no significant dif-
ferences in abundance for these genera were observed between the hydroponic-green-treated (HGT) and the 
hydroponic-green-untreated (HGU) samples, the soil-green-treated (SGT) and the soil-green-untreated (SGU) pep-
per samples, the hydroponic-red-treated (HRT) and the hydroponic-red-untreated (HRU) samples as well as between 
the soil-red-treated (SRT) and the soil-red-untreated (SRU) pepper samples (Fig. 3, Supplementary Table S2a,b). These 
genera are known to have an antagonistic action against fungal pathogens, reducing cucumber Fusarium wilt, Fusarium 
oxysporum, and other fungal pathogens while stimulating growth of other vegetable and fruit crops such as cucumbers 

Figure 2. Phenotypic prediction based on BugBase analysis. Prediction of phenotypic differences from 16S 
rRNA sequence data associated with aerobic, potentially pathogenic, stress tolerance, mobile element, biofilms 
formation, Gram-negative bacteria and Gram- positive bacteria from sample between hydroponic and soil 
treated and untreated pepper samples.
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and chickpeas41–46. These findings suggest that the abundance of these bacterial genera on surfaces of peppers are not 
affected by changes in growing conditions, maturity stage and pesticide treatment. Hence, these antagonists may be 
recommended for use in integrated pest management (IPM) programs, were both biological and chemical methods of 
pest control are recommended47. Similar results were obtained when the fruit surface bacterial communities living on 
apple fruits under conventional and organic management were compared, where only low abundance groups differed 
between the two environments48. A study by Telias, et al.15 also showed that these bacterial genera were highly abundant 
and variable on the surfaces of tomato fruits, but with no significant differences detected between the tomato fruit sam-
ples sprayed with surface water and groundwater. Acinetobacter, Pseudomonas and Sphingomonas were also identified 
in high abundance in the phyllosphere of some Atlantic rainforest tree species and cottonwood15,49, as well as on the 
leaves of field-grown tomatoes50.

In general, the abundance of all genera was consistently higher in pesticides-treated compared to 
pesticides-untreated pepper samples grown under both hydroponic and open field conditions. The same sce-
nario was observed in the case of fruit maturity, where the relative abundances of all genera were higher in green 
compared to red sample types. For treatments, similar trends were observed in studies conducted by Johnsen, et 
al.51, which showed that some microbial groups are capable of using the applied pesticides as a source of energy 
and nutrients to multiply. For instance, benomyl insecticides have been found to stimulate Pseudomonas sp, 
which use the insecticide as a carbon source for growth52. Some pesticides inhibit certain groups of microorgan-
isms and outnumber other groups by releasing them from competition. For example, a study by Hussain, et al.53 

Genus

HGT HGU

P-valueMean St. error Mean St. error

Brevundimonas 0.310 0.039 0.000 0.000 <0.001

Chitinophaga 0.317 0.009 0.174 0.020 <0.001

Chryseobacterium 0.377 1.123 0.170 0.015 <0.001

Clostridium 0.414 0.025 0.214 0.038 <0.001

Microbispora 6.929 0.042 1.577 0.014 <0.001

Myroides 0.660 0.083 0.000 0.000 <0.001

Ochrobactrum 0.088 0.001 0.000 0.000 <0.001

Paenibacillus 1.178 0.008 0.359 0.105 <0.001

Pedobacter 0.383 0.041 0.000 0.000 <0.001

Phenylobacterium 0.417 0.028 0.217 0.051 0.002

Sphingobacterium 0.721 0.010 0.213 0.017 0.026

SGT SGU

Sphingobium 0.363 0.004 0.118 0.001 0.001

HRT HRU

Agromyces 0.373 0.001 0.014 0.025 <0.001

Azospirillum 0.340 0.010 0.141 0.017 <0.001

Bacteroides 0.523 0.000 0.000 0.091 <0.001

Cellvibrio 0.384 0.000 0.000 0.045 <0.001

Chitinophaga 0.474 0.015 0.000 0.000 <0.001

Clostridium 0.355 0.000 0.000 0.016 <0.001

Corynebacterium 0.477 0.006 0.126 0.037 <0.001

Exiguobacterium 0.400 0.004 0.104 0.044 <0.001

Geobacillus 1.158 0.052 0.230 0.120 <0.001

Paenibacillus 1.645 0.008 0.642 0.097 <0.001

Phenylobacterium 0.370 0.012 0.149 0.039 <0.001

Serratia 0.358 0.000 0.000 0.603 <0.001

SRT SRU

Agromyces 0.688 0.000 0.000 0.008 <0.001

Clostridium 0.488 0.004 0.015 0.056 <0.001

Comamonas 0.701 0.004 0.115 0.037 <0.001

Corynebacterium 0.950 0.008 0.133 0.242 0.002

Geobacillus 0.406 0.014 0.200 0.027 <0.001

Klebsiella 0.364 0.001 0.098 0.054 <0.001

Lactococcus 2.312 0.116 0.657 0.007 0.001

Table 1. Comparison of bacterial genera showing significance differences; between hydroponic treated and 
untreated green samples, soil treated and untreated green pepper samples, hydroponic treated and hydroponic 
untreated red pepper samples, and between soil treated and untreated red pepper samples. Average relative 
abundance of sequences assigned to genus (Mean) constituting 0.3% or more sequences in either of the sample, 
standard error of the corresponding average (St. error) and p-value (p < 0.05 significant) describing the 
significance of the differential abundance observed between the two sample sources.
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demonstrated that fungicide applications inhibited fungal activity of Fusarium and Colletotrichum, which led to 
a rapid flush in bacterial activity of Bacillus, Acinetobacter and Rhodobacter. Trends observed for fruit maturity 
could be explained by the fact that, (i) a cyclic changes are observed in temperature and water availability during 
fruit development in early summer and (ii) progressive desiccation of fruits during maturation in late summer 
causing pepper to become less susceptible to many bacterial species. These conditions are selective for few species 
including Bacillus as described by Nicholson, et al.54.

Ordinating bacterial communities data using NMDS plots grouped the bacterial communities separately 
according to their habitats, treatements and sample type, observing distinct microbial assemblages (Fig. 4). 
Permutation tests revealed significant effects of habitats, pepper types and treatments on bacterial community 
structure and composition (i.e., PERMANOVAHabitat, F1 = 23.99, P < 0.001; PERMANOVATreatment, F1 = 2.89, 
P < 0.001; and, PERMANOVAType, F1 = 8.80, P < 0.001). Although differences in pepper surface bacterial commu-
nity structure have been reported between organic and conventional farming practices15, no differences have been 
reported for hydroponic and open field soil. Results from the present study indicate that the bacterial community 
in hydroponic surface pepper is distinct from those in open field soil surface pepper, regardless of pesticides 
application and pepper types.

In conclusion, we have demonstrated that pepper (Capsicum annum) harbors diverse bacterial communities 
on its surfaces, independent of growing conditions, sample treatment, and sample type, which influenced their 
composition and abundances. Some of these bacteria are potential antagonists, which may interact with and 
inhibit postharvest pathogens. The likely biocontrol mechanisms by these genera involve multifaceted interac-
tions between the host, pathogen and the antagonists which include production of extracellular cell wall degrad-
ing enzymes, competition for space, nutrients and space, production of various plant hormones, mycoparasitsm, 
and production of volatile organic compounds36–38,41–44,46,55. A large group of taxa were common across habitats, 
treatments and sample type. These taxa represented more than 50% bacterial phylotypes. Phenotypic predictions 
(at phylum level) seemed to suggest that the agronomic decision of whether to grow peppers on hydroponics or on 
open fields can be key as a disease control measure, as potentially pathogenic bacteria were predicted to be more 
abundant on samples grown on open fields than those from hydroponic systems. This finding demonstrated that 
hydroponic systems can be key in reducing production costs, in the long-run, as well as in preserving the integrity 
of ecosystems, which have for long, been under threat from high-input crop production systems that rely much 
of heavy inorganic pesticide and fertilizer applications. Additionally, many of the bacterial genera observed in 
high abundance in samples collected on plants grown under hydroponic and open field conditions are known to 

Figure 3. Relative proportion of bacterial antagonists (mean ≥0,3); (a) between hydroponic green untreated 
and hydroponic treated green samples, (b) hydroponic red untreated and hydroponic red treated samples, (c) 
soil green untreated and soil green treated samples, (d) soil red untreated and soil red treated samples. Error 
bars indicate mean ± SE.
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contain bacterial strains with plant growth promoting abilities for example Acinetobacter, Arthrobacter, Bacillus, 
Burkholderia, Curtobactarium and Microbacterium56–59 and those that act as antagonists against fungal plant path-
ogens42–46. However, a further investigation of these beneficial bacteria using culture-based approaches will help 
in isolating and characterizing the effects of the antagonists against bacterial pathogens of pepper. Overall, pep-
pers can accommodate different bacterial taxa on its surfaces, some of which with beneficial functional attributes 
such as pathogenic microbe antagonism, but these beneficial functions will be more important for plants grown 
under open soils, since they will be more exposed to both, biotic and abiotic stress factors.

Materials and methods
Study sites and crop management. Sweet peppers were grown in the summer and autumn seasons from 
October 2014 to March 2015, at the Agricultural Research Council-Vegetable and Ornamental Plants (ARC-
VOP), Roodeplaat, Pretoria, South Africa (25°59′S; 28°35′E and at an altitude of 1200 m above sea level). Plants 
were grown under both hydroponic (40% black and white shade net structure) and field conditions. The mean 
temperature for hydroponic growing conditions were 33 °C day/15 °C night. In the open field, temperatures of 
34.5 °C day/15 °C night were recorded. The experimental design was a 2 (treatments) × 2 (growing conditions) 
× 2 (maturity stages) factorial, with ten replicates (n = 80). The treatments were fungicide-treated (T) and fun-
gicide-untreated (U); the growing conditions hydroponic (H) and field (S); and the two maturity stages red (R) 
and green (G).

For the field experiment, seven-week-old sweet-pepper seedlings of cultivar ‘King Arthur’ of indeterminate 
growth habit were transplanted onto 20 cm-high ridges, with an intra-row spacing of 0.3 m and an inter-row 
spacing of 1.5 m. Plants were pruned to three stems and supported by horizontal twines to box the plants between 
horizontal twine until the height of 1.5 m. The soil was composed of a mixture of sandy, clay and loam (68%, 8% 
and 24%, respectively). The chemical composition of the soil (pH 7.3) was as follows: 73.1 mg.kg−1 phospho-
rus (P), 182 mg.kg−1 potassium (K), 978 mg.kg−1 calcium (Ca), 189 mg.kg−1 magnesium (Mg), and 51.1 mg.kg−1 
sodium (Na). Nitrogen was applied at the rate of 180 kg.ha−1 and was incorporated into the soil by banding with 
three split applications. The first application of nitrogen was at transplanting (50%), the second four weeks after 
transplanting (WAT) at WAT (25%) and the last at eight WAT (25%). Superphosphate (Ca (H2PO4)2) and potas-
sium sulphate (K2SO4) were applied at planting at the rate of 20 kg.ha−1 (10.5% P) and 40 kg.ha−1 (42% K), respec-
tively. Drip irrigation supplied 550 mm water. The total rainfall received during the growing season was 40 mm.

For the hydroponic experiment, sweet-pepper seedlings as above were transplanted into 10 L plastic bags filled 
with sawdust as a growing medium. The drip irrigation system, with one dripper per plant, delivering 2.1 litres 
of nutrient solution per hour was used to fertilize the plants as described by Maboko and Du Plooy60. The plants 
were pruned to three stems at four WAT. Each stem was trellised by twisting twine around the main stem and 
fixing it to a stay wire 2 m above the ground surface to support the plant. Side branches were removed weekly to 
maintain the three-stem system.

For both hydroponic and field conditions, after two WAT plants were sprayed with the following fungicides to 
control powdery mildew, blight and leaf spot: COPPER-COUNT N (5 mL/L), SPOREKILL (1 mL/L), BINOMYL 
(50 g mL/L), BRAVO (210 mL/L) and RIDMOL (360 mL/L). Insecticides ACTARA (50 mL/L), HUNTER 
(40 mL/L), DIOZINON (160 mL/L), BIOMECTINE (60 mL/L), and SAVAGE (40 mL/L)) were also applied to 
control white flies, red spider mites and aphids.

Figure 4. An NMDS plot showing differences in bacterial structure; (a) between hydroponic and soil habitat, 
(b) green and red samples under hydroponic habitat, (c) green and red samples under soil habitat.
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Sample collection and processing. Fresh, intact and healthy green and red (10 and 14 weeks after 
planting, respectively) sweet pepper fruit samples were aseptically collected, stored in sterile Ziploc bags 
and kept at 4 °C in the lab. A total of 80 samples were harvested: 10 Hydroponic-Green-Treated (HGT), 10 
Hydroponic-Red-Treated (HRT), 10 Hydroponic-Green-Untreated (HGU), 10 Hydroponic-Red-Untreated 
(HRU), 10 Soil-Green-Treated (SGT), 10 Soil-Red-Treated (SRT), 10 Soil-Green-Untreated (SGU) and 10 
Soil-Red-Untreated (SRU). Microbial biofilms on the surfaces of the pepper fruits were retrieved using sterile cot-
ton swabs soaked in a solution containing 0.15 M NaCl and 0.1% Tween 20, as described by Paulino, et al.61. The 
swabs were then transferred to micro centrifuge tubes and stored at −80 °C until DNA extraction was performed.

DNA extraction and fragment amplification and high- throughput sequencing.  Genomic DNA 
was isolated from the 80 samples using the ZR Fungal/Bacterial DNA extraction kit (ZYMO Research, Irvine, 
CA, USA) according to the manufacturer’s instructions. Bacterial 16S rRNA gene amplicons were amplified using 
primers, 515F (5′-GTGYCAGCMGCCGCGGRA-3′) and 909 R (5′-CCCCGYCAATTCMTTTRAG-3′), target-
ing the V4 hypervariable region62. PCR was conducted in a single step using a barcoded forward primer and 
HotStarTaq Plus Master Mix Kit (QIAGEN, Valencia, CA). The thermocycling conditions were initial denatura-
tion at 94 °C for 3 minutes, followed by 28 cycles of 94 °C for 30 seconds, 53 °C for 40 seconds and 72 °C for 1 min-
ute, then a final elongation step at 72 °C for 5 minutes. PCR products were separated by electrophoresis on 2% 
agarose gel to observe the expected band sizes. All samples were pooled in equal proportions and purified using 
calibrated Ampure XP beads (Agencourt Bioscience Corporation, MA, USA). Sequencing was performed on 
an Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA) at the Molecular Research LP next generation 
sequencing service (http://www.mrdnalab.com, Shallowater, TX, USA) according to the manufacture’s guidelines.

Bioinformatics analysis. The generated 16S rRNA gene sequence data was analyzed using QIIME v1.9.163. 
Joined sequences <200 bp long, with more than two ambiguous bases, had a quality score of <25 or more than 
one mismatch to the sample-specific barcode or to the primer sequences, were discarded. Chimeric sequences 
were discarded using USEARCH V6.164. Good quality reads were clustered into operational taxonomic units 
(OTUs) at 97% similarity level based on the Greengenes reference sequence database (version 13.8) and the de 
novo OTU picking algorithm. The taxonomic affiliations of the OTUs were determined using the naive Bayesian 
rRNA classifier65 at the 80% confidence level. Singletons, chloroplast and archaea species were filtered out from 
the OTU table and each sample was randomly subsampled (rarefied) to 28,646 reads, which was the lowest num-
ber of sequences obtained in a given sample.

Statistical analyses. Alpha diversity was assessed by computing richness and Shannon index using the 
‘diversity’ function in the Vegan66 R package. Statistical differences were evaluated using Kruskal-Wallis tests67. 
The number of shared OTUs between communities/samples was visualized using the ‘Venn’ function in Gplots 
(cran.r-project.org/package = gplots). The OTU table was Hellinger-Transformed and the Bray-Curtis distances 
was used to generate a dissimilarity matrix. The structure of the microbial communities was visualized using 
non-metric multidimensional scaling (nMDS) plots. Permutational analysis of variance (PERMANOVA)68 using 
the ‘Adonis’ function in the Vegan R package was used to test for differences in bacterial composition and struc-
ture. Bugbase (http://github.com/danknights/bugbase) was used to calculate differences between both groups in 
terms of microbial phenotypes.

Data availability
The raw Illumina sequencing reads for this project have been submitted to the National Centre for Biotechnology 
Information Short Read Archive (SRA) database with accession no. PRJNA529905. This Targeted Locus Study 
(TLS) project have been deposited at DDBJ/EMBL/GenBank under the accession KDDL00000000. The version 
described in this paper is the first version, KDDL01000000.
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